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ABSTRACT

Stationary fibre processes are processes of curves in a higher dimensional space, whose distribution is
translation invariant. In practical applications, they can be used to model several real objects, such as roots,
vascular networks and fibres of materials. Often it is required to compare processes showing similar shape,
thus a quantitative approach to describe their stochastic geometry is necessary. One of the basic geometric
characteristics of these processes is the intensity (i.e., mean total length per unit area or volume). Here, a
general computational-statistical approach is proposed for the estimation of this quantity from digital images
of the process, thus only planar fibre processes or projections of processes onto a plane are considered.
Differently from approaches based on segmentation, it does not depend on the particular application. The
statistical estimator of the intensity is proportional to the number of intersections between the process under
study and an independent motion invariant test fibre process. The intersections are detected on the real digital
image by a learned detector, easily trained by the user. Under rather mild regularity conditions on the fibre
process under study, the method also allows to estimate approximate confidence intervals for the intensity,
which is useful especially for comparison purposes.

Keywords: intensity estimator, intersection detector, machine learning, stationary fibre process.

INTRODUCTION

In many fields, such as biomedicine, material

sciences, agronomy, remote sensing, structures of

interest can be modeled as stationary fibre processes

(curves/lines in a higher dimensional space). Here,

we focus our attention only on planar fibre processes

or on projections of 3D processes onto a plane. The

characterization of such processes from digital images

is a common task, which is frequently solved first by

attempting an automated segmentation of the fibres

(which is dependent on the particular application). If a

trusted segmentation is available, then an appropriate

fibre tracking algorithm can be applied and the process

can be characterized by computing several geometric

measures. For example, the intensity (i.e., mean total

length per unit area) can be estimated as the ratio

between the total length of the fibres in the window

of observation W (i.e., the image) and the area of W .

Unfortunately, in many practical scenarios the required

segmentation can not be reliably obtained and often

is not even a well-posed problem, for example in

cases where fibres appear blurred or very thin. Other

intensity estimators are usually based on Crofton-like

formulas (see, e.g., Ohser, 1981 and Stoyan et al.,

1995), but they have no asymptotic properties because

they are obtained by means of the intersection with a

finite deterministic test fibre system (such as a finite

grid of circles or segments).

To overcome the request of a segmentation for

the estimation of the intensity and to ensure good

asymptotic properties of the estimation procedure,

we propose a computational-statistical technique,

which is based instead on a computationally simpler

estimator, proportional to the number of intersections

with an independent motion invariant (i.e., invariant

with respect to translations and rotations) test fibre

process. The detector of the intersections is learned

incrementally using a random forest classifier trained

on few user inputs (i.e., examples of intersections

in the image), until the user is satisfied with the

detector accuracy. Afterwards, the test fibre process

is simulated several times on the image, obtaining an

estimate of the intensity of the process under study

and an approximation of the variance of the estimator.

Thus, we can also provide approximate confidence

intervals for the intensity of the process.

Due to its generality, the approach is successfully

applied on images of very dissimilar structures,

in a variety of application scenarios, avoiding the

requirement of an ad-hoc segmentation method for the

identification of the fibres.

In the following sections, we describe the
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computational-statistical technique we propose for the

estimation of the intensity of stationary fibre processes.

The explanation of the procedure is divided into two

sections: the former regarding the statistical estimator

of the intensity (based on the intersection with an

independent motion invariant test fibre process) and

the estimation of its variance, the latter regarding the

learned detector of the intersections from a digital

image.

Finally, we present the results obtained on

simulated and real data for the evaluation of

the performance of the learned detector and the

comparison between the methods for the variance

estimation.

THE STATISTICAL ESTIMATOR

OF THE INTENSITY AND THE

ESTIMATION OF ITS VARIANCE

A planar fibre process Φ is a random variable

taking values in the space of the systems of fibres in R
2

(Stoyan et al., 1995). A fibre can be defined as a curve

of class C 1 with finite length and a system of fibres

as the union of at most countably many fibres that can

have only the endpoints in common (see Stoyan et al.

(1995) for a more formal definition and motivations

for this choice). Thus, many processes represented

by lines/curves in a two-dimensional space (such as,

images of capillaries and roots) can be modeled as a

planar fibre process. An example of fibre process is the

Boolean fibre process,

Φ =
⋃

n

{Xn⊕Γn} , (1)

where ⊕ denotes the Minkowski sum (i.e., A⊕ B =

{a + b | a ∈ A, b ∈ B}), {Xn}n is a homogeneous

Poisson point process with intensity λ (i.e., mean

number of points per unit area) and {Γn}n is a sequence
of i.i.d. random fibres independent of {Xn}n.

If the process is stationary (i.e., its distribution

is translation invariant), we can define the intensity

LA, as the constant such that E[µΦ(B)] = LAν2(B),
for all Borel sets B, where µΦ(B) denotes the total

length measure of the fibres of Φ in B (i.e., µΦ(B) :=
ν1(Φ∩B)) and νd , d = 1,2, is the d-dimensional

Lebesgue measure. The intensity LA represents the

mean total length of fibres per unit area; for example,

in the case of the Boolean processes (Eq. 1) LA = λm,
with m = E[ν1(Γ1)]. As a consequence, the intensity

is one of the basic characteristics of the stochastic

geometry of a stationary fibre process.

As we mentioned in the Introduction, we can
estimate unbiasedly the intensity with

L̂measure
A (W ) =

µΦ(W )

ν2(W )
,

whereW is a compact window of observation. If Φ is
ergodic, then the estimator is strongly consistent, when
enlarging the window of observation (from Corollary
10.2.V in Daley and Vere-Jones, 1998). Nevertheless,
the computation of the estimator requires to measure
the total length of the fibres in W . In practical
applications, the sets under study are represented in
a digital image, thus to calculate the total length of
the fibres we need a reliable segmentation and an
appropriate fibre tracking algorithm. To avoid these
requirements, we can use another estimator which is
unbiased, computationally simpler and has also good
asymptotic properties,

L̂A,1(W ) =
NΦ1∩Φ2

(W )

ν2(W )

π

2LA,2
, (2)

where Φ1 is the fibre process under study, Φ2 is a
test independent motion invariant (i.e., invariant with
respect to translations and rotations) fibre process
with intensity LA,2, and NΦ1∩Φ2

(.) is the counting
measure associated to the the point process of
the intersections Φ1 ∩ Φ2, i.e., NΦ1∩Φ2

(W ) is the
number of the intersection points of Φ1 and Φ2

in W (Micheletti and Rancoita, 2009). Due to the
stationarity and independence of Φ1 and Φ2, the point
process Φ1∩Φ2 is a.s. stationary and, since Φ2 is also
isotropic, its intensity is 2LA,1LA,2/π (Lemma 3.2 in

Mecke, 1981), which implies the unbiasedness of L̂A,1.

L̂A,1 is a generalization of the estimator defined
by Ohser (1981), based on the intersection with a
finite deterministic test fibre system. If the point

process of the intersections Φ1 ∩Φ2 is ergodic, L̂A,1

is strongly consistent when enlarging the window
of observation (it follows from Corollary 10.2.V in
Daley and Vere-Jones, 1998). If Φ1 ∩Φ2 has suitable
mixing properties (such as the independence of the
process in disjoint sets, having a distance greater than
l < ∞), the estimator is also asymptotically normal
(Jolivet, 1991; Rancoita, 2010). For example, if the
point process of the centers of the fibres is independent
in sets with distance greater than l and the fibres
have maximum length smaller than l, with l < ∞,
(like for Boolean fibre processes where the length
of the fibres is smaller than l < ∞), then the fibre
process is independent at distance l. It is easy to
verify that if both Φ1 and Φ2 have this property,
then it holds also for Φ1 ∩ Φ2 and all the described
asymptotic properties of the estimator hold. In
Rancoita (2010) and Rancoita and Micheletti (2011),
the authors showed the behavior of the estimator
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on both simulated “continuous” and digital images

(where the fibres are approximated with pixels), using

different types of (even not isotropic) Boolean fibre

processes as Φ1, different isotropic Boolean fibre

process as Φ2 and different sizes of W . On both

“continuous” and digital images, the approximation

of the distribution of the estimator with the normal

distribution was already good in square window of

observation with side equal to 200–300 units or

pixels. In case of digital images, the authors studied

also the issue of over/underestimation of the number

of intersections due to the pixel approximation: the

eventual over/underestimation depended mainly on the

shape of the fibres of the process Φ1, thus the estimator

can always be used for the comparison of the intensity

of fibre processes with fibres showing the same shape

(since the bias of the estimation is the same).

Under the assumptions needed for the asymptotic

normality of L̂A,1, if we can estimate the variance

of L̂A,1, we can provide an approximate confidence

interval for the intensity. In practical applications, only

a few or even one single image of the process under

study is usually provided, thus it is not possible to

estimate Var(L̂A,1) with the sample variance of the

estimator computed on the set of images. In this

situation, we need an accurate way to approximate the

variance of the point process of the intersections on a

single image.

Heinrich and Prokešová (2010) proved that if P

is a stationary point process, with milder mixing

conditions than the ones required for the asymptotic

normality of the corresponding counting measure, and

if {Wn}n is a sequence of enlarging bounded convex

windows of observation, then

lim
n→∞

Var(NP(Wn))

ν2(Wn)
=: σ2

P < ∞ . (3)

It follows that, if W is sufficiently large and P =
Φ1∩Φ2,

Var

(
NP(W )

ν2(W )

)
≈ σ2

P

ν2(W )

=⇒ Var(L̂A,1(W )) ≈
(

π

2LA,2

)2 σ2
Φ1∩Φ2

ν2(W )
. (4)

Heinrich and Prokešová also defined a class of kernel

estimators for σ2
P

and showed their good theoretical

asymptotic properties. Choosing a cylinder kernel, the

estimator becomes,

σ̂2
P(W ) =

NP(W )

ν2(W )
+

+
6=
∑

x,y∈P∩W

1B(0,1)

(
y−x

bw
√

ν2(W )

)

ν2(T−x(W )∩T−y(W ))
−

−π(bw
√

ν2(W ))2
NP(W )(NP(W )−1)

(ν2(W ))2
, (5)

where bW is a bandwidth (whose choice depends on
the size ofW , for convergence properties) and T is the
translation operator (i.e., Tx(B) = {x+ b | b ∈ B}). On
simulations with small windows of observation, and
different types of point process models, kernels and
bandwidths, Heinrich and Prokešová (2010) obtained
that the estimator, which achieved the lowest relative
mean square error (E[(σ2

P
− σ̂2

P
)2]/σ4

P
), was the one

with the cylinder kernel with a value of bw
√

ν2(W )
in the interval [1,3]. Therefore, we can derive an
estimator for Var(L̂A,1) from Eqs. 4 and 5,

V̂ar(L̂A,1(W )) =

(
π

2LA,2

)2 σ̂2
Φ1∩Φ2

(W )

ν2(W )
. (6)

We will refer to this estimator as the Method 1 for the
estimation of the variance.

Rancoita and Micheletti (2011) proposed another
way for the approximation of the variance. Let us
generate n i.i.d. test processes Φ2 (which are also

independent of Φ1) and call {L̂i}ni=1 the corresponding

estimators L̂A,1(W ), obtained on the same realization

of Φ1. If we assume that, ∀i 6= j, Cov(L̂i, L̂ j) ≤
c1Var(L̂i) with c1 < 1, then an upper bound for the
variance is given by,

Var(L̂i) ≤
1

1− c1

1

n−1

n

∑
j=1

E

[(
L̂ j− L̂

)2
]
,

with L̂ = ∑n
i=1 L̂i/n, and we can approximate the

variance with the estimate of its upper bound,

V̂ar(L̂i) =
1

1− c1

1

n−1

n

∑
j=1

(
L̂ j− L̂

)2

. (7)

We will call this method for the approximation of the
variance Method 2. By using Lemma 2.3 in Mecke
(1981), it is easy to prove that,

Cov(L̂i, L̂ j) =
Var(µΦ1

(W ))

(ν2(W ))2
= Var(L̂measure

A (W )) ,

for any i 6= j, i.e., the covariance between the
estimators computed on the same image depends
only on the variance of process Φ1 (in fact the two

processes Φ2, by which L̂i and L̂ j are computed,
are generated independently). Since the covariance
among the estimators is equal to the variance of

L̂measure
A (W ), the following proposition and corollary
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(see the Appendix for their proofs) allow us to show

that the constant c1 < 1 exists at least when the

test fibre process Φ2 is an isotropic Poisson segment

process (i.e., a Boolean fibre process with fibres that

are segments uniformly oriented). In the applications,

we will use this type of test fibre process.

Proposition 1 Let Φ1 be a stationary planar fibre

process with intensity LA,1 and Φ2 be a test isotropic

Poisson segment process with intensity LA,2, then

Var(L̂A,1(W )) ≥ Var(L̂measure
A (W ))+

LA,1π

2LA,2ν2(W )
,

for any compact window of observation W in R
2.

Corollary 1 Let Φ1 be a stationary planar fibre

process with intensity LA,1 and Φ2 be a test isotropic

Poisson segment process with intensity LA,2, then there

exists at least one constant c1 < 1 such that

Var(L̂measure
A (W )) ≤ c1Var(L̂A,1(W )) ,

for any compact window of observation W in R
2.

In Rancoita (2010) and Rancoita and Micheletti

(2011), the constant c1 was found always strictly

lower than one (c1 ∈ [0,0.6]), on both simulated

“continuous” and digital images, by using different

types of (even not isotropic) Boolean fibre processes

as Φ1, different isotropic Boolean fibre process as Φ2

(including the isotropic Poisson segment process) and

different sizes of W . Among the types of processes

Φ1, there were the anisotropic Boolean fibre processes

whose fibres were either horizontal segments or arcs

of parabola (with horizontal orientation) and thus

resembled the real angiogenic processes that we will

study in the applications.

In general, if we assume that a condition similar to

Eq. 3 holds for Φ1, i.e.,

lim
n→∞

Var(µΦ1
(Wn))

ν2(Wn)
=: σ2

Φ1
< ∞ , (8)

or even the following milder condition holds,

limsup
n→∞

Var(µΦ1
(Wn))

ν2(Wn)
≤ σ2

Φ1
< ∞ , (9)

then limn→∞Var(µΦ1
(Wn))/(ν2(Wn))

2 = 0, that is, for

large windows, the covariance (and Var(L̂measure
A (W )))

is close to zero and we can approximate the constant

c1 with zero. This approximation is reasonable, since

L̂measure
A is already strongly consistent by assuming

only the ergodicity of Φ1 (which is a milder condition
than the ones required for the asymptotic normality

of L̂A,1). The hypothesis in Eq. 8 is verified, for
example, for Boolean fibre processes whose fibres are
boundaries of compact sets with a finite maximum
diameter (Theorem 6.1 in Molchanov and Stoyan,
1994), and the hypothesis in Eq. 9 holds for general
fibre processes independent at distance l (l < ∞) thanks
to the following proposition and corollary (see the
Appendix for their proofs).

Proposition 2 Let Φ be a stationary planar fibre
process independent at distance l < ∞. Then, for any

bounded convex set B in R
2,

Var(µΦ(B))

ν2(B)

≤
(
3

√
Var(µΦ(Ql))

l
+6

√

E[µ2
Φ(Ql)]

(
1

r(B)l
+

1

ν2(B)

))2

,

where r(B) denotes the inradius of B and Ql is any

square of side l.

Corollary 2 Let Φ be a stationary planar fibre

process independent at distance l < ∞. Then, for any

sequence of enlarging bounded convex windows {Wn}n
such that limn→∞Wn = R

2,

limsup
n→∞

Var(µΦ(Wn))

ν2(Wn)
≤ 9

Var(µΦ(Ql))

l2
< ∞ ,

where Ql is any square of side l.

Therefore, as general guideline, if we suppose that

the hypotheses for the asymptotic normality of L̂A,1

hold and the window of observation is sufficiently
large, then we can reasonably approximate the constant
c1 with zero. If the window is small or if we want to
be more conservative, we can estimate the value of
c1 either by simulating processes with characteristics
similar to the process under study, or, in case Φ1 is
independent at distance l < ∞ and Φ2 is an isotropic
Poisson segment process, by using Proposition 2
together with the technique used to prove Corollary 1.
In the applications, we will use c1 = 0, since the
side of the squared window will be greater than
100 units/pixels, which can be considered a big size,
according to the simulations performed in Rancoita
(2010) and Rancoita and Micheletti (2011), where the
variance was estimated via replicates of Φ1, and c1 =
0.6, which was the maximum value obtained in the
same simulations. Actually the optimal value for c1
could be internal to the interval [0,0.6], thus more
values in this interval should be tested. Anyway, both
because the aim of this paper is to give general
guidelines on the estimation procedure and because
of space reason, we will restrict our analysis to the
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extreme of the interval. We leave to subsequent papers

the problem of identifying an optimal value for c1,

depending on the types of processes Φ1 and Φ2 and

the size ofW .

Note that the types of process Φ1 used

in the simulations in Rancoita (2010) and

Rancoita and Micheletti (2011) comprise: the same

processes that will be used in the simulations

performed in this paper, and two non-isotropic

processes with geometric characteristics similar to

the angiogenic process that we will consider here as

real application. Therefore, it is reasonable to assume

that c1 will belong to the interval [0,0.6] in both our

simulated and real data.

THE LEARNED DETECTOR OF

THE INTERSECTIONS

In order to apply the approach described above on

real images, a system is needed to automatically detect

intersections between fibres in Φ1 (which are visible

on the image) and fibres in Φ2 (named segments in

the following, since in the applications we will use an

isotropic Poisson segment process).

In very simple scenarios, intersections may be

detected easily, e.g., as local maxima of image

intensity along the segment. However, the majority

of real applications requires more sophisticated image

analysis approaches, and different types of images can

have very different appearances of both the fibres and

the background.

We propose a general approach for intersection

detection based on a classifier learned from training

data. In the current implementation we use a random

forest classifier (Breiman, 2001). The classifier is

applied for each pixel of the segment and uses the data

(called also features) obtained from a neighborhood of

the pixel. Namely, we look at a rectangular window

with side lengths of 17 and 5 pixels, which is centered

at the pixel under consideration and oriented such

that the long sides are parallel to the segment (see

Fig. 1). Pixel values from the original image are

resampled at the real-valued locations, defined by a

grid inside the window, by using bilinear interpolation.

For dimensionality reduction, the features considered

are the first 15 principal components of the resampled

raw pixel values in the neighborhood. For each pixel

of the segment, the classifier returns the probability to

be an intersection.

Fig. 1. Overview of the intersection detector.

The usage of raw pixel data rather than higher-

level features for the classification allows us to remain

completely scenario-neutral, since we do not need any

assumption about the fibre appearance. The values of

the side lengths of the rectangular window were set,

in a very conservative way, based on the applications

explained in the subsequent sections, but they are not

critical parameters (i.e., the use of other reasonable

values would not significantly affect the performance

of the detector). As general guidelines, the length of

the long sides should be greater than the maximum

width of the fibres we expect in the image (thus, the

rectangular window contains also the boundaries of the

fibre around the intersection point), while the value

of the length of the short sides is even less crucial.

A length of 1 pixel is sufficient in most cases and

slightly larger values may improve the performance of

the detector in datasets of noisy images.

Training the classifier. The classifier is trained

by means of user-labeled segments obtained from a

set of training images. Each segment is randomly

generated (on a training image) and is shown to the

user, who is asked to identify the intersections by

clicking on them. All the clicked intersections are

considered positive training examples for the classifier;

negative examples are generated from the remaining

pixels of the segment. The classifier is retrained as

new user-labeled segments are available. After each

retraining, the classifier performance on segments not

belonging to the training set is visualized to the user,

who may stop the training phase when accuracy is

deemed sufficient. Once trained, the classifier can be

applied to detect intersections in new images with a

similar appearance to the ones used for training. As

any supervised method, this approach works as long

as the training set is representative of the testing set;

appearance variations are correctly handled, assuming
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that some examples for different appearances are

available in training data.

Applying the classifier to a test segment. The

number of intersections with a test segment is

computed by applying the classifier to each pixel of

the segment. The classifier returns, for each pixel,

the probability of being an intersection and thus, on

the whole, a profile of intersection probabilities along

the segment: peaks of such profile are considered

as candidate intersections with the corresponding

probability (see Fig. 2). The candidate intersection

points of a given segment are assumed to be

conditionally independent Bernoulli random variables.

The total number of intersections (with the segment)

is estimated as the expected value of the sum of the

candidate intersections.

Fig. 2. Example of profile of probability of being an

intersection for all pixels in a segment.

RESULTS ON SIMULATED AND

REAL DATA

This section has three aims: (1) to compare the

two methods for the estimation of the variance in

order to select one of them, (2) to evaluate the

performance of the learned detector, (3) to show a

practical application of the proposed approach for

intensity estimation. Some artificial data are used to

address the first issue, while three real datasets are used

for the second one. The practical application consists

in a quantitative comparison between the intensities of

real angiogenic processes, produced under the effect of

different antiangiogenic treatments.

DATA DESCRIPTION

For the comparison of the two previously described

methods for the variance estimation in situations

similar to real applications, we use artificial datasets

of digital images, generated with straightforward

computer graphics techniques: namely, the fibres are

rasterized as curves with a 1-pixel-wide stroke without

antialiasing. In the simulations, both Φ1 and Φ2 are

Boolean fibre processes (see Eq. 1), with intensity of

the Poisson point process λ1 and λ2, respectively. The

window of observation W is squared and its side is

called dimension (or dim). The possible values of the

parameters used in the simulations are:

– λ1 = 0.004 and λ2 ∈ {0.002,0.004,0.008};
– the fibres of Φ1 have been generated as: either

horizontal segments with length l1 = 20 (Poisson

horizontal segment process), or segments with

uniform orientation and length l1 = 20 (isotropic

Poisson segment process) or circles of radius r1 =
10 (Poisson circle process);

– the fibres of Φ2 are segments with uniform

orientation and length l2 ∈ {20,60};
– the dimension ofW is 500.

For each type of process Φ1, we generated 100 datasets

(i.e., images) and, to compute the variance with

Method 2, for each image of Φ1 and type of process

Φ2, we simulated 100 times the test process. To see

the improvement of the estimations when enlarging the

window of observation, for each image, we computed

L̂A,1 and its variance (with the two methods) also in

subwindows of dimension 100, 200, 300 and 400.

For the evaluation of the performance of the

learned detector of the intersections, we consider three

datasets:

– Simulated roots: 49 simulated realistic root images

(Dowdy et al., 1998);

– DRIVE: 20 training and 20 testing images of retina

blood vessels (Staal et al., 2004);

– Angiogenesis: 16 images of angiogenic processes

of mouse cornea (Corada et al., 2002).

All datasets provide a ground truth (i.e., a reference

segmentation of the image made by an expert) for all

images and, for the 20 testing images of the dataset

DRIVE, a second ground truth is also available. The

dataset Angiogenesis will be also used to show a real

application of the intensity estimation. Examples of

images of these datasets are given in Fig. 3.
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Fig. 3. Examples of images from the three

datasets Simulated roots, DRIVE and Angiogenesis,

respectively.

COMPARISON BETWEEN THE

METHODS FOR VARIANCE

ESTIMATION

We compared the two methods for the estimation

of Var(L̂A,1(W )) on datasets of simulated digital

images (both the methods and the data were

described previously). Regarding the estimator

described in Eq. 6, since in the experiments in

Heinrich and Prokešová (2010) the optimal bandwidth

bW was found such that d := bw
√

ν2(W ) ∈ [1,3], we
chose bW such that either d = 2 or d = 3. In fact,

due to the pixel approximation, we can choose only

integer values for d (in Eq. 5 we need to count the

pairs of intersections (x,y) such that |x−y| <= d) and

d = 1 provides too narrow neighborhood to detect pairs

of intersections. We computed the mean square error

(MSE) and the relative mean square error (relMSE),

as in Heinrich and Prokešová (2010), to compare the

quality of the estimation. For the relMSE, we used as

reference (true) variance of the estimator the sample

variance of the estimator calculated over the 100

independent images of the specific pair (Φ1,Φ2). In
Fig. 4, we show, as an example, the results obtained

when Φ1 is the Poisson horizontal segment process

and Φ2 has the lowest and highest intensity (among

those used in the simulations).

Fig. 4. Mean square error and relative mean square

error of the estimated Var(L̂A,1(W )), where Φ1 is

a Poisson horizontal segment process (λ1 = 0.004
and l1 = 20) and Φ2 is a isotropic Poisson segment

process. For the estimation we used: Method 1 with

d = 2 (solid-circle line) or d = 3 (solid-star line) and

Method 2 with c1 = 0 (dash-circle line) or c1 = 0.6
(dash-star line).

For all methods, fixed a type of Φ1 and Φ2,
the MSE was decreasing as the dimension increased,
since also the variance itself decreases with the
dimension for the convergence of the intensity
estimator. Moreover, the MSE of the four methods
are usually similar, except for the smallest considered
side of the window (dim = 100). In that case, usually
Method 2 with c1 = 0 achieved the lowest error and
with c1 = 0.6 the highest. Regarding the relMSE,
the error was almost constant as the dimension of W
increased, since it is less sensitive to changes in the
value of the variance. Furthermore, Method 1 with
d = 3 achieved only a slightly smaller error than with

d = 2 and, with both values of d, the error slightly
increased with LA,2. This effect might be due to the
pixel approximation of the image, so that we find a
smaller number of pairs of intersection points (x,y)
such that |x− y| <= d, than what expected. In fact,
we obtained almost always an underestimation of the
variance and thus the error represents a quantification
of this underestimation. Instead, Method 2 with
c1 = 0.6 almost always overestimated it, due to its
formulation (Eq. 7). Moreover, the error decreased as
LA,2 increased, because the value of c1 = 0.6 is an
approximation obtained heuristically for high values

of the intensity of Φ2. Using c1 = 0, the properties
of the estimator of the variance are similar to the
ones of Method 1, but with a lower relMSE and a
smaller underestimation. In conclusion, when Eq. 8

or Eq. 9 hold, it is better to estimate Var(L̂A,1(W ))
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with Method 2 using c1 = 0 (when the window of

observation is sufficiently large), otherwise it is better

to use a test process with high intensity LA,2 and

(over)estimate the variance with Method 2, using

c1 = 0.6 (for processes with characteristics similar

to ours) or trying to estimate it, since in this case

Method 1 leads to an underestimation of the variance,

and, for comparison purposes, it is preferable to be

more conservative and obtain larger approximated

confidence intervals.

VALIDATION OF THE LEARNED

DETECTOR

We evaluated the accuracy of the learned detector

by verifying that the number of intersections computed

for each segment estimates well the reference number

of intersections, which is computed from the ground

truth segmentation. For the validation, we used the

images of the three real datasets described previously.

For each dataset, we generated 1000 random segments

and, for each segment, we computed the number

of intersections from the ground truth and, using

the detector, from the corresponding real image. We

observed that the p-value of the test on the Pearson’s

correlation coefficient was always lower than 10−15

and the slope in the linear regression model was

always positive and lower than one. Thus, even in

challenging datasets, the detector found a number

of intersections well-correlated to the one in the

ground truth, with a slight expected underestimation,

as tangent intersections might be ignored by the

detector but counted in the ground truth. In Fig. 5,

we can also observe that the relative absolute error is

similar in all datasets, with a median close to 0.2 even

in the more difficult case. Instead, for example, we

would have obtained a greater performance variability

among the datasets, if simply we had considered as

intersections all peaks with probability greater than

0.5. In the DRIVE dataset, which is regarded as

a standard benchmark for vessel segmentation, the

detector performance was comparable to state of the

art segmentation methods (designed specifically for

such dataset), in the task of finding the number of fibre-

segment intersections.

Beyond the good estimation of the number of

intersections, we also qualitatively verified that the

detected intersections were at the expected positions.

Fig. 6 demonstrates this by showing that the

spatial distribution of the intersections detected in

many segments (white-background image labeled Det.

Inters.) matches the actual position of the capillaries.

Fig. 5. Boxplot of the relative absolute error between

the number of intersections in the ground truth and the

corresponding computed either with our method (here

called soft) or by identifying the intersections as peaks

with probability greater than 0.5 (hard).

Fig. 6. Original image (Original), ground truth

segmentation (GT) and spatial distribution of detected

intersections (Det. Inters.) for an image in the dataset

Angiogenesis.

REAL APPLICATION OF THE INTENSITY

ESTIMATION

We show an application of the intensity estimation

using the real dataset Angiogenesis. The images were

produced at IFOM (FIRC Institute of Molecular

Oncology Foundation, Milan), by the research group

of Prof. Dejana, during a research project regarding

the inhibition of angiogenic processes (i.e., formation

of new capillary blood vessels) for cancer therapy.

They considered several antibodies against the protein

VE-Cadherin and studied their ability of inhibiting the

angiogenesis on mouse corneas. In each experiment,

first they implanted a pellet containing hrFGF-2
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(which induces the formation of capillaries and thus

simulates a tumor) in the cornea of a mouse and then

they treated the mouse with an antibody either putting

it in the pellet together with the angiogenic factor (non-

systemic treatment) or injecting it intraperitoneally

starting from the day after the pellet implantation

(systemic treatment). The four mice used as control

were treated (two of them non-systemically and the

others systemically) with the antibody nonimmune rat

IgG (Rat-IgG), which has no antiangiogenic effect. For

each type of treatment, two experiments were executed

(i.e., they used the treatment on two mice) and thus

two eye images were available. The evaluation of

the “performance” of the antibody was done by the

biologists, by comparing the images of the specific

antibody with the control ones of Rat-IgG.

In Fig. 7 we show a qualitative comparison

between the estimation of the intensity and of the

variance (with Method 2 and both c1 = 0 and c1 = 0.6),

using the ground truth and the real image. All estimates

are nicely correlated, with a slight underestimation in

the real image (due to the difficulties encountered by

the detector). Moreover, we can see that differences

between the estimates of the variance are lower by

using c1 = 0 than c1 = 0.6.

Fig. 7. Comparison of the intensity and variance

estimation by using the ground truth and the real image

in the dataset Angiogenesis.

Fig. 8. Confidence interval of the intensities of the mice

non-systemically treated with antibodies Rat-IgG and

19E6.

Fig. 9. Confidence interval of the intensities of the

mice systemically treated with antibodies Rat-IgG and

6D10.

To evaluate the ability of the antibodies in

inhibiting the angiogenic process, we computed the

approximate confidence interval of the intensity for

each image of eye, separately, and compared them

with the corresponding ones obtained on the control

eyes. The variance was estimated with both c1 =
0 and c1 = 0.6. Figs. 8 and 9 show two examples

of comparison. In the former, we can observe that

in the eyes of mice treated with antibody 19E6 the

intensity looks significantly lower than in the control
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eyes. In the latter, we cannot say that the intensity

corresponding to the antibody 6D10 is significantly

different from the one in the control eyes. In fact,

in this case the treatment was systemic, that is the

antibody was given the day after the implantation of

the pellet, when the network of vessel was already

partially formed, and the major differences are in the

area occupied by the vessels and in their width, more

than in the intensity. Moreover in Fig. 9 we can also

note the high biological variability of the two replicates

corresponding to antibody 6D10, which may suggest

that systemic treatments give less reliable effects with

respect to the non-systemic ones.

DISCUSSION

We propose a computational-statistical technique

for the estimation of the intensity of stationary planar

fibre processes from their digital images. The method

is based on a statistical estimator (L̂A,1) proportional

to the number of intersections between the process

under study Φ1 and an independent motion invariant

test fibre process (simulated on the real digital image

of Φ1). The points of intersection in the image are

identified by a learned detector (based on a classifier),

which is trained on few user inputs (examples of

intersection and non-intersection points). The main

advantage of such approach is that it can work on any

suitable dataset after a simple and quick training by

the user. Moreover, the resulting detector works well

also in hard datasets, such asDRIVE and Angiogenesis,

where a clear segmentation is not easy to determine

even visually. Uncertainty and ambiguity in training

data is well-handled by exploiting the probabilistic

information returned by the detector, rather than

forcing binary outputs. Both the statistical and the

computational components of the method have good

characteristics so that it performs well even on real

challenging data.

The intensity estimator L̂A,1 is asymptotically

normal, under suitable mixing conditions (e.g., the

independence of the point process of the intersections

in set separated by a distance greater than l, l < ∞)

and, in the applications, these assumptions are often

satisfied. Due to the asymptotic normality, the method

can also provide an approximate confidence interval

for the intensity, once computed the variance of the

estimator. In case only one image of the process is

available, we considered two possible ways for the

approximation of the variance and, based on the results

with simulated data, we identified which of them

is more suitable for applications with digital images

(where the curves are approximated with pixels). Thus,

the approximate confidence interval can be calculated

even in case of one single image of the process.

In real applications, also other geometric

characteristics can be of interest, such as the

distribution of the orientation of the fibres and their

width (by considering the objects under study as

two-dimensional random sets, instead of random

fibres, which are one-dimensional). We leave to

subsequent papers the study of estimators of these

quantities and the extension of the detector to provide

also the information required for their computation.

Furthermore, the performance of the detector can

be improved by implementing an active learning

technique for its training. In this case, the segments

shown to the user are chosen automatically in order to

provide the largest amount of useful information to the

classifier. Finally, we intend to release soon an open

source code of our method in Matlab.

APPENDIX

In this section we provide the proofs of all

propositions and corollaries stated in the article.

Proof of Proposition 1. As in Weiss and Nagel

(1994), let us assume that the segments of Φ2 are

numbered and, for any x ∈ Φ1 ∩Φ2, n(x) denotes the
(a.s. unique) number of the segment of Φ2 to which x

belongs. Thus, we can rewrite the second moment of

NΦ1∩Φ2
(.) as,

E[N2
Φ1∩Φ2

(W )] = E

[

∑
x∈Φ1∩Φ2

IW (x)

]

+E


 ∑

x,y∈Φ1∩Φ2:

n(x)6=n(y)

IW (x)IW (y)




+E


 ∑

x,y∈Φ1∩Φ2:

n(x)=n(y)

IW (x)IW (y)


 ,

where IW (.) is the indicator function of the setW . The
first term is the first moment of NΦ1∩Φ2

(.) and thus

it is equal to E[NΦ1∩Φ2
(W )] = 2LA,1LA,2ν2(W )/π =

2LA,2E[µΦ1
(W )]/π (see Lemma 3.2 in Mecke, 1981).

The second term can be explicitly computed by using
Theorem 4.1 in Weiss and Nagel (1994) and it is equal

to E[µ2
Φ1

(W )](2LA,2/π)2. Finally, since the third term

is greater or equal than zero, we obtain that

E[N2
Φ1∩Φ2

(W )] ≥ E[µ2
Φ1

(W )]

(
2LA,2

π

)2

+
2LA,1LA,2ν2(W )

π
,
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that is,

Var(NΦ1∩Φ2
(W )) ≥ Var(µΦ1

(W ))

(
2LA,2

π

)2

+
2LA,1LA,2ν2(W )

π
,

because E[NΦ1∩Φ2
(W )] = 2LA,2E[µΦ1

(W )]/π . The
thesis can now be derived, by using the definition of

the estimators L̂A,1 and L̂
measure
A .

Proof of Corollary 1. From Proposition 1,

Var(L̂A,1(W )) ≥ Var(L̂measure
A (W ))+

LA,1π

2LA,2ν2(W )
,

for any compact window of observationW inR
2. Thus,

for any constant c > 0 such that

c≤ LA,1π

2LA,2ν2(W )Var(L̂measure
A (W ))

,

we have that

Var(L̂measure
A (W )) ≤ 1

1+ c
Var(L̂A,1(W )) .

By setting c1 = 1/(1+ c), we obtain the thesis and
c1 < 1 since c > 0.

Proof of Proposition 2. Let B be a bounded convex
set in R

2, then we can define a finite grid of squares of
side l that covers B and can have only sides or vertices
in common, or, more in general, intersections with null

ν2-measure: Q = {Qi
l: Q

i
l ∩B 6= /0, Qi

l ∩Q
j
l = A with

ν2(A) = 0, ∀i 6= j}, where Qi
l denotes a square of side

l. We can divide the collection of squares into two
groups whether they lie completely inside B or not.
Let us define the corresponding sets of indices as I1
= {i: Qi

l ∈ Q, Qi
l ⊆ B} (with cardinality |I1| = N1) and

I2 = {i: Qi
l ∈ Q, Qi

l ⊆/ B} (with |I2| = N2). Moreover,
for each index i ∈ Ik (k = 1,2), let us define the set of
indices in Ik corresponding to squares adjacent to Qi

l ,

i.e., Hk
i = { j ∈ Ik: j 6= i, d(Qi

l,Q
j
l ) = 0} (where d(., .)

is the Euclidean distance between sets). Obviously,
|Hk

i | ≤ 8, for all i,k.

Now, we can decompose µΦ(B) as ∑i∈I1 µΦ(Qi
l)+

∑i∈I2 µΦ(Qi
l ∩B) =: X +Y and it is easy to verify that

Var(µΦ(B)) ≤ Var(X)+Var(Y )+2
√
Var(X)Var(Y ) ,

(10)
by a suitable majorization of Cov(X ,Y ). In order to
obtain an upper bound of the right-hand side of Eq. 10,
firstly let us derive an upper bound for E[X2],

E[X2] = ∑
i∈I1

E[µ2
Φ(Qi

l)]+ ∑
i∈I1

∑
j∈H1

i

E[µΦ(Qi
l)µΦ(Q j

l )]

+ ∑
i∈I1

∑
j∈I1\{H1

i ∪i}
E[µΦ(Qi

l)]E[µΦ(Q j
l )]

≤ N1E[µ2
Φ(Q1

l )]+ ∑
i∈I1

|H1
i |E[µ2

Φ(Q1
l )]

+ ∑
i∈I1

(N1−1−|H1
i |)E[µΦ(Q1

l )]
2

≤ 9N1Var(µΦ(Q1
l ))+(E[X ])2 ,

by using the stationarity of the fibre process, the

independence of the process at distance l, the

Cauchy-Schwarz inequality and the inequality |Hk
i | ≤

8. Therefore, Var(X) ≤ 9N1Var(µΦ(Q1
l )). Regarding

E[Y 2], by using a similar procedure we obtain,

E[Y 2] = ∑
i∈I2

E[µ2
Φ(Qi

l ∩B)]

+ ∑
i∈I2

∑
j∈H2

i

E[µΦ(Qi
l ∩B)µΦ(Q j

l ∩B)]

+ ∑
i∈I2

∑
j∈I2\{H2

i ∪i}
E[µΦ(Qi

l ∩B)]E[µΦ(Q j
l ∩B)]

≤ 9N2E[µ2
Φ(Q1

l )]+(E[Y ])2 ,

since µ2
Φ(Qi

l ∩B)≤ µ2
Φ(Qi

l) a.s., for any i, and µΦ(.)≥
0 a.s.. Thus, Var(Y ) ≤ 9N2E[µ2

Φ(Q1
l )]. By applying all

these results to Eq. 10,

Var(µΦ(B))

ν2(B)
≤ 9




√

N1Var(µΦ(Q1
l
))

ν2(B)
+

√
N2E[µ2

Φ(Q1
l
)]

ν2(B)




2

.

(11)

In order to properly majorize the ratios N1/ν2(B) and
N2/ν2(B), let us consider some properties of convex

sets. Let us define: ∂B as the boundary of B, p(B) as
its perimeter, d(B) as its diameter, r(B) as its inradius
and Qs(x) as a square of side s centered at x. Because

of the definition of the sets of indices I1, we have that⋃
i∈I1 Q

i
l ⊆ B, i.e., N1l

2 ≤ ν2(B). Moreover, since B

can be always inscribed in a square of side NBl :=

(⌈d(B)/l⌉ + 1)l (where ⌈x⌉ = min{k ∈ Z : x ≤ k},
x ∈ R), our grid of squares cannot be greater than a

squared grid consisting of NB×NB squares of side l.

Therefore, the number of squares that cover ∂B cannot

exceed 4(NB− 1) (see Corollary 2 in Lassak , 1988),

and thus

N2 ≤ 4(NB−1) ≤4

(
d(B)

l
+1

)

< 4

(
p(B)

2l
+1

)
≤4

(
ν2(B)

r(B)l
+1

)
,

(since 2d(B) < p(B) and p(B) ≤ 2ν2(B)/r(B)
from Bonnesen and Fenchel, 1934). These facts

together with Eq. 11 prove the thesis.
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Proof of Corollary 2. From Proposition 2, for any
bounded convex setWn of the sequence {Wn}n,

Var(µΦ(Wn))

ν2(Wn)

≤
(
3

√
Var(µΦ(Ql))

l
+6

√

E[µ2
Φ(Ql)]

(
1

r(Wn)l
+

1

ν2(Wn)

))2

,

Since limn→∞Wn = R
2 for hypothesis, then

limn→∞ r(Wn) = +∞ and limn→∞ ν2(Wn) = +∞, and

we obtain the thesis.
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Heinrich L, Prokešová M (2010). On estimating the

asymptotic variance of stationary point processes.

Methodol Comput Appl Probab 12:451–71.

Jolivet E (1991). Moment estimation for stationary point

processes in Rd . In: Spatial Statistics and Imaging,

Lecture Notes–Monograph Series, Vol. 20. Hayward,

Calif.: Institute of Mathematical Statistics, 138–49.

Lassak M (1988). Covering the boundary of a convex set by

tiles. Proc Am Math Soc 104:269–72.

Mecke J (1981). Formulas for stationary planar fibre

processes III - Intersections with fibre systems. Math

Operationsforsch Stat Ser Stat 12:201–10.

Micheletti A, Rancoita PMV (2009). Estimators of the

intensity of stationary planar fibre processes. In:

Capasso V, Micheletti A, Aletti G, eds. Stereology and

Image Analysis. ECS10 – Proc 10th Eur Congr ISS. The

MIRIAM Project Series. Bologna: Esculapio. 131–6.

Molchanov I, Stoyan D (1994). Asymptotic properties of

estimators for parameters of the Boolean model. Adv

Appl Probab 26:301–23.

Ohser J (1981). A remark on the estimation of the rose

directions of fibre processes. Math Operationsforsch

Stat Ser Stat 12:581–5.

Rancoita PMV (2010). Stochastic methods in cancer

research. Applications to genomics and angiogenesis.
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