

5

	

Advances	in	Production	Engineering	&	Management	 ISSN	1854‐6250	

Volume	12	|	Number	1	|	March	2017	|	pp	5–16	 Journal	home:	apem‐journal.org	

https://doi.org/10.14743/apem2017.1.235 Original	scientific	paper	

Solving dual flexible job‐shop scheduling problem using a
Bat Algorithm

Xu, H.a,*, Bao, Z.R.a, Zhang, T.a

a
School of Internet of Things Engineering, Jiangnan University, Wuxi, China

A B S T R A C T	 A R T I C L E I N F O	

For	the	flexible	job‐shop	scheduling	problem	with	machine	selection	flexibil‐
ity	and	process	sequence	flexibility	in	process	design,	types	and	characteristic	
of	machine	selection	and	process	sequence	flexibility	are	analyzed.	The	math‐
ematical	model	 of	 dual	 flexible	 job‐shop	 scheduling	 problem	 is	 established,	
and	 an	 improved	 bat	 algorithm	 is	 proposed.	 For	 purpose	 of	 expressing	 the	
relationship	 effectively	 between	 the	 process	 and	 the	 bat	 population,	 a	 new	
method	of	encoding	strategy	based	on	dual	flexibility	degree	is	proposed.	The	
crossover	 and	mutation	operation	 are	designed	 to	 strengthen	 the	 searching	
ability	of	 the	algorithm.	For	purpose	of	overcoming	 the	shortcomings	of	 the	
fixed	parameters	in	bat	algorithm,	the	value	of	the	inertia	weight	was	adjust‐
ed,	and	a	linear	decreasing	inertia	weight	strategy	was	proposed.	We	carried	
out	 experiments	 on	 actual	 examples,	 it	 can	 be	 seen	 from	 the	 experimental	
results	that	the	robustness	and	optimization	ability	of	the	algorithm	we	pro‐
posed	 are	 better	 than	 Genetic	 Algorithm	 (GA)	 and	 Discrete	 Particle	 Swarm	
Optimization	 algorithm	 (DPSO).	 This	 shows	 that	 the	 proposed	 algorithm	 is	
more	excellent	in	solving	the	flexible	job‐shop	scheduling	problem,	and	it	is	an	
efficient	scheduling	algorithm.	

©	2017	PEI,	University	of	Maribor.	All	rights	reserved.

 Keywords:	
Flexible	job‐shop	scheduling		
Optimization	
Process	sequence	flexibility	
Machine	selection	flexibility	
Bat	algorithm	
Genetic	algorithm	
Particle	swarm	optimization	

*Corresponding	author:		
joanxh2003@163.com	
(Xu,	H.)	

Article	history:		
Received	16	November	2016	
Revised	13	February	2017	
Accepted	15	February	2017	

1. Introduction

Dual	Flexible	 Job‐shop	Scheduling	Problem	(DFJSP)	based	on	machine	 selection	 flexibility	and	
process	sequence	 flexibility	 is	an	extension	of	 the	classical	 Job‐shop	Scheduling	Problem	(JSP)	
and	 the	 Flexible	 Job‐shop	 Scheduling	 Problem	 (FJSP).	 It	 overcomes	 the	 problems	 of	 the	 fixed	
step	sequence	and	uniqueness	of	machine	selection,	and	 increases	 the	 flexibility	of	scheduling	
problem,	making	 it	 closer	 to	 an	 actual	 production	 environment.	 DFJSP	 needs	 to	 consider	 not	
only	the	processing	sequence	of	the	work,	but	also	the	problems	of	assigning	operations	to	ma‐
chines,	which	are	a	more	complicated	NP‐hard	problem	[1].	Therefore,	 research	on	DFJSP	has	
theoretical	significance	and	application	value.	

At	present,	researches	on	FJSP	are	mainly	focused	on	two	aspects.	The	first	involves	assigning	
operations	to	machines.	Yuan	et	al.	[2]	proposed	a	hybrid	harmony	search	algorithm	for	solving	
FJSP,	they	converted	the	continuous	vector	to	the	discrete	vector	and	introduced	heuristic	and	
random	strategies	for	a	resentful	initialization	scheme.	Zhao	et	al.	[3‐4]	proposed	a	hybrid	genet‐
ic	 algorithm	 to	 solve	 FJSP.	 Luan	 et	 al.	 [5]	 proposed	 a	 new	 genetic	 algorithm	 to	 solve	 FJSP,	 in	
which	they	optimize	the	performance	by	minimizing	the	data	sizes	of	the	constrained	model	and	
reduced	the	time	and	space	complexity	of	GA.	The	second	involves	processing	sequence	flexibil‐
ity.	 A	model	 is	 defined	 by	 Saygin[6]	 ,	which	 combines	 flexible	 process	 design	 and	 production	

Xu, Bao, Zhang

6 Advances in Production Engineering & Management 12(1) 2017

scheduling.	Huang	et	 al.	 [7]	proposed	an	 improved	genetic	 algorithm	 for	 solving	 JSP	based	on	
process	 sequence	 flexibility.	Ba	 et	 al.	 [8]	proposed	a	new	model	of	multi‐resource	 flexible	 job	
shop	scheduling	problem,	and	designed	a	new	genetic	algorithm	for	solving	this	problem.	More‐
over,	Modrák	et	al.	 [9]	proposed	an	algorithm	that	can	convert	a	multi‐machines	problem	to	a	
two‐machines	problem,	and	experiments	show	that	 the	algorithm	is	effective	 in	solving	n‐jobs	
and	m‐machine	problems.	

Bat	Algorithm	(BA)	is	a	materialistic	optimization	algorithm	developed	by	Yang	[10]	in	2010.	
Since	 its	proposed	 the	algorithm	has	 caught	 the	attention	of	 scholars	 in	different	 fields.	 It	has	
been	used	in	the	study	of	power	system	stability	by	Ali	[11].	Shi	et	al.	[12]	has	applied	BA	to	WSN	
position.	 Chen	 et	 al.	 [13‐14]	 proposed	 a	mind	 evolutionary	 bat	 algorithm	which	 is	 applied	 to	
feature	selection	of	mixed	gases	infrared	spectrum.	Besides	its	relevance	to	practical	application	
BA	is	applied	to	the	function	optimization	problem	[15],	pattern	recognition	[16]	and	optimiza‐
tion	of	engineering	problems	[17].	In	area	of	workshop	scheduling,	there	are	a	lot	of	articles	con‐
cerning	the	 influencing	 factors	since	 the	BA	was	presented.	Marichelvam	el	al.	 [18‐19]	has	ap‐
plied	 the	BA	 to	 the	hybrid	 flow	shop	scheduling	problem	(FSP)	 in	2013,	and	 it	 shows	BA	was	
more	effective	than	genetic	algorithm	and	particle	swarm	optimization	in	solving	this	problem	
through	the	simulation	results.	Luo	et	al.	[20]	proposed	a	discrete	BA	solution	for	permutation	
flow	shop	scheduling	problem	(PFSP)	in	2014	and	it	also	shows	that	BA	was	effective	in	solving	
PFSP	 through	 the	 simulation	 results.	 Zhang	 et	 al.	 [21]	 proposed	 an	 improved	 BA	 for	 solving	
PFSP,	 the	simulation	results	show	that	 the	 improved	BA	 is	 feasible	and	effective.	La	et	al.	 [22]	
proposed	a	hybrid	BA	to	solve	the	two	stages	hybrid	FSP	and	the	result	shows	that	the	hybrid	BA	
is	better	than	the	classical	BA.	

Be	seen	from	the	above,	the	studies	of	FJSP	are	primarily	focused	on	the	single	FJSP.	DFJSP	is	
less	 researched.	 Although	 BA	 is	 applied	 to	 various	 fields,	 few	 investigators	 utilize	 it	 to	 solve	
DFJSP.	Therefore,	this	paper	establishes	a	model	for	DFJSP	and	proposes	an	improved	bat	algo‐
rithm	for	solving	it.	

2. Definition and formalization problem

Assumptions	of	notations	for	DFJSP	are	as	follows:	

 Let	ܬ ൌ 1	୧,ܬ ൑ ݅ ൑ ݊,	indexed	i,	be	a	set	of	݊	jobs.	
 Let	ܯ ൌ 1	୨,ܯ ൑ ݆ ൑ ݉,	indexed	j,	be	a	set	of	݉	machines.	
 Each	job	ܬ௜	consists	of	several	operations.	Certain	jobs	consist	of	unfixed	process	sequence.	

The	operations	of	each	job	are	not	fixed	numbers.	Each	operation	can	be	processed	for	a	
given	set	of	machines.	

Some	symbols	used	throughout	the	paper	are	as	follows:	

݊	 Total	number	of	jobs	
݉	 Total	number	of	machines	
	ߣ Total	number	of	operations	
	௜ߣ Number	of	operations	of	job	ܬ௜	
௜ܱ௝	 j‐th	operation	of	job	ܬ௜	

௜ܵ௝	 Total	number	of	alternative	machines	of	operation	 ௜ܱ௝	

௜ܹ௝௞	 				j‐th	operation	of	job	ܬ௜	on	machine	ܯ௞	
	௜௝ܯ Set	of	alternative	machines	of	operation	 ௜ܱ௝	

௜ܶ௝௞	 				Processing	time	of	 ௜ܱ௝	on	machine	ܯ௞	

In	the	actual	production	process	there	are	many	kinds	of	flexibility,	such	as	machine	selection	
flexibility	and	process	sequence	flexibility	and	so	on.	Descriptions	of	two	of	these	flexibilities	are	
described	as	below	in	details.	
 	

Solving dual flexible job‐shop scheduling problem using a Bat Algorithm

Advances in Production Engineering & Management 12(1) 2017 7

Process	sequence	flexibility	

Process	sequence	 flexibility	 is	a	kind	of	 flexibility	where	 there	 is	not	a	 fixed	process	sequence	
among	operations	 for	a	 job.	Assume	 job	ܬ௜	need	ߣ௜	operations	 to	be	 finished.	 If	order	of	opera‐
tions	 from	݇ଵ‐th	 to	݇ଶ‐th	 (݇ଵ ൏ ݇ଶ)	 is	 unfixed,	 then	 it	 is	 regarded	 as	 flexible	 operations,	
and൏ ௜ܱ௞భ, ௜ܱ௞మ ൐	is	denoted	as	the	flexible	process	sequence	span	of	job	ܬ௜.	Flexible	operation	is	
classified	into	two	types	as	follows:	(1)	Partial	flexible	operation:	An	operation	which	belongs	to	
a	flexible	process	sequence	span	can	be	inserted	into	any	arbitrary	position	of	the	span.	(2)	Total	
flexible	operation:	An	operation	 can	be	 inserted	 into	any	 arbitrary	position	of	 the	process	 se‐
quence.	

Machine	selection	flexibility	

The	machine	selection	flexible	scheduling	problems	can	be	classified	into	two	main	groups	ac‐
cording	to	the	relation	between	set	ܯ௜௝	and	set	.ܯ	(1)	Total	machine	selection	flexible	schedul‐
ing	 problem:	 Each	 operation	 can	 be	 processed	 on	 any	 machine	 among	 the	 set	ܯ௜௝,	 where	
௜௝ܯ ൌ ‐pro	be	can	operation	Each	problem:	scheduling	flexible	selection	machine	Partial	(2)	.ܯ
cessed	on	any	machine	among	the	set	ܯ௜௝,	where	ܯ௜௝ ⊂ 	flexible	selection	machine	partial	The	.ܯ
scheduling	problem	suits	better	than	the	total	machine	selection	flexible	scheduling	problem	in	
the	practical	manufacturing	environments.	But	compared	to	the	total	machine	selection	flexible	
scheduling	 problem,	 the	 partial	 machine	 selection	 flexible	 scheduling	 problem	has	 the	 disad‐
vantages	of	great	search	space,	great	computation	and	difficulties	solution.	
		

Table	1	An	example	of	processing	time	table	of	partial	machine	selection	flexible	scheduling	problem

Job	 Operation	 	ଵܯ 	ଶܯ 	ଷܯ 	ସܯ

	ଵܬ
ଵܱଵ	 2 7 — 6	

ଵܱଶ	 6 — 4 5	

ଵܱଷ	 — 3 2 4	

	ଶܬ
ܱଶଵ	 3 1 6 3	
ܱଶଶ	 1	 3	 —	 3	

	
Table	2	An	example	of	processing	time	table	of	total	machine	selection	flexible	scheduling	problem

Job	 Operation	 	ଵܯ 	ଶܯ 	ଷܯ 	ସܯ

	ଵܬ
ଵܱଵ	 2 7 2 6	

ଵܱଶ	 6 3 4 5	

ଵܱଷ	 4 3 2 4	

	ଶܬ
ܱଶଵ	 3 1 6 3	
ܱଶଶ	 1	 3	 4	 3	

				
Examples	of	partial	machine	selection	flexible	scheduling	problem	and	a	total	machine	selec‐

tion	flexible	scheduling	problem	are	shown	in	Table	1	and	Table	2	respectively.	Processing	time	
of	each	operation	on	the	corresponding	machine	is	indicated	in	the	table.	In	Table	1,	the	tag	“—”	
means	that	a	machine	cannot	execute	the	corresponding	operation.	

Assumptions	used	throughout	the	DFJSP	are	as	follows:	

 In	flexible	process	sequence	span,	each	operation	has	the	same	priority.	
 Each	operation,	once	started,	cannot	be	interrupted.	
 Each	machine	can	process	only	one	job	at	the	same	time.	
 Arrival	time	of	a	job	is	included	in	the	processing	time.	
 When	machines	 are	 available	 for	 re‐scheduling	when	 the	 corresponding	 operations	 are	

completed,	machines	can	choose	to	stop	or	no‐load	running.	

The	task	of	DFJSP	is	to	seek	an	appropriate	schedule	which	cost	minimum	time	to	complete	
all	operations.	The	makespan	 ௠ܶ௔௫	can	be	calculated	by	the	formula:	

		 ௠ܶ௔௫ ൌ max൛ ௠ܶ௔௫
௝ ห ݆ ൌ 1,2, … ,݉ሽ																																																					(1)	

where	 ௠ܶ௔௫
௝ 	is	time	of	completion	of	last	job	on	machine	݆.	

Xu, Bao, Zhang

8 Advances in Production Engineering & Management 12(1) 2017

3. The improved bat algorithm

To	effectively	avoid	the	bat	algorithm	from	prematurity	and	to	improve	the	global	search	capa‐
bility	and	search	precision,	in	this	paper	the	following	improvements	of	BA	are	made:	(1)	In	or‐
der	to	express	the	relationship	between	the	process	flexibility,	process	sequence	and	bat	popula‐
tion,	a	new	coding	strategy	based	on	dual	 flexibility	 is	proposed.	 (2)	To	enhance	 the	ability	of	
neighborhood	search,	 the	corresponding	operations	 like	crossover	and	mutation	are	designed.	
(3)	 A	 linear	 decreasing	 inertia	weight	 strategy	 is	 adopted	 to	 effectively	 control	 the	 local	 and	
global	search	capability	of	BA	during	the	optimization	procedure.	

3.1 Coding strategies

Coding	is	to	abstract	and	specify	the	research	problem,	and	then	to	develop	mathematical	model.	
Finally,	it	realizes	the	mapping	between	the	solution	space	of	feasible	solution	and	the	explora‐
tion	space	of	BA.	This	is	the	key	step	in	BA	solving,	and	also	the	primary	problem	to	be	solved.	

Classical	JSP	only	needs	to	code	based	on	the	process	sequence.	But	DFJSP	need	not	only	to	
code	 based	 on	 process	 sequence,	 but	 also	 need	 to	 select	 the	 corresponding	machine	 for	 each	
operation.	Therefore,	the	coding	strategy	needs	to	be	done	in	the	following	three	points:	(1)	The	
coding	strategy	should	reflect	machine	selection	flexibility	and	process	sequence	flexibility.	(2)	
The	coding	strategy	should	show	the	sequence	of	operations	for	each	job.	(3)	It	has	to	show	the	
corresponding	processing	machine	that	each	job	need	for	each	operation.		

Thus,	we	design	three	coding	strategy	based	on	above	requirements:	

A	coding	strategy	base	on	the	sequence	

In	 the	 bat	 algorithm,	 all	 processes	 are	 required	 to	 be	 added	 to	 the	 code,	 present	with	 vector	
ଵܺ ൌ ሺݔଵଵ, ,ଵଶݔ … , ‐pro	first	the	indicates	ଵଵݔ	,elements	vector	those	among	,ߣ	is	length	the	,	ଵఒሻݔ
cess	of	 the	 first	 job,	ݔଵଶ	indicates	 the	second	process	of	 the	 first	 job.	By	 that	analogy,	 the	 total	
number	of	ݐ	is	the	operation	of	the	݅‐th	job	characters	of	݆‐th	job.	In	vector	 ଵܺ,	the	order	of	the	i‐
th	corresponds	to	the	order	of	processing	sequence	of	each	process.	The	advantages	of	this	cod‐
ing	strategy	are	the	high	flexibility	and	always	generate	the	feasible	schedule	after	an	exchange	
of	the	processing	sequence.	

A	coding	strategy	base	on	the	process	sequence	flexibility	
In	the	DFJSP,	after	the	coding	based	on	sequence,	it	is	needed	to	mark	and	determine	the	priority	
of	 each	 job	 with	 flexible	 process	 sequence	 span,	 here	 we	 use	 vector	 ଵܺ ൌ ሺݔଶଵ, ,ଶଶݔ … , 	to	ଶఒሻݔ
present,	 the	 length	is	ߣ.	Among	them,	the	default	 initialization	for	ݔଶ௜	is	0	or	1,	0	 indicates	that	
the	process	sequence	is	not	flexible,	to	1,	indicates	the	opposite.	

A	coding	strategy	base	on	the	machine	selection	flexibility	
In	 the	 bat	 algorithm,	 we	 use	 vector	ܺଷ ൌ ሺݔଷଵ, ,ଷଶݔ … , 	to	ଷఒሻݔ present	 machine	 selection.	 The	
length	is	ߣ.	Among	them,	each	variable	is	a	positive	integer	which	represents	the	position	in	the	
selected	machine	set.	The	advantage	of	this	coding	strategy	is	to	ensure	that	generate	the	feasi‐
ble	schedule	after	the	operation,	and	it	can	be	applied	to	either	totally	FJSP	or	partially	FJSP.	

3.2 Bat algorithm and its improvement

Assume	 search	 space	 is	 a	 d‐dimensional	 space,	ݒ௜ሺݐ െ 1ሻ	and	ݔ௜ሺݐ െ 1ሻ	denote	 the	 velocity	 and	
location	of	bat	݅	at	the	time	step	1‐ݐ.	The	location	ݔ௜ሺݐሻ	and	velocity	ݒ௜ሺݐሻ	at	the	time	step	ݐ	are	as	
follows:	

௜ܨ ൌ ௠௜௡ܨ ൅ ሺܨ௠௔௫ െ 	(2)																																																										ߚ௠௜௡ሻܨ
ሻݐ௜ሺݒ ൌ ݐ௜ሺݒ െ 1ሻ ൅ ሺݔ௜ሺݐ െ 1ሻ െ 	(3)																																																௜ܨሻ∗ݔ

ሻݐ௜ሺݔ ൌ ݐ௜ሺݔ െ 1ሻ ൅ 	(4)																																																														ሻݐ௜ሺݒ
௡௘௪ݔ ൌ ௢௟ௗݔ ൅ 	(5)																																																																	௧ିଵܣߝ
௧ሺ݅ሻܣ ൌ 	(6)																																																																						௧ିଵሺ݅ሻܣߙ

ܴ௧ሺ݅ሻ ൌ ܴ଴ሺ݅ሻሾ1 െ exp	ሺെߛሺݐ െ 1ሻሻሿ																																																		(7)	

where	ܨ௜	is	the	update	 frequency	of	bat	݅,	ܨ௠௜௡	and	ܨ௠௔௫	represent	the	minimum	and	maximum	
value	of	the	update	frequency.	ߚ ∈ ሾ0,1ሿ	and	ߝ ∈ ሾെ1,1ሿ	are	random	numbers.	Here	ݔ∗	is	the	cur‐

Solving dual flexible job‐shop scheduling problem using a Bat Algorithm

Advances in Production Engineering & Management 12(1) 2017 9

rent	global	optimal	solution,	ݔ௢௟ௗ	is	an	optimal	solution	from	a	random	selection	of	the	optimal	
solution	set,	ܣ௧ିଵሺ݅ሻ	is	the	average	loudness	at	the	time	step	ݐ െ 1.	For	any	0 ൏ ߙ ൏ 1	ሺߙ ∈ ܴሻ	or	
ߛ ൐ 0	ሺߛ ∈ ܴሻ,	we	have,	

௧ሺ݅ሻܣ → 0, ܴ௧ሺ݅ሻ → ܴ଴ሺ݅ሻ,	as	ݐ → ∞																																												(8)	

The	standard	bat	algorithm	flow	is	presented	in	Fig.	1.	

Begin	
Step	1.		 Initialize	parameters	such	as	bat	population	ݔ௜,	velocity	ݒ௜,	 loudness	ܣሺ݅ሻ,	pulse	rates	ܴሺ݅ሻ	and	

so	on	
Step	2.		 	Define	pulse	frequency	ܨ௜	
Step	3.		 	Calculated	fitness	value	݂݅ݐ௠௜௡	and	the	current	global	optimal	solution	ݔ∗	
Step	4.		 	While	(ݐ	<	Max	number	iterations)	
Step	5.		 						For	(݅ ൌ 1	to	pop	size)	
Step	6.		 Generate	 new	 solutions	 by	 adjusting	 frequency,	 and	 updating	 velocities	 and	 locations			

via	Eq.	2	to	Eq.	4	
Step	7.		 							If	(rand>ܴሺ݅ሻ)	
Step	8.		 													Select	a	solution	among	the	optimal	solution	set	
Step	9.		 													Generate	a	new	solution	via	Eq.	5	
Step	10.		 				end	if	
Step	11.		 				Calculated	fitness	value	݂݅ݐ௡௘௪	
Step	12.		 				If	(݂݅ݐ௡௘௪<݂݅ݐሺ݅ሻ&rand<	ܣሺ݅ሻ)	
Step	13.		 										Accept	the	new	solutions	
Step	14.		 										Update	ܣሺ݅ሻ	and	ܴሺ݅ሻ	
Step	15.		 				end	if	
Step	16.		 end	for	
Step	17.		 Find	the	current	optimal	fitness	value	݂݅ݐ௡௘௪	and	the	current	optimal	ݔ∗	
Step	18.		 end	while	
End	

Fig.	1	The	standard	bat	algorithm	flow	

BA	was	proposed	for	solving	the	constrained	optimization	problem	of	a	continuous	domain.	
Then,	a	binary	bat	algorithm	(BBA)	was	proposed	by	Mirjalili	et	al.	[23]	in	2014	for	solving	the	
optimization	problem	of	a	discrete	domain.	Although	DFJSP	is	a	discrete	combinatorial	optimiza‐
tion	problem,	but	BBA	cannot	be	applied	to	DFJSP	directly.	Therefore,	according	to	the	charac‐
teristics	 of	DFJSP	 and	optimization	mechanism	of	BBA,	we	designed	 the	 related	operators	 for	
solving	DFJSP.	To	use	bat	algorithm	to	solve	DFJSP,	doing	the	following:	

In	order	to	explain	the	jobs,	process	sequence,	machines,	processing	time,	processing	order	
and	the	status	of	processing	and	other	information,	the	following	definitions	are	given	based	on	
the	rule	of	encoding	and	decoding.	Example	is	taken	from	table	1	for	understanding	of	the	fol‐
lowing	definitions.	

Definition	1:	The	correlation	matrix	of	job	and	operation,	JO	
The	correlation	matrix	of	 job	and	operation	(JO)	represents	the	relationship	between	 jobs	and	
operations.	According	to	the	data	in	Table	1,	a	matrix	can	be	obtained	as	follows:	

ܱܬ ൌ

ۏ
ێ
ێ
ێ
ۍ
1 1 1
1 2 2
1 3 3
2 4 1
2 5 ے2

ۑ
ۑ
ۑ
ې

	

JO	is	a	ߣ‐by‐3matrix.	The	first	column	indicates	job	number;	the	second	column	indicates	op‐
eration	number	of	all	operations;	the	third	column	indicates	the	order	of	the	operation	for	the	
corresponding	 job.	For	example,	 the	 first	 line	 (1,1,1)	 indicates	 that	 the	operation	1	 is	 the	 first	
operation	of	the	job	1;	the	second	line	(1,2,2)	indicates	that	the	operation	2	is	the	second	opera‐
tion	of	the	job	1.	By	that	analogy,	the	last	line	(2,5,2)	indicates	that	the	operation	5	is	the	second	
operation	of	the	job	2.	

Xu, Bao, Zhang

10 Advances in Production Engineering & Management 12(1) 2017

Definition	2:	The	matrix	of	processing	of	job,	PJ	
The	matrix	of	processing	of	job	(PJ)	represents	the	working	state	of	each	job	under	process.	Ac‐
cording	to	the	data	in	Table	1,	a	matrix	can	be	obtained	as	below:	

ܬܲ ൌ ቂ1 3 1 0
2 2 2 1

ቃ	

	indicates	column	second	the	number;	job	the	indicates	column	first	The	݊‐by‐4matrix.	a	is	ܬܲ
the	number	of	operations	corresponding	to	the	jobs;	the	third	column	indicates	the	processing	
progress,	 the	default	 initialization	 is	0;	 the	 fourth	column	 indicates	processing	state	of	 the	 job	
with	four	status	0,	1,	2,	3,	status	0	indicate	job	is	before	process,	status	1	indicate	job	is	under	
process,	status	2	indicate	job	is	waiting	for	process,	and	status	3	indicate	job	is	after	process.	For	
example,	 the	first	 line	(1,3,1,0)	 indicates	that	machine	1	has	3	processes	and	first	operation	of	
machine	1	is	before	process;	the	second	line	(2,2,2,1)	indicates	that	machine	2	has	2	process	and	
second	operation	of	machine	1	is	under	process.	

Definition	3:	The	matrix	of	temporary	resource	pool,	TRP	
The	matrix	 of	 temporary	 resource	 pool	 (TRP)	 represents	 the	 process	 state	 of	 each	 job	 under	
process.	According	to	the	data	from	Table	1,	a	matrix	can	be	obtained	as	follows:	

ܴܶܲ ൌ ቂ1 1 2 1 1 2
3 1 1 2 1 6

ቃ	

TRP	 is	a	݊‐by‐6matrix.	The	first	column	indicates	machine	number;	the	second	column	indi‐
cates	operation	number	for	corresponding	job;	the	third	column	indicates	the	operation	number	
for	 corresponding	 job;	 the	 fourth	 column	 indicates	 job	number;	 the	 fifth	 column	 indicates	 the	
order	of	the	operation	for	corresponding	job;	the	sixth	column	indicates	the	processing	time	on	
the	machine	 for	 corresponding	 job.	 For	 example,	 the	 first	 line	 (1,1,2,1,1,2)	 indicates	 that	 two	
jobs	need	to	be	processed	on	the	machine	1	and	the	processing	time	is	2	for	the	first	operation	of	
the	job	1	on	machine	1;	the	second	line	(3,1,1,2,1,6)	indicates	that	one	job	need	to	be	processed	
on	the	machine	3	and	the	processing	time	is	6	for	the	first	operation	of	the	job	2	on	machine	3.	

Definition	4:	The	matrix	of	resource	state,	RS	
The	matrix	of	resource	state	(RS)	represents	the	status	of	each	machine.	According	to	the	data	
from	Table	1,	a	matrix	can	be	obtained	as	below:	

ܴܵ ൌ ቂ1 0 1 1
2 1 2 1

ቃ	

RS	is	a	݉‐by‐4matrix.	The	first	column	indicates	the	machine	number;	the	second	column	in‐
dicates	the	availability	of	the	machine	which	has	two	processing	status	represented	by	0	and	1	
respectively,	 status	0	 indicates	 that	 the	machine	 is	 available	 to	be	used,	 status	1	 indicates	 the	
machine	 is	 not	 usable	 because	 of	 occupation	 or	 out	 of	 order;	 the	 third	 column	 indicates	 job	
number;	the	fourth	column	indicates	the	operation	number	for	corresponding	job.	For	example,	
the	first	line	(1,0,1,1)	indicates	that	the	machine	1	is	available	and	the	first	operation	of	job	1	can	
be	processed	on	machine	1;	the	second	line	(2,1,2,1)	indicates	that	the	machine	2	is	not	usable	
and	the	first	operation	of	job	2	cannot	be	processed	on	machine	1.	

To	make	the	current	optimal	individual	of	bat	population	get	a	better	solution,	four	neighbor‐
hood	 search	 operators	 such	 as	 inserting,	 reversing,	 crossover	 and	mutation	 are	 adopted.	 De‐
tailed	definitions	of	operators	are	provided	below.		

Definition	5:	Neighborhood	search	operator	
Exchanging	operator:	We	use	exchanging	operator	(i,	j)	to	exchange	the	two	elements	i,	j	of	the	
sequence.	 Take	 data	 from	 Table	 1	 as	 an	 example,	 assuming	 that	 the	 coding	 sequence	 is	
(4,1,2,3,2)	 based	 on	 operation	 sequencing,	 after	 the	 exchanging	 operator	 (2,4),	 the	 coding	 se‐
quence	becomes	(4,3,2,1,2).	

Inserting	operator:	The	goal	of	 inserting	operator	 (i,	 j)	 is	 to	 insert	element	 i	 next	 to	 element	 j.	
Take	data	of	Table	1	as	an	example,	assuming	that	the	coding	sequence	 is	(4,1,2,3,2)	based	on	
operation	sequencing,	after	the	inserting	operator	(2,4),	the	code	sequence	becomes	(4,2,3,1,2).	

Solving dual flexible job‐shop scheduling problem using a Bat Algorithm

Fig.	2	The	improved	bat	algorithm	flow	

Advances in Production Engineering & Management 12(1) 2017 11

Reversing	operator:	 Reversing	 operator	 (i,	 j)	 reverse	 the	 subsequence	 between	 element	 i	 and	
element	j.	Take	data	from	Table	1	as	an	example,	assuming	that	the	coding	sequence	(4,1,2,3,2)	
is	based	on	operation	sequencing,	after	the	reversing	operator	(2,5),	the	code	sequence	becomes	
(4,2,3,1,2).	

Crossover	operator:	Assume	a	current	sequence	X,	crossover	operator	choose	randomly	one	se‐
quence	Y	of	bat	population,	and	generate	a	new	sequence	Z	by	replacing	the	elements	i,	j	of	cur‐
rent	sequence	X	with	the	elements	i,	j	of	sequence	Y.	Take	data	of	Table	1	as	an	example,	assum‐
ing	 that	 the	 current	 sequence	 (4,1,2,3,2)	 and	 randomly	 selected	 sequence	 (1,4,2,1,4)	 are	 both	
based	 on	 process	 sequence,	 after	 the	 crossover	 operator	 (2,4),	 the	 code	 sequence	 becomes	
(4,4,2,1,2).	

Mutation	operator:	After	each	iteration,	if	the	current	optimal	solution	is	no	better	than	the	pop‐
ulation	optimal	 solution,	 then	 the	current	optimal	 solution	should	be	mutated.	The	number	of	
variations	cannot	be	more	than	the	1/4	of	the	total	number	of	population.	The	mutation	opera‐
tor	<i,j>	means	to	mutate	the	selection	of	ܱ௜௝		by	value	from	ܯ௜௝.	

Updating	process	of	position	and	velocity	in	bat	algorithm	is	similar	to	the	updating	process	of	
PSO	algorithm	[24].	The	inertia	weightݓ	is	introduced	to	balance	the	local	searching	and	the	glob‐
al	searching	via	equation	(9)	[25].	In	order	to	enhance	the	algorithm's	ability	of	global	searching	
at	prophase	of	evolution,	the	weight	exponential	decline	strategy	is	applied	as	shown	in	equation	
(10).	

ሻݐ௜ሺݒ ൌ ݐ௜ሺݒݓ െ 1ሻ ൅ ሺݔ௜ሺݐ െ 1ሻ െ 				௜ܨሻ∗ݔ 			(9)	

ݓ ൌ
்ି௧

்
ሺݓ௠௔௫ െ ௠௜௡ሻݓ ൅ 				௠௜௡ݓ 		(10)	

Where,	ݐ	is	 the	 current	number	of	iterations	 and	ܶ	is	 maximum	 number	of	iterations;	ݓ௠௔௫	
and	ݓ௠௜௡	are	the	maximum	and	minimum	values	of	the	inertia	weight.	

To	 summarize,	 the	 basic	 steps	 of	 the	 improved	bat	 algorithm	 for	 solving	DFJSP	 can	be	de‐
scribed	as	follows	in	Fig	2.	

Step	1.		 Initialize	 parameters,	 include	 the	 size	 of	 bat	 population 	,݁ݖ݅ܵ݌݋ܲ loudness	ܣሺ݅ሻ,	 pulse	 rates	
ܴሺ݅ሻ,	maximum	inertia	weight	ݓ௠௔௫,	minimum	inertia	weight	ݓ௠௜௡	and	so	on	

Step	2.					The	coding	sequence	is	generated	based	on	these	three	coding	strategies	
Step	3.					Calculate	fitness	value	
Step	3.1			Load	the	information	of	all	jobs	into	PJ	and	TRP	
Step	3.2	 Every	 job	 is	 processed	 in	 the	 beginning	 from	 the	 first	 operation	 by	 PJ.	 Firstly,	 judge	 by	RS	

whether	the	machine	which	the	first	operation	needing	is	processed	is	used	by	another	opera‐
tion.	 If	 not,	 then	 the	 job	 is	 into	 the	 processing	 status.	Meanwhile,	 record	 the	 corresponding	
numbers	of	the	job	and	the	operation.	Otherwise,	the	job	is	flagged	as	waiting	for	processing	in	
PJ.	

Step	3.3	 The	first	job	starts	to	be	processed	in	PJ	and	TRP,	which	judge	by	TRP	is	being	processed.	If	it	is	
and	the	rest	time	of	processing	is	greater	than	zero,	the	processing	of	the	job	is	going	on.	If	not,	
judge	whether	all	operations	of	the	job	are	finished.	If	the	job	is	accomplished,	make	the	ma‐
chines	free	by	RS.	Otherwise,	add	the	information	of	the	next	operation	into	PJ	and	TRP.	

Step	3.4			If	all	jobs	are	already	processed	by	PJ,	go	to	Step	3.5;	otherwise,	go	to	Step	3.2	
Step	3.5			Output	fitness	value	
Step	4.					If	the	termination	criterion	is	reached,	go	to	Step	10;	otherwise,	go	to	Step	5	
Step	5.	 Generate	new	solutions	by	adjusting	frequency,	and	updating	velocities	and	locations	via	Eqs.	

2,	9	and	10	
Step	6.	 If	 rand>ܴሺ݅ሻ,	 select	 a	 solution	 from	 optimal	 solution	 set	 and	 generate	 a	 local	 solution	ݔ௡௘௪	

around	the	selected	optimal	solution	via	Eq.	5		
Step	7.					Calculate	fitness	value	݂݅ݐ௡௘௪	of	corresponding	ݔ௡௘௪	
Step	8.	 If	݂݅ݐ௡௘௪ ൏ ݀݊ܽݎ	&ሺ݅ሻݐ݂݅ ൏ 	.Eq	to	6	Eq.	via	ሺ݅ሻݎ	and	ሺ݅ሻܣ	update	solutions,	new	the	accept	ሺ݅ሻ,ܣ

7;	otherwise,	do	neighborhood	search	operator	
Step	9.					Go	to	step	4	
Step	10.		Post	process	results	and	visualization

Xu, Bao, Zhang

12 Advances in Production Engineering & Management 12(1) 2017

4. Case simulation and analysis

4.1 Experimental parameter settings

The	improved	bat	algorithm	is	coded	in	Matlab	platform	and	run	on	an	Intel	core	i7‐5500U,	3.0	
GHz	and	12.0	GB	RAM	PC.	The	parameters	of	three	algorithms	are	as	follows:	

Table	3	Parameter	settings	of	three	algorithms	

Parameter	
	 Value 	

Improved	bat	algorithm	 GA DPSO	
PopSize	 100	 100 100	

T	 500	 500 500	
	௠௔௫ܨ 1	 — —	
	௠௔௫ܨ 0	 — —	
	ߙ 0.9	 — —	
	ߛ 0.9	 — —	
	ܣ 0.25	 — —	

௠௔௫ݓ 		 0.96	 — —	
	௠௜௡ݓ 0.36	 — —	
Pc	 —	 0.7 —	
Pm	 —	 0.08 —	
w	 —	 — 0.9	
ܿଵ	 —	 — 2	
ܿଶ	 —	 — 2	

	
The	PopSize	represent	the	size	of	the	bat	population	and	T	is	the	maximum	number	of	iteration.	

4.2 Experimental dates

To	verify	the	efficiency	and	feasibility	of	the	improved	bat	algorithm	for	solving	DFJSP,	this	pa‐
per	used	the	actual	data	of	manufacturing	enterprise	which	is	the	problem	68.	Problem	68	is	a	
DFJSP	instance	that	consists	of	6	jobs	of	27	operations	that	can	be	implemented	on	8	machines.	
The	data	of	the	machine	selection	flexibility,	process	sequence	flexibility	and	processing	time	are	
as	follows:	
	

Table	4	The	data	of	machine	selection	flexibility

Job	 Job	number	 Flexible	process	span	

	ଵܬ 6	 <2,3>,	<5,6>	
	ଶܬ 3	 —	
	ଷܬ 5	 <3,5>	
	ସܬ 3	 <2,3>	
	ହܬ 6	 <3,4>	
	଺ܬ 4	 —	

	
The	tag	“—”	means	that	the	job	does	not	have	a	flexible	process	span.	
 	

Solving dual flexible job‐shop scheduling problem using a Bat Algorithm

Advances in Production Engineering & Management 12(1) 2017 13

Table	5	Data	of	process	sequence	flexibility	and	processing	time	(min)	
Job	 Operation	 	ଵܯ 	ଶܯ ଷܯ ସܯ ହܯ ଺ܯ 	଻ܯ ଼ܯ

	ଵܬ

ଵܱଵ	 —	 12	 — 9 14 — 20	 —
ଵܱଶ	 18	 —	 — 19 — 15 11	 —
ଵܱଷ	 —	 12	 14 9 — 17 —	 —
ଵܱସ	 —	 11	 — — 9 — —	 12
ଵܱହ	 15	 —	 — 8 — — —	 18
ଵܱ଺	 12	 —	 9 — — 11 —	 —

	ଶܬ
ܱଶଵ	 —	 —	 12 19 14 — —	 —
ܱଶଶ	 8 —	 — 9 11 — 15	 —
ܱଶଷ	 16	 7	 — — — 9 —	 —

	ଷܬ

ܱଷଵ	 —	 —	 — 11 10 — —	 13
ܱଷଶ	 —	 —	 12 18 — — 14	 —
ܱଷଷ	 9 —	 — 15 7 — 12	 —
ܱଷସ	 —	 12	 — 15 — 7 —	 9
ܱଷହ	 3 —	 — 4 — 8 —	 —

	ସܬ
ସܱଵ	 —	 19	 — — 7 — 13	 —
ସܱଶ	 —	 —	 8 — 11 — —	 16
ସܱଷ	 9 11	 — 8 — — 18	 —

	ହܬ

ܱହଵ	 6 —	 — 12 — — 14	 9
ܱହଶ	 —	 —	 — 22 — 12 17	 —
ܱହଷ	 —	 18	 — — 11 — —	 9
ܱହସ	 9 —	 12 — — — —	 7
ܱହହ	 —	 11	 — — — 9 14	 —
ܱହ଺	 8 —	 — 12 6 — —	 9

	଺ܬ

ܱ଺ଵ	 —	 —	 11 — 17 — —	 18
ܱ଺ଶ	 5 —	 12 — — — 7	 9
ܱ଺ଷ	 —	 11	 — — — 8 13	 7
ܱ଺ସ	 19	 —	 13 7 — 15 —	 —

4.3 Experimental results and comparisons

This	paper	used	the	improved	bat	algorithm,	discrete	particle	swarm	optimization	[26]	(DPSO)	
and	genetic	algorithm	[27]	(GA)	to	solve	the	DFJSP.	And	the	experimental	results	are	compared	
and	analyzed.	

To	obtain	meaningful	 results,	we	run	each	algorithm	 fifty	 times	on	 the	above	 instance.	The	
experimental	results	of	these	three	kinds	of	algorithms	are	shown	in	Table	6	and	Table	7.		

The	optimum	solution,	average	solution	and	standard	deviation	of	three	algorithms	in	50	ex‐
periments	are	shown	 in	Table	6.	The	optimum	solution	obtained	by	 this	paper	 is	55,	which	 is	
obviously	better	 than	65	obtained	by	GA	and	62	obtained	by	DPSO.	Furthermore,	 the	average	
value	and	standard	deviation	are	also	better	than	both	GA	and	DPSO.	In	a	conclusion,	the	algo‐
rithm	in	this	paper	is	obviously	better	than	GA	and	DPSO	in	searching	performance.		

	
Table	6	Makespan	comparison	between	three	algorithms	

Algorithm	 Optimum	solution Average	solution Standard	deviation
GA	 65 70.72 4.25	
DPSO	 62 65.56 3.15	

Improved	bat	algorithm 55 57.32 2.24	
	

Table	7	Distribution	of	50	calculation	results	
																	Interval	 Interval

[55,60)	 [60,65) [65,70) [70,75)	 [75,80)
GA	 0	 0 23 14	 13
DPSO	 0	 23 19 8	 0

Improved	bat	algorithm 40	 10 0 0	 0
	
The	distribution	of	experiments	results	in	each	interval	for	running	50	times	is	presented	in	

Table	7.	 It	 is	clear	 from	the	table,	 the	results	of	the	improved	bat	algorithm	are	comparatively	
concentrated,	which	 are	mainly	 in	 the	 range	 of	 [55,	 60],	whereas	 the	 results	 of	GA	 and	DPSO	
algorithm	are	relatively	distributed.	Thus,	the	improved	bat	algorithm	in	terms	of	solving	DFJSP	

Algorithm	

Xu, Bao, Zhang

14 Advances in Production Engineering & Management 12(1) 2017

is	more	robust	than	GA	and	DPSO	algorithm.	Figs.	3,	4,	and	5	shows	the	Gantt	charts	of	optimal	
scheduling	concerning	three	kinds	of	algorithms.	

	

M1

5 10 15 20 25 30

2-1

4-1

5-1

M2

M3

M6

M5
M4

M7

M8

9

6

18

35 40 45 50 55

1-1

1-2

1-3

1-4

1-5

1-6

2-2

2-3

3-1

3-2

3-3

3-4

3-5

4-2

5-2

5-3

5-5

6-1

6-2

6-3

6-4

4-3
12

20

18

7

3413

6

18

45

20

27

29 53

38

34

9

23

7

38 52

31

45

46

34

55

20 28

28

12 23

34

38 46

45

36

53

45

29

60

27

5-6
20

5-4

	

M1

5 10 15 20 25 30

2-1

5-1

M2

M3

M6

M5
M4

M7

M8

9

6

29

35 40 45 50 55

1-1

1-2

1-3

1-4

1-5

1-6

2-2

2-3

3-1

3-2

3-3

3-4

3-5

4-2

5-2

5-3

5-4

5-5

6-1

6-2

6-3 6-4

4-3
11

9

18

14 25

6

13

4126

27

13

5750

20

32

25

29

57

57

27 48

40

39

20

37

62

1611

40

48

57

51

61

18

51

43

60 65

25

5-64-1

M1

5 10 15 20 25 30

2-1

4-1

5-1

M2

M3

M6

M5
M4

M7

M8

9

12

19

35 40 45 50 55

1-1

1-2

1-3

1-4

1-5

1-6

2-2

2-3

3-1

3-2

3-3

3-4

3-5

4-2

5-2

5-3 5-4

5-5

6-1

6-2

6-3

6-44-3

12

10

24

10 19

9

9

10

3426

27

28

5243

27

9

24

27

38 56

38

46

64

47

55

20

37

56

20 28

34

55 59

47 62

65

45

30

60 65

36

5-6

	

Fig.	3 The	Gantt	chart	of	optimal	scheduling	of	the	improved	bat	algorithm	

Fig.	4	The	Gantt	chart	of	optimal	scheduling	of	DPSO	algorithm

Fig.	5	The	Gantt	chart	of	optimal	scheduling	of	GA

Solving dual flexible job-shop scheduling problem using a Bat Algorithm

5. Conclusion
According to dual flexible job shop scheduling problems, we established a mathematical model
based on process sequence flexibility and machine selection flexibility, and an improved bat al-
gorithm is presented to solve it. The premise of BA used in DFJSP is to realize the mapping be-
tween operations and bat populations. Therefore, we proposed a dual flexible encoding strategy.
In order to intensify neighborhood searching ability of the algorithm, several operations are
designed such as crossover and mutation. Furthermore, a linear decreasing inertia weight strat-
egy is put forward to effectively avoid the algorithm of premature convergence and to intensify
the global searching ability and the precision of the algorithm. Aiming at solving actual job-shop
scheduling problems, we set up the scheduling model and designed the detailed algorithm. Ex-
perimental results indicate that the improved bat algorithm for solving DFJSP is feasible and
effective, which provides a new way to solve such problems. It is a further research direction to
use the improved algorithm to solve multi-objective DFJSP and construct new dispatching rules.

Acknowledgement
The research has been supported by Natural Science Foundation of Jiangsu Province (Grant No. BK20140165) and
China Scholarship Council Sponsored (Grant No. 201308320030).

References
[1] Röck, H. (1984). The three-machine no-wait flow shop problem is NP-complete, Journal of the ACM, Vol. 31, No. 2,

336-345, doi: 10.1145/62.65.
[2] Yuan, Y., Xu, H., Yang, J. (2013). A hybrid harmony search algorithm for the flexible job shop scheduling problem,

Applied Soft Computing, Vol. 13, No. 7, 3259-3272, doi: 10/1016/j.asoc.2013.02.013.
[3] Zhao, S.-K., Fang, S.-L., Gu, X.-J. (2013). Genetic algorithm with new initialization mechanism for flexible job shop

scheduling, Journal of Zhejiang University (Engineering Science), Vol. 47, No. 6, 1022-1030, doi: 10.3785/j.issn.
1008-973X.2013.06.013.

[4] Zhao, S.-K., Fang, S.-L., Gu, X.-J. (2014). Machine selection and FJSP solution based on limit scheduling completion
time minimization, Computer Integrated Manufacturing Systems, Vol. 20, No. 4, 854-865, doi: 10.13196/j.cims.
2014.04.zhaoshikui.0854.12.20140416.

[5] Luan, F., Wang, W., Fu, W.P., Bao, Y.T., Ren, G.C., Wang, J., Deng, M.M. (2014). FJSP solving by improved GA based
on PST hierarchy structure, Computer Integrated Manufacturing Systems, Vol. 20, No. 10, 2494-2501.

[6] Saygin, C., Kilic, S.E. (1999). Integrating flexible process plans with scheduling in flexible manufacturing systems,
The International Journal of Advanced Manufacturing Technology, Vol. 15, No. 4, 268-280, doi: 10.1007/
s001700050066.

[7] Huang, X.W., Zhao, X.Y., Ma, X.L. (2014). An improved genetic algorithm for job-shop scheduling problem with
process sequence flexibility, International Journal of Simulation Modelling, Vol. 13, No. 4, 510-522, doi: 10.2507/
ijsimm13(4)co20.

[8] Ba, L., Li, Y., Yang, M.S., Gao, X.Q., Liu, Y. (2016). Modelling and simulation of a multi-resource flexible job-shop
scheduling, International Journal of Simulation Modelling, Vol. 15, No. 1, 157-169, doi: 10.2507/IJSIMM15(1)CO3.

[9] Modrák, V. Pandian, R.S. (2010). Flow shop scheduling algorithm to minimize completion time for n-jobs m-
machines problem, Tehnički vjesnik –Technical Gazette, Vol. 17, No. 3, 273-278.

[10] Yang, X.-S. (2010). A new materialistic bat-inspired algorithm, Nature Inspired Cooperative Strategies for Optimi-
zation, Vol. 284, 65-74, doi: 10.1007/978-3-642-12538-6_6.

[11] Ali, E.S. (2014). Optimization of power system stabilizers using bat search algorithm, International Journal of
Electrical Power & Energy Systems, Vol. 61, 683-690, doi: 10.1016/j.ijepes.2014.04.007.

[12] Shi, H., Wang, W., Li, Y., Lu, L. (2015). Bat algorithm based on Lévy flight feature and its localization application in
WSN, Chinese Journal of Sensors and Actuators, Vol. 6, 888-894, doi: 10.3969/j.issn.1004-1699.2015.06.019.

[13] Chen, Y., Wang, Z., Wang, Z. (2014). Feature selection of infrared spectrum based on improved bat algorithm,
Infrared and Laser Engineering, Vol. 43, No. 8, 2715-2721, doi: 10.3969/j.issn.1007-2276.2014.08.054.

[14] Chen, Y., Wang, Z., Wang, Z. (2015). Mind evolutionary bat algorithm and its application to feature selection of
mixed gases infrared spectrum, Infrared and Laser Engineering, Vol. 3, 845-851, doi: 10.3969/j.issn.1007-2276.
2015.03.010.

[15] Yang, X.-S. (2011). Bat algorithm for multi-objective optimization, International Journal of Bio-Inspired Computa-
tion, Vol. 3, No. 5, 267-274, doi: 10.1504/IJBIC.2011.042259.

[16] Komarasamy, G., Wahi, A. (2012). An optimized k-means clustering technique using bat algorithm, European
Journal of Scientific Research, Vol. 84, No. 2, 263-273.

[17] Yang, X.-S., Gandomi, A.H. (2012). Bat algorithm: A novel approach for global engineering optimization, Engineer-
ing Compotations, Vol. 29, No. 5, 464-483, doi: 10.1108/02644401211235834.

Advances in Production Engineering & Management 12(1) 2017 15

https://doi.org/10.1145/62.65
https://doi.org/10.1016/j.asoc.2013.02.013
https://doi.org/10.3785/j.issn.1008-973X.2013.06.013
https://doi.org/10.3785/j.issn.1008-973X.2013.06.013
https://doi.org/10.13196/j.cims.2014.04.zhaoshikui.0854.12.20140416
https://doi.org/10.13196/j.cims.2014.04.zhaoshikui.0854.12.20140416
https://doi.org/10.1007/s001700050066
https://doi.org/10.1007/s001700050066
https://doi.org/10.2507/ijsimm13(4)co20
https://doi.org/10.2507/ijsimm13(4)co20
https://doi.org/10.2507/ijsimm15(1)co3
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1016/j.ijepes.2014.04.007
https://doi.org/10.3969/j.issn.1004-1699.2015.06.019
https://doi.org/10.3969/j.issn.1007-2276.2014.08.054
https://doi.org/10.3969/j.issn.1007-2276.2015.03.010
https://doi.org/10.3969/j.issn.1007-2276.2015.03.010
http://dx.doi.org/10.1504/IJBIC.2011.042259
https://doi.org/10.1108/02644401211235834

Xu, Bao, Zhang

[18] Marichelvam, M.K., Prabaharan, T. (2012). A bat algorithm for realistic hybrid flowshop scheduling problems to
minimize makespan and mean flow time, ICTACT Journal on Soft Computing, Vol. 3, No. 1, 428-433, doi: 10.21917
/ijsc.2012.0066.

[19] Marichelvam, M.K., Prabaharan, T., Yang, X.-S., Geetha, M. (2013). Solving hybrid flow shop scheduling problems
using bat algorithm, International Journal of Logistics Economics and Globalization, Vol. 5, No. 1, 15-29, doi:
10.1504 /IJLEG.2013.054428.

[20] Luo, Q., Zhou, Y., Xie, J., Ma, M., Li, L. (2014). Discrete bat algorithm for optimal problem of permutation flow
shop scheduling, The Scientific World Journal, Vol. 2014, 1-15, doi: 10.1155/2014/630280.

[21] Zhang, J.J., Li, Y.G. (2014). An improved bat algorithm and its application in permutation flow shop scheduling
problem, Advanced Materials Research, Vol. 1049-1050, 1359-1362, doi: 10.4028/www.scientific.net/amr.1049-
1050.1359.

[22] Dekhici, L., Belkadi, K. (2015). A bat algorithm with generalized walk for the two-stage hybrid flow shop problem,
International Journal of Decision Support System Technology, Vol. 7, No. 3, 1-16, doi: 10.4018/ijdsst.2015070101.

[23] Mirjalili, S., Mirjalili, S.M., Yang, X.-S. (2014). Binary bat algorithm, Neural Computing and Applications, Vol. 25, No.
3, 663-681, doi: 10.1007/s00521-013-1525-5.

[24] Bai, J., Gong, Y.-G., Wang, N.-S., Tang, D.-B. (2010). Multi-objective flexible job shop scheduling with lot-splitting,
Computer Integrated Manufacturing Systems, Vol. 16, No. 2, 396-403.

[25] Zhao, S. (2015). Bilevel neighborhood search hybrid algorithm for the flexible job shop scheduling problem,
Journal of Mechanical Engineering, Vol. 51, No. 14, 175-184.

[26] Xu, H., Zhang, T. (2015). Improved discrete particle swarm algorithm for solving flexible flow shop scheduling
problem, Journal of Computer Application, Vol. 35, No. 5, 1342-1347, doi: 10.11772/j.issn.1001-9081.2015.05.
1342.

[27] Cui, J.S., Li, T.K., Zhang, W.X. (2005). Hybrid flow shop scheduling model and its genetic algorithm, Journal of
University of Science and Technology Beijing, Vol. 27, No. 5, 623-626, doi: 10.3321/j.issn:1001-053X.2005.05.027.

16 Advances in Production Engineering & Management 12(1) 2017

https://doi.org/10.21917/ijsc.2012.0066
https://doi.org/10.21917/ijsc.2012.0066
https://doi.org/10.1504/IJLEG.2013.054428
https://doi.org/10.1504/IJLEG.2013.054428
http://dx.doi.org/10.1155/2014/630280
https://doi.org/10.4028/www.scientific.net/amr.1049-1050.1359
https://doi.org/10.4028/www.scientific.net/amr.1049-1050.1359
https://doi.org/10.4018/ijdsst.2015070101
https://doi.org/10.1007/s00521-013-1525-5
https://doi.org/10.11772/j.issn.1001-9081.2015.05.1342
https://doi.org/10.11772/j.issn.1001-9081.2015.05.1342
https://doi.org/10.3321/j.issn:1001-053X.2005.05.027

