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Abstract

The topics of the thesis are mixed(-hybrid) finite element formulations for shell-like structures, and
implicit time-stepping schemes that preserve basic constants of the motion. The considered finite
elements are based on two geometrically exact shell models, in particular, large rotation inextensible-
director model and rotation-less extensible-director model. The performance of the current state-of-the-
art mixed(-hybrid) shell finite element formulations is assessed by studying a large number of numerical
examples. Some novel “near optimal” mixed-hybrid shell finite element formulations are proposed that
allow for large solution steps, show near optimal convergence characteristics and display little sensitivity
to mesh distortion. As for the non-linear shell elasto-dynamics, we revisit implicit dynamic schemes that
belong to the groups of generalized-a methods and energy-conserving/decaying and momentum-
conserving methods. We compare their spectral characteristics, the tendency to overshoot and their
accuracy. By performing a set of numerical tests for numerically stiff nonlinear shell-like examples, we
assess how these features extend to nonlinear elasto-dynamics. We illustrate the ability of the considered
schemes to dissipate the energy, to fully or approximately conserve the angular momentum, and we
estimate the order of accuracy for nonlinear problems by error indicators. Novel energy-
conserving/decaying and momentum-conserving schemes are derived for the previously introduced
novel mixed-hybrid shell formulations. The numerical examples demonstrate that the robustness and
efficiency of the novel static formulations can be prolonged to dynamics. The final part of the thesis is
related to the application of the derived formulations. In particular, the shell buckling process is studied
by applying numerically dissipative schemes. The ability of these schemes to handle complex buckling
and post-buckling processes is assessed. It is demonstrated that controlled numerical dissipation of
higher structural frequencies is absolutely necessary for an efficient simulation of a post-buckling
response. Finally, we apply the derived procedures to study the problem of surface wrinkling on curved

stiff-shell/soft-core substrates, including the transition between the wrinkling modes.
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Izvleéek

Tema disertacije so meSani(-hibridni) kon¢ni elementi za lupine in integracijske sheme za dinamiko, ki
ohranjajo osnovne konstante gibanja. Obravnavani kon¢ni elementi temeljijo na dveh geometrijsko
to¢nih teorijah lupin: na modelu z velikimi rotacijami in neraztegljivim smernikom ter modelu brez
rotacij z raztegljivim smernikom. U¢inkovitost najsodobnejSih meSanih(-hibridnih) kon¢nih elementov
za lupine je ocenjena na podlagi velikega Stevila numeri¢nih primerov. Predlagamo tudi nove, »skoraj
optimalne« hibridne-mesane formulacije, ki omogoc¢ajo ra¢un dolgih obteznih korakov, izkazujejo
skoraj optimalno konvergenco in so neobcutljive na popacenje mreze. Narejen je pregled implicitnih
dinami¢nih shem za nelinearno elastodinamiko, ki spadajo med posplosene ¢ metode in metode, ki
ohranjajo (oziroma kontrolirano zmanjs$ujejo) energijo in ohranjajo gibalno in vrtilno koli¢ino.
Primerjamo njihove spektralne lastnosti, nagnjenost k moc¢ni prekoracitvi analiti¢ne reSitve in njihovo
natan¢nost. Z racunom niza primerov, kjer reSujemo numeri¢no toge nelinearne enacbe za lupine,
ocenimo, kako se te lastnosti prenesejo v nelinearno elastodinamiko. Prikazemo sposobnost
obravnavanih shem za kontrolirano disipacijo energije in zmoZnost ohranjanja vrtilne koli¢ine, s
kazalniki napake pa ocenimo njihovo natan¢nost za nelinearne primere. Izpeljemo sheme, ki
ohranjajo/disipirajo energijo ter ohranjajo gibalno in vrtilno koli¢ino za hibridno-mesane formulacije
lupin. Numeri¢ni primeri kazejo, da se robustnost in u¢inkovitost novih stati¢nih formulacij prenese tudi
v dinamiko. Zaklju¢ni del disertacije je povezan z aplikacijo izpeljanih formulacij. Z numeri¢no
disipativnimi implicitnimi shemami proucujemo proces uklona lupin. Ocenimo sposobnost teh shem za
opis zapletenih procesov uklona, tudi v postkritiénem obmo¢ju, in pokazemo, da je numeri¢na disipacija
vi§jih frekvenc nujno potrebna za ucinkovito dinamicno simulacijo teh procesov. Na koncu izpeljane
postopke uporabimo Se za proucevanje povrSinskega gubanja ukrivljenih in tankih lupin na mehkih
jedrih, vkljuéno s preskoki uklonskih oblik.
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1 INTRODUCTION

Let us begin the exposition by introducing the topics that are later addressed in detail and by providing
the motivation behind the research that was undertaken. A brief state-of-the-art is given on the topics of
shell finite elements, mixed formulations, shell dynamics and shell stability problems. The goals of the
thesis and the methodology are presented and finally an outline of the rest of the manuscript is given.

1.1 Motivation

Shell structures and shell systems are used in various engineering and technological fields, including
civil engineering. The reason for their frequent use in engineering and technology lies mainly in their
innumerable possibilities for curved shapes and in their ability to carry transversal loading primarily by
the in-plane action [128]. This makes them attractive also for other fields of science, e.g. medicine,
biology, nanotechnology, etc.

For the numerical solving of nonlinear problems in engineering, the finite element method is currently
the most frequently used. It translates a mathematical description of an engineering problem into a
system of nonlinear equations (with space-discrete values of variables as the unknowns), which is then
solved using Newton's iterative method, e.g. [41]. If the problem at hand is of dynamic nature, the system
of nonlinear equations also becomes time dependent. Hence, besides a spatial discretization, we also
need a temporal discretization in connection with an effective time stepping scheme. Modern time
integration schemes for nonlinear structural dynamics are based on the requirements that they must be
able to algorithmically conserve some physical quantities during the dynamic motion. These are, for
example, the total energy of the system, the linear and the angular momentum, the inelastic material
dissipation and similar. Such schemes can then be modified to numerically dissipate the frequencies of
higher orders, which are, due to the spatial discretization, distorted and therefore unrealistic.

Shell structure is characterized as a three-dimensional body with thickness dimension much smaller than
span-wise dimensions. Consequently, its behavior can be approximated by an idealized two-dimensional
continuum. The difficulties that arise in the numerical modeling of the nonlinear response of shells and
shell systems are mostly related to the exact description of kinematics, especially large rotations,
material nonlinearity and inelasticity, exact description of transverse shear stresses and the prevention
of various parasitic stresses (i.e. locking), e.g. [164]. These requirements are not only the consequences
of the applied computational model, but are also directly connected to the underlying physical
characteristics of the shell structure [128]. Shell finite elements are of many types, since many shell
elements are intended to simulate specific problems. Recently, various new numerical formulations for
the analysis of shells have been derived. We should mention some of them: (a) geometrically simple,
hybrid finite elements, that show, despite simple geometry, great robustness and good accuracy in
solving various nonlinear shell problems, (b) finite elements with kinematics capable of using complex
3d nonlinear and inelastic material models, (c) isogeometric finite elements that are geometrically
compatible with other computer modeling tools used in CAD (Computer Aided Design) and BIM
(Building Information System) technologies, (d) finite elements with a precise description of the

transverse stresses, which is important for composite-laminate problems, and (e) finite elements
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specially derived for specific purposes such as, for example, analysis of curved nano structures,
emerging of wrinkling patterns, etc.

Note that the meaning of the term “hybrid” is hereinafter adopted from a definition presented by
Crisfield [42]. He termed the elements with all degrees of freedom (displacement-like and additional
non-displacement-like) specified at nodes as mixed. He further termed the elements that condense the
non-displacement-like degrees of freedom at the element level as hybrid or mixed-hybrid. This
terminology is not universally accepted as some publications correlate terms mixed and hybrid with
other meanings.

Shell structures can be found in a variety of shapes and sizes. An assortment of phenomena ranging from
mega size (e.g., buckling of thin steel silos [76] or the behavior of reinforced concrete cooling towers),
through micro size (e.g. wrinkling of solid films on soft cores [31]), all the way to the nano size (e.g.
deformation and removal of nano structures), can be simulated with shell finite elements. Thus, a need
is recognized to provide efficient finite element tools that can be used in the analysis of shell structures
across the entire spectrum.

1.2  Background

1.2.1  Shell mixed-hybrid formulations

From the first works by e.g. Kirchoff [84], Love [112], Reissner [129], Mindlin [117] and many others,
the theory in the field of plate and shell structures has been continuously developed. With the advent of
computer power and the ever growing demand for more detailed results, attention has focused mainly
on theories that are given in a form, suitable for efficient computer implementation, such as the
geometrically exact shell theory, presented by Simo and Fox [140], [141], [142]. The displacement-
based finite elements have since been improved using various techniques, and many works aimed at
developing a low-order (4-noded) optimal nonlinear shell finite element. The development of such an
element is still of great practical interest, since accurate and efficient shell elements play an essential
role for successful nonlinear analysis.

The pure displacement-based shell finite element developed from the geometrically exact shell theory
gives a too stiff response due to shear and membrane locking. Different techniques have been proposed
to mitigate these unwanted effects. The mixed and hybrid formulations are a possible approach, which
will be the focus of our work. These elements are usually based on a multifield variational principle and
treat the displacement, stress and/or strain fields as independent.

Significant amount of work in the field of hybrid formulations was done by Pian, starting with [125].
The first very successful 4-node plane stress hybrid finite element was a result of his continuous work
in this field and was proposed by Pian and Sumihara [126]. They proposed to use Hellinger—Reissner
variational principle in the formulation of hybrid stress elements. The proposed concept of assuming
independent stress resultant interpolations for membrane and bending components was improve in [140]
and [141], where it was used also in combination with the Assumed Natural Strain concept for the
treatment of transverse shear strains [48].
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The Assumed Natural Strain (ANS) concept was applied to shells by Dvorkin an Bathe [48], who
proposed a formulation that removes the transverse shear locking by assuming an independent
interpolation field of transverse shear strains over the element. Betsch and Stein [15] proposed an ANS
treatment for normal strains that help avoid the transverse normal locking in 6- and 7-parameter shell
formulations. Choi and Paik [36] proposed a new four node shell element that avoids the shear and
membrane locking problems. A family of new ANS shell elements was later proposed in [98] that aimed
to alleviate the membrane and shear locking. The same task was also undertaken by Ko et al., first in
[87] and later in [89] and [88], to arrive at the shell formulation that is free from locking and exhibits
superior convergence properties even when applied to distorted meshes; see [89] for linear and [90] for
nonlinear version of the element. The element is an extension of the nonlinear version of the popular
MITC4 (Mixed Interpolation of Tensorial Components) element [48] and was denoted by the authors as
MITC4+.

The concept of the Enhanced Assumed Strain (EAS) is another possible mixed approach that was
proposed by Simo et al. in [143] and further developed in [139]. The EAS plate and shell formulations
were further investigated by Andelfinger and Ramm [2], who elaborated on their equivalence to the
Hellinger-Reissner elements from [126]. Different enhancements for the membrane and bending parts
of the strains, e.g. [17], [22], or also the transverse shear strains, e.g. [12], [34], [127], have been
proposed since. For the 5-parameter, large rotation shell model, the membrane strain enhancement has
proven to be the most valuable, while other formulations do not justify the added computational cost,
see [22].

Although a very successful formulation was proposed by Simo et al. in [140], [142], the development
of an effective hybrid elements has continued since then. Wagner and Gruttmann [159] proposed a
mixed-hybrid Hu-Washizu (HW) type nonlinear 4-node shell element that allows for large load
increments and requires substantially less iterations than other shell formulations. The formulation has
been further developed to include also the EAS strains [60] and the thickness strains [85], allowing to
incorporate 3d constitutive equations. Gruttmann and Wagner further developed a linear version of
effective hybrid Hellinger-Reissner (HR) type shell elements [59] that can be straightforwardly extended
to nonlinear regime, e.g. [103]. Note that all the mentioned elements apply the ANS [48] for the

transverse shear strains on top of the proposed formulation.

Different representations of strains and stress resultants were explored in [165] and [166], where the HR
and HW elements were developed in skew coordinates, and in [168], where the strains were formulated
in contravariant coordinates. We have recently expanded the HW formulation to include also the ANS
for the membrane strains in [104]. A similar task was performed in [107], where we followed the same
guidelines and expanded also the HR formulation. In Chapter 2 of this manuscript we chose, out of the
above-mentioned element formulations, a group of the most prominent ones and subjected them to
extensive tests in order to deliver a straightforward comparison of their performance and finally derive
the “optimal” ones.
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1.2.2  Implicit shell dynamics

The goal of the numerical time stepping schemes for nonlinear structural dynamics is to provide a
sufficiently precise solution in time for the problem under consideration. There are several
classifications of the schemes, among which the most conventional is the division into explicit and
implicit. Implicit schemes generally exhibit better computational stability, compared to explicit ones
[67]. They also allow for longer time steps, are more precise, but also more computationally expensive.
Classical implicit schemes in structural dynamics belong to the Newmark family [118]. Among them,
the trapezoidal rule strictly preserves the total energy for linear systems, and the mid-point rule

conserves linear and angular momentum for a general nonlinear problem.

It has been proven desirable and often necessary for the implicit schemes to possess some numerical
damping. The numerical dissipation is favorable if it helps to avoid adverse effects of spurious higher
frequency modes on the numerical solution. High frequencies are an artefact of the spatial discretization
and do not reflect the high frequencies of the original continuum problem. As shown e.g. in [121],
extremely fine mesh is needed for an accurate representation of short waves in elastic continuum.
Because such meshes are not an option for structural dynamics, the numerical dissipation of poorly
represented short waves, associated with high-frequency modes, is desirable. Besides the spatial
discretization, the high-frequency error depends also on the underlying mechanical model and the choice
of the time step. Namely, for a dissipative scheme, large time steps generally increase numerical

dissipation in the low-frequency range.

Single-step collocation schemes with numerical damping have been proposed as an extension of the
Newmark method. Such schemes are e.g. Wilson-6 method [163], p- family of algorithms [10], various
well-established a-methods [38], [65], [77], [170], and some more recent versions [80], [81]
(collectively called the generalized-a (G-a) methods), among many others. More recently, attention has
been turned also to dissipative composite time integration schemes with several sub-steps in the time
step, such as e.g. the Bathe method [7], [120].

For linear dynamics, the unconditional stability of the time-stepping schemes is well defined by the
spectral radius [67]. For nonlinear dynamics, the algorithmic stability is rather related to energy, as
already recognized in [11], [68]. In this sense, a significant progress in implicit schemes for nonlinear
elasto-dynamics was made when Simo and Tarnow [146], [145] introduced a scheme that conserves the
total mechanical energy of the system for free motions, as well as linear and angular momentum. They
also emphasized that the conservation of the physical constants of the motion of the underlying nonlinear
continuous system should be a desirable feature of the time integration algorithm. The Energy-
Momentum Conserving scheme (denoted here as EMC) is basically the mid-point rule with the
algorithmic stresses conveniently derived to satisfy the requirement of energy conservation. Thus, the
scheme is “backward-engineered” in order to preserve the important qualitative feature of the governing
equations [18]. The energy-momentum conserving algorithm was later applied for the dynamics of
various nonlinear structural models by Simo et al. and others: for rigid-bodies [147], beams [138],
trusses [96], shells [146], [23], [134], [18] and solids [181], [53], [16]. More recently, it has been
extended for mixed formulations [13], [119] and multi-physics problems, e.g. for electro-elastic-

dynamics, thermo-mechanical dynamics, etc.
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Although the energy-momentum conserving scheme [145] fulfils the energy criterion for nonlinear
elasto-dynamics, it proves to be unstable for some nonlinear applications. Because it is non-dissipative,
it does not damp any vibrations, which makes it inefficient for snap-through and buckling problems, as
presented for dynamic buckling of shells in [102] and [108]. In such cases, the energy-momentum
conserving scheme computes highly oscillatory responses of a purely numerical origin. The
nonlinearities provide a mechanism for transferring energy from low to high frequency regime, so that
numerical solutions show never ending (intense) oscillations. For the dynamics of complex nonlinear
systems, like shells, numerical dissipation seems to be indispensable. However, conservation of energy
and high frequency dissipation cannot coexist, unless energy is transferred from high to low frequency
modes, which has no physical basis. Nevertheless, [97] proposed a dissipative constrained G-a scheme
that conserves energy and momenta. Because of the energy constraint, higher modes are dissipated,
whereas the total energy of the system remains constant because the algorithm makes an unphysical

transfer of energy from the artificial high modes to the low modes [18].

Thus, the need to controllably dissipate the total mechanical energy of the system served as motivation
to extend the energy-momentum conserving scheme so that it includes algorithmic dissipation. A series
of first-order and second-order energy-decaying (ED) schemes that fulfil the energy stability criterion
have been proposed, with some of them being able to conserve angular momentum and some not. For
the first- and second-order energy-decaying schemes, we refer to e.g. [3], [4], [5], [26], [S51], [132]. Let
us mention that the energy-momentum conserving scheme was analyzed in [146] and [13], and that the
energy-decaying schemes of the first-order were analyzed in [4] and [26] and compared with the energy-
decaying schemes of the second-order in [5].

Application of the above-mentioned schemes to the pure displacement-based shell elements is not
without difficulties, although it is a standard task that many of the commercially available software
enable. However, it is probably due to implementation difficulties that none of the high-performing shell
elements in combination with the energy-decaying schemes have yet been formulated. Betsch and Janz
recently applied the HW formulation [159] to the EMC scheme, whereas the energy-decaying scheme
was applied to mixed EAS formulations by Gebhardt and Rolfes [50]. In Chapter 4 of this manuscript
we develop two formulations that combine the positive features of the “optimal” shell quadrilaterals

presented in Chapter 2 with the energy-decaying momentum-preserving scheme presented in Chapter 3.

1.2.3  Shell stability in dynamics

A systematic understanding of buckling of shell-like systems, including the development and evolution
of buckling pattern, e.g. [155], [30], [100], [183], calls for computational procedures that can go far
beyond the buckling initiation into the post-buckling regime. To handle this kind of instability by static
analysis, one must use the path-following method, e.g. [41], which can decrease the load when tracing
the equilibrium path. The static analysis may be extended by directly jumping to the critical points, e.g.
[172], [93], and by switching from the primary equilibrium path to the secondary ones (called branch-
switching), e.g. [160], [173], in order to investigate different possible ways of shell post-buckling
behavior and to get an idea of the most realistic one.
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It is sometimes difficult to compute complete shell buckling process by the path-following method, e.g.
[149], [150]. Moreover, jumping to the critical points and branch-switching is cumbersome, and it is
robust only for some simple shell problems, e.g. [58]. For this reason, one can turn to quasi-static
analysis, known as dynamic relaxation, where the static problem is replaced, for the purposes of
numerical solution only, by an artificial dynamic problem with damping (i.e. viscous) and inertia forces,
e.g. [154]. Another way to compute the shell buckling process is by defining the problem as a nonlinear
structural dynamic one, and exploiting explicit time stepping schemes to compute the solution. Let us
mention some recent examples of explicit dynamic buckling analyses of shells: cylinders were studied
by [92] and [162], silos by [76], creased shells by [123], and steel tanks by [46]. Let us further mention
that the idea of studying shell buckling and post-buckling by structural dynamics goes back to 1980’s,
see e.g. [136], [40], [133], [66].

In this manuscript we aim to apply the implicit dynamic time stepping schemes to compute shell-
buckling phenomena, which is a considerably less common approach, despite the fact that implicit
schemes are generally more stable and accurate than explicit ones, and can use larger time steps. Some
remarks on common implicit schemes in structural dynamics have already been presented above, and a
more detailed description is given in Chapter 3. Schemes from the families of generalized-a and energy-
decaying methods will be applied to tackle the difficult shell stability problems.

The majority of the applied schemes enable user-controlled numerical (i.e. algorithmic) dissipation in
the high-frequency range, which has been recognized as desirable and often necessary. The need to
remove the high frequency modes is the error accumulated in these modes. On one hand, the error is a
direct consequence of the spatial discretization of infinite-dimensional structural system. On the other
hand, the error in the high-frequency range also depends on the underlying mechanical (i.e. physical)
model, because some mechanical models tend to produce more high-frequency modes than others. For
example, the introduction of rotations into structural models, e.g. [72], [75], [25], may improve element
conditioning properties (and diminish the number of stiffness matrix eigenvalues with large values) in
statics, which is also reflected in dynamics. Contrary to the spurious higher modes, it is very important
that the introduced numerical damping has little effect in the low-frequency range, e.g. [80]. Otherwise,
the application of the scheme with numerical damping for buckling simulation might lead to missing
out some buckling modes, e.g. [116].

1.2.4 Wrinkling of curved shell-core substrate

Surface wrinkling exhibits some unique deformation patterns that can be found in diverse natural
systems, ranging from biology to geology, as well as in various engineering systems. Regardless of the
context or parameter setting in which the wrinkle patterns are observed (natural/engineered, flat/curved,
length-scale, external stimuli, etc.), they develop, due to the stress, relaxation associated with the loss
of stability. As such, wrinkling is traditionally understood as a sign of failure. Just recently, we have
seen the introduction of so-called active materials that exploit mechanical instabilities as a platform for
advanced functionality and superior physical properties. Examples are active control of adhesion [35],
active control of wetting to achieve hydro-phobicity/-philicity [39], active control of aerodynamic drag
[155], etc.
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A systematic understanding of the loss of stability and the wrinkling pattern evolution in these systems
requires analyses that reach deep into the post-buckling regime, where, unfortunately, practically no
analytical calculations on curved geometry are possible. The common approach is therefore to perform
a numerical nonlinear static stability analysis, which usually includes the path-following methods and
branch switching algorithms, see e.g. [42], [173], [149], [150]. For problems where such methods fail,
nonlinear structural dynamics can be used, see e.g. [102]. Explicit schemes are preferred because they
always give results, but they may not be accurate. Implicit schemes, on the other hand, are more accurate
but more difficult to implement. The above-mentioned common methods have been applied in several
articles on the wrinkling of elastic films adhering to thick substrates in various curved geometry settings,
including cylindrical [182], [173], spherical [148], spheroidal [156] and toroidal [184]. In this
manuscript we will focus only on cylindrical and spherical systems.

In the analysis of cylindrical shell-substrate composite systems, axial and/or radial loading was applied
to trigger wrinkling. For example, the deformations of stiff cylinders attached to elastic substrates and
limited to radial wrinkling were studied [110], [33], [100]. The wrinkling of anisotropic films on
cylindrical substrates was investigated by Yin and Chen [177] to find an effective way to fabricate 3D
(helical) gear-like structures. They analyzed the effects of geometric and material parameters on the
wavelength and inclination of wrinkles. In [124] Patricio et al. investigated the wrinkling of stiff-
shell/soft-core cylindrical fibers with mismatches in length and radius, as well as critical conditions for
the initiation of wrinkling along the fiber axis or wrinkling along the fiber circumference. They found
that stiffer and thicker shell tends to wrinkle along the circumference, while thinner and softer shell
tends to wrinkle along the length. The theoretical stability and pattern evolution on these cylindrical
systems due to differential volumetric growth were investigated by Jia et al. [78]. They found that during
post-buckling, depending on the geometric and material parameters, multiple morphological transitions
occur, which lead to the formation of square, hexagonal and labyrinthine wrinkles. Furthermore, Zhao
et al. [182] reported a combined experimental and theoretical investigation of the same system that was
subjected to axial compression. They showed that regardless of the system properties, the first wrinkling
mode is always axisymmetric and periodic along the longitudinal axis of the cylinder. Their theoretical
findings were extended by Xu and Potier-Ferry [173], who performed numerical analyses on axially
compressed cylinders on substrates in a static framework by applying pseudo-dynamic regularization.
They identified a parameter that predicts the type of wrinkling to occur.

In the analysis of spherical core-shell systems, Cao et al. [32] performed experiments on microscopic
spheres and performed related numerical simulations in Abaqus [1]. Both results showed that either
hexagonal or labyrinthine dimple patterns will emerge, depending on the properties of the analyzed
system. These results were confirmed by micro-scale experiments in [29] and [178], as well as macro-
scale experiments in [30] and [155]. 3D finite elements were used in a numerical study performed in
[111], where they showed that the sphere first buckles into a dimple pattern, which gradually evolves
into a labyrinthine pattern through subsequent bifurcations. In [151] they confirmed these results by
implementing a reduced model, which preserves only radial displacements. Furthermore, Veldin et al.
[156] used similar reduced procedure to predict the characteristic wrinkling pattern at initial post-
buckling. In a recent work, Xu et al. [174] performed experimental and numerical investigation on
micro-scale spheres, where they proposed the validity of a parameter that was previously derived for
cylinders, also for spheres.
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In this work, we recognize the implicit dynamics as a suitable setting in which to address the difficult
problem of surface wrinkling of soft-core-stiff-film composites. To analyze these problems, we apply
several schemes from the class of generalized-a methods [49] and the energy-decaying methods [4].

1.3  The goals of the thesis

The main goal of the thesis is to further advance the available knowledge and tools for the shell finite
element analysis. The particular goals fit the main goal and can be summarized as follows:

e Extensive review of existing mixed-hybrid, ANS and EAS formulations for geometrically exact
shell models. Proposal of an “optimal” four-node element.

e Review and assessment of some existing, one-step, implicit time integration schemes for
structural dynamics that fall into the classes of generalized-a and energy-momentum
conserving/decaying schemes. Extension of a new generalized-a scheme, recently proposed for
structural dynamics by Kadapa et al. [80], to shell formulation.

e Derivation of energy-momentum conserving/decaying scheme for mixed-hybrid shell
formulations.

e Application of the derived formulations for shell stability problems, including buckling and
surface wrinkling phenomena.

1.4 Methodology

All the derived finite elements and dynamic schemes are implemented using AceGen and AceFEM
environments, see [94] and [95]. They are available as add-ons in commercial software Wolfram
Mathematica [169].

AceGen enables automatic finite element code generation by exploiting the abilities of Wolfram
Mathematica, performing automatic differentiation of large expressions and algorithms as well as
automatic code generation. AceFEM is a finite-element analysis environment. The combined use of both
enabled us to implement different finite element formulations quickly and efficiently and to extensively
test the derived formulations.

1.5  The outline of the thesis
In addition to Chapter 1, where we introduce the topics of interest, the thesis consists of 6 chapters.

In Chapter 2, we present two shell models and then focus on the mixed formulations for shells. An
extensive review of some of the most prominent formulations is presented, where we address several
theoretical and numerical aspects that have to be carefully considered in the design of a high-
performance element. Finally, the performance of the chosen mixed, low-order finite element
formulations is investigated on a set of benchmark problems. A closer look at three nearly optimal
quadrilateral finite elements for geometrically exact inextensible-director shell model is taken and their
weak and strong spots are highlighted.
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Chapter 3 is devoted to structural dynamics. We revisit some existing time-stepping schemes that fall
either into the class of the generalized-a or the energy-decaying methods. We perform a systematic
comparison of their characteristics for linear dynamics and we study how these features extend to
nonlinear dynamics by performing a set of numerical tests on examples of shell structure.

In Chapter 4, we present a novel mixed variational formulation that incorporates the energy-decaying
momentum-conserving time stepping scheme. Previously identified high-performance mixed-hybrid
shell finite elements from Chapter 2 are extended to the transient regime, where their robustness is
preserved. The proposed temporal discretization allows to controllably dissipate the total energy of the
system and ensures conservation of momenta.

In Chapter 5, the implicit dynamic time-stepping schemes with numerical dissipation are applied to
study the shell buckling process. We assess the ability of these schemes to handle complex buckling and
post-buckling processes of thin shells. Furthermore, we show that high-frequency numerical dissipation

is necessary for an efficient implicit dynamic simulation of stability problems.

Chapter 6 is devoted to wrinkling analysis of curved shell-core composites. We propose computational
models for predicting the surface wrinkling that are based on the shell models presented in Chapters 4
and 5 and use implicit dynamic schemes. We apply these models to the problems of axially compressed
cylindrical composites and spherical composites subjected to external pressure. We show that the
proposed computational models predict wrinkling patterns that are in good agreement with the
experimental and other numerical results from the available references.

Conclusions and possible guidelines for future work are drawn in Chapter 7.

We would like to point out to the reader that the notation is not necessarily transferred from one chapter
to another, unless specifically stated in the text. However, the notation is consistent within each chapter.
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2 OVERVIEW AND COMPARISON OF MIXED LOW-ORDER FINITE ELEMENTS FOR
GEOMETRICALLY EXACT SHELL MODELS

Chapter abstract

Development of accurate, robust and efficient finite elements for the analysis of shell structures has been
one of the key tasks in computational mechanics of shells. This chapter is devoted to the mixed shell
formulations. Due to a great variety of mixed formulations and despite their flexibility, several
theoretical and numerical aspects have to be carefully considered in the design of a high-performance
element. The present chapter aims to provide the basis for methodological analysis and comparison of
such aspects. A critical review of the state-of-the-art methods is given with regard to the treatment of
large rotations, variational formulations and the selection of interpolation spaces. Finally, the
performances of the chosen mixed, low-order finite element formulations are investigated on a set of
benchmark problems, where we evaluate their robustness, speed, mesh distortion sensitivity and
convergence properties. Note that this chapter includes parts of our article [104], book chapter [103] and
yet unpublished article [107].

2.1 Chapter introduction

Development of a low-order (4-node) “optimal” nonlinear shell finite element is of great practical
interest. Such an element should: (i) pass the basic tests, (ii) show nearly optimal convergence behavior,
(iii) display low sensitivity to mesh distortion, (iv) allow for large solution steps, and (v) be
computationally fast. It should maintain these favorable properties irrespective of the type of shell
problem categorized by geometry, loading and boundary conditions.

It is furthermore understood that such an element should also be equipped with efficient description of
large rotations. Thus, in this chapter we compare several possible implementation strategies that more
or less effectively equip the model with large rotation description. They include a parametrization using

a rotation matrix or rotation quaternion and three possible rotation update methods.

It is understood that a pure displacement-based formulation cannot fulfill all of the above listed
criterions. Thus, our attention is focused on the mixed and mixed-hybrid formulations that fall in the
families of assumed natural strain (ANS), enhanced assumed strain (EAS), hybrid Hu-Washizu-based
(HW) or hybrid Hellinger-Reissner-based (HR) formulations. In the following sections we will describe
the implementation details for 15 mixed or mixed-hybrid shell formulations that allow for an

independent interpolation of strains and/or stresses and we will compare their numerical performance.

As a starting point, two shell models are used: 5-parameter, large rotation, inextensible director model,
see e.g. [139], [24], and 6-parameter, rotation-less, extensible director model, see e.g. [17]. For the 6-
parameter model, only one finite element version will be investigated which applies the ANS technique
for transverse shear [48] and normal strains [15]. As for the 5-parameter model, we will implement two
elements based on the ANS formulation. The first one modifies only the transverse shear strain
interpolation [48] (we denote it as MITC4), while the second one modifies also the membrane strain
field [89] (we denote it as MITC4+). Numerical examples in [89], [90], [91], [104] and our numerical
experiments demonstrate that MITC4+ shows nearly optimal rate of convergence (also for nonlinear
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problems), and displays incredibly little sensitivity to mesh distortion. However, its weak spots are: (i)
pure membrane (i.e. in-plane) deformations, and (ii) very large bending deformations accompanied by
small membrane deformations (such problem is, e.g., deployable ring presented in the section with
numerical examples). In these cases, the ANS enhancement of the membrane behavior has only a minor
effect, which is revealed by practically identical behavior of MITC4+ and MITC4. Thus, for the two
mentioned shell problem types, MITC4+ does not remove membrane locking.

From the family of enhanced assumed strain (EAS) formulations, we will focus only on those that
improve the membrane field of the strains. Adopted from [22] and [12], we will implement formulations
with 4, 5 or 7 independent strain parameters, denoted here as EAS4, EASS and EAS7, respectively. We
will show that the number of parameters strongly influences their behavior and determines how many

of the above listed favorable properties are possessed by a specific formulation.

From the hybrid formulations we will focus on the formulations derived by Wagner and Gruttmann,
who proposed in [159] a Hu-Washizu type nonlinear 4-node shell element, denoted here as HW. We
will further implement also the formulation from [60] that additionally employs the EAS type
interpolations for the independent strains, denoted as HWEAS, and the one based on the Hellinger-
Reissner functional from [59], denoted here as HR. We argue that these formulations all have the last
two (plus the first one) of the above listed favorable properties of the “optimal” shell finite element.
Numerical examples in [59], [60], [159] and our numerical experiments show that they are very fast,
can use large solution steps, and have good convergence behavior for regular meshes. However, they
are sensitive to mesh distortion, which is their weak spot. They do not remove the membrane locking
for distorted meshes.

We show in this chapter that new formulations can be obtained by straightforwardly merging some of
the existing ones in a way that preserves the positive features of their predecessors. This is proved by
the superior performance of the elements that synergize the positive features of the membrane ANS
treatment and the hybrid HW or HR formulation. Our extensive numerical tests, partly presented in
Section 2.5, demonstrate that the resulting elements possess all five of the above listed favorable
properties of the “optimal” shell finite element, while no weak spots of their predecessors are present.

In the rest of the chapter we first present our version of the geometrically exact, inextensible-director
shell model. In the following section, we describe the implementation details for the displacement-based
formulations. The interpolations for mixed and mixed-hybrid element formulations are presented next,
followed by an extensive set of numerical examples where we demonstrate their behavior and elaborate
on their properties.

2.2 Geometrically exact shell models

In this section, the basic features of the geometrically nonlinear, large rotation, inextensible-director
shell theory are presented. Its more detailed description is given in seminal works [140], [142], and
many later works, see, e.g., [25], [28], [47], [74], [98], [159], [164] (among others) and references
therein. Moreover, the rotation-less, extensible director shell theory is presented, where the rotations are
replaced by the difference vector. For further details on this kind of theories we refer to [17], [144].
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2.2.1 Inextensible-director shell theory

The shell is modelled as a surface equipped with an inextensible one-director field that is embedded in
the 3d space with fixed orthonormal basis e;, i = 1,2,3. The position vector to the material point at the
shell initial configuration is given as:

X850 =Xo(§L 8 +¢DEYL 8%, (el-t/2,t/2], (¢ €A, IIDII=1 (2.1)
where &1, &2 are convected curvilinear coordinates, ¢ is through-the-thickness coordinate, X (&1, £2) is
shell mid-surface, D(&1, £2) is normal-to-the-surface vector field of unit length that is called director, ¢
is shell thickness, and A is the domain of mid-surface parametrization. Let the shell director be
represented as

D(E,6%) = Ag(Eh,6%)es, (2.2)
where Ao (&1, &2) is tensor field that can be called initial rotation. The basic kinematic assumption of
the theory defines the position vector in the deformed configuration of the shell, which assumes that the
displacements vary linearly through the thickness and that the director is inextensible:

x(§1,6%,0) = [Xo (€1, 8% + u(@, e +¢d @ ¢%), lldll =1 (2.3)
x(§1,62)
Note that hereinafter we will omit writing arguments on functions and functionals for the sake of brevity,

and we will refrain from explicitly mentioning vector and tensor fields. In (2.3), d is the director at
deformed configuration, which is not necessarily perpendicular to the deformed surface, and u is mid-
surface displacement. Furthermore, let

d = Aes, (2.4)
be the shell director at the deformed configuration, where A is rotation, which rotates e5 into d without
a drill and is parametrized with rotational parameters collected in 9. With (2.1) and (2.3), the covariant

bases at the initial and deformed configurations are

X X,
= Ja Ra:W:GalgEO: G;=R; =D,

ox _0xy

ga:@: r“_aftx—gak:O’ gs=r3=d,

Go
a=12 (2.5)

respectively. Vectors R, span the tangent plane at the mid-surface point at the initial configuration and
the dual base vectors R* and 1! are defined through relationships R! - R; = 6} and ' - r; = 5}, where
1) ji is a Kronecker symbol. The out-of-mid-surface dual base vectors G* and g* are defined in the same

way. For thin shell problems, which present a vast majority of shell problems, one can justify geometric
approximation G, = R, and G = R%, which we also apply in this work. Our numerical experiments
confirm that for thin and moderately thick shells such an approximation has a negligible effect on
numerical results.

With (2.1)-(2.5), the Green-Lagrange strain tensor can be derived as
1 . . . . . .
E= E(gi g9;—G;-G)G'®G =E;;G'QG ~E;RR QR (2.6)
Strains E;; in (2.6) can be expanded as E;; = &; + (ki + ({)?p;;, with €33 = k33 = pg3 = p3q =
p33 = 0. It is very common that strains E,p are truncated after the linear term, and that the transverse

shear strains E,3; = E3, are truncated after the constant term, see e.g. [140], [142]. Our numerical

experiments confirm that such truncation has an insignificant effect on the results, which is why it is
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also applied in this work. We will work with Epp = €45 + (kqp and Eg3 = €43, Where €45, Ko, €43
are the membrane, bending and transverse shear strains, respectively, defined as
sa[;:%(ra-rﬂ—Ra-Rﬁ), 2643 =Yq =Tq-d—Ry D, o
1 .
Kap = E(ra dg+1p-dy—Ry-Dpg—Rp-Dy),
where () , = d(0)/0&“. For the finite element implementation of the theory, it proves convinient to
introduce at the mid-surface point an orthonormal basis &; such that &; = D, &, 1 &5, ||&,]| = 1, and
e, = €3 X &;. Thus, the initial rotation matrix for that point is simply
Ay = [é,,€,,D]. (2.8)
The strains can be given with respect to such orthonormal basis by using (2.7) and by applying the
following transformations
Eap = 5aﬁ(éa : Ra)(éb : R'B): Kap = Kaﬁ(éa : Ra)(éb 'Rﬁ)' Vo = Ya(éa ‘R%), a=1.2 (2.9)
Energy conjugated to the Green-Lagrange shell strains in (2.7) and (2.9) are the second Piola-Kirchhoff
shell stress resultants. The shell membrane, moment and transverse shear tensors, n, m and q,
respectively, can be resolved with respect to the basis &; as
n =18, Q &, m=mMgpe, Q &y, q=3,(6,®D+DR®e,). (2.10)
In order to simplify the notation, the strain and stress resultant vectors are introduced as
€ = [£11, 852, 28157, 1= [Ry1,Rpp, 201,17, ¥ = [P0, 721",
n = [y, Ay, Agp]", M= [Myq, My, Myp], q =141, 3.]".
As for the material model, the usual choice is the stress-resultant version of the Saint-Venant-Kirchhoff

(2.11)

isotropic hyperelastic material model. It takes into account the assumption of the zero normal stress in
the thickness direction, which reflects in fiz3 = i35 = 0. It is suitable for shell problems with large
elastic displacements and large rotations, but small strains. For the inextensible director shell theory,

such a choice leads to the following constitutive relations

n=C"s m=C% q=C% C("=tC, C’=1t3/12C, (2.12)
where C is the standard plane-stress constitutive matrix
1 v 0
= E [v1 o Et o
C=—— , CS=c——= , 2.13
(1_V2) 0 0 1-v C2(1+V)[0 1] ( )
2

E is elastic modulus, v is Poissons ratio and c is shear correction factor, which is set to 5/6.

Let the shell be loaded by (mid-surface) pressure and body loads, which are both included in b, and
boundary forces t. For this type of loading, the potential energy functional reads as
M(u,d) = Hint(u: d) — next(u: d) =

1 — _
j—(e-Cms+x-Cbk+y-Csy)dA—<fu-bdA+fu-tds),
M2 M I’y

t

where M is initial mid-surface of the shell, and I is part of its boundary with prescribed forces. The

(2.14)

shell is in equilibrium when the potential energy functional is at its minimum. The necessary condition
is

8M(u, d; Su, 8d) = f (8- C™e + 8K - CPK + 8y - C5y) dA — 811y (5u, 8d) = 0, (2.15)
M
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where 8I1 is variation of potential energy, which is obtained as 8IT1 = %H(u + wbu, 9 + wdI)| -0,

where w is a scalar parameter, Su and 8d = %d(ﬂ + w89)|,-o are the kinematically admissible

variations of u and d, 8l is variation of external loading potential, and d¢, 5k and &y are vectors of
variations of membrane, bending and transverse shear strains. Their components need to be defined with
respect to the &; basis. Therefore, the strain variations with respect to the curvilinear coordinates, which
are

1
88“[3 =—(8ua-rﬁ+ra-6uﬂ)’ 5)/a=5ua-d+ra-8d,
2 ‘ ' (2.16)
SKO.'B = E (Su,a . d,ﬁ + L Sd'ﬁ + Su,/g . d,a + Tﬁ . Sd’a),

need to be transformed to the &; basis by using the rules given in (2.9).

Either the weak form of the problem (2.15) or the potential energy functional (2.14) represent the starting
point for the finite element implementation of the theory if the implementation is based on the
interpolations of displacement and director, i.e. u and d. It is well documented, however, that such a
straightforward implementation produces formulations, which suffer critically from the shear locking
and also from the membrane locking, see e.g. [17], [48], [60], [90], [104]. A variety of approaches can
be applied to avoid locking, and to improve robustness and speed of numerical formulations. Those that
replace the potential energy functional (2.14) with the mixed functionals that allow for an independent
interpolations of strains and/or stresses will be assessed below for the quadrilateral shell finite element.

2.2.2 Large rotations description

Large rotation A, introduced in (2.4), is part of a special group of orthogonal transformations A €
SO0(3) (A™t = AT, detA = 1) and rotates e; into d without a drill. In addition, we can define the tangent
space to SO(3), as TxSO(3), see [115], [176], where X € {T,I, M} corresponds to points during the
Newton-Raphson procedure at which the plane can be defined, see Figure 2.1. Rotation A can be
parametrized in different ways, see e.g. [14], [25], [28], [71], [142], [164] for detailed discussions on
this topic. However, before a parametrization, let us decompose A into two rotations, where one of them
is the initial rotation A, that is known from the initial geometry, see (2.2) and (2.8). This allows to
express d as
d=A,A(O)e; = A(O7)Aye; = A(67)D, (2.17)
where A is the rotation that is parametrized by either 91 or 8. We choose to parametrize A with the
rotation vector, and in this case ¥ and Ot are called total material and spatial rotation vector,
respectively (which is emphasized by index T'). For the parametrization with the material rotation vector,
the following formula of Rodrigues applies, see e.g. [140]
A(97) = cosdI + sindy 9, + 1~ cosdy
Ir V2

where 1 is identity matrix, 97 = |97, 97b = 97 X b for Vb for the skew-symmetric matrix 9; €

9707, (2.18)

TrS0(3), and @ denotes the tensor product. Because 9 rotates e into d without a drill, it has only
two nonzero components. The drilling component is zero, which simplifies the expression for the
deformed shell director into
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sindy

d=A,A[7)e; = A, (COS7.9T33 + I X e3). (2.19)

T
The variation of (2.19) is 6d = A(9)89 1, where 89 is variation of the rotation vector (with two non-

zero components), and A(97) is 3 X 2 matrix. At 9y = km, k =1,2,---, A(¥7) has two linear-
dependent rows and the mapping between the director vector variation and the corresponding rotation
vector variation is no longer a bijection, see [25], [74].

In order to avoid singularity problems in computations because the bijection is lost at 97 = m, one can
replace rotation A, in (2.19), which is related to the initial configuration, with rotation A,,, which is
related to a shell configuration between the initial one and the current one. From the computational point
of view, the most convenient choice is to associate A,, with the last computed equilibrium configuration
in the framework of the incremental-iterative Newton-Raphson procedure that is used to solve discrete
version of the weak form of the nonlinear equilibrium equations. Let subscripts n,n — 1, ...,0, denote
computed equilibrium configurations that are set in order from the last one towards the first one. With
this notation, the shell director at the last computed equilibrium configuration is d,, = A, ez, where A,
is computed as A, = An_1/~\(19 ,,n), where 9;, is known incremental rotation vector (which is
emphasized by index I) that rotates the shell director from configuration n — 1 into configuration n and
A,,_1 is known rotation at configuration n — 1. By using (2.18), rotation A,, can be computed as
51m9,n01n 1—cost;, 01n®191n> (2.20)
U n 191 n

where 31,11 € T;S0(3). Shell director at the current deformed configuration can thus be expressed as
sind,

A, =AM, <c0519,,nl +

d=A,A(¥))e; = A, (cosﬁ,eg, + 9, X e3), (2.21)

where 9, is the current incremental rotation vector. Eq. (2.21) resembles Eq. (2.19), except that the
reference configuration for the rotation vector is different: in (2.19), we have the total rotation vector
measured from the initial (undeformed) configuration, and in (2.21), we have the incremental rotation
vector measured from the last computed equilibrium configuration. Moreover, in (2.19) we have initial
rotation Ay and in (2.21) we have the rotation from the last equilibrium configuration A,,. The variation
ofdin (2.21) isnow 6d = A(9;)89,;, where 89, is the variation of the incremental rotation vector (with
two non-zero components), and A(¥9;) is matrix with singularity at 9; =|l 9; = km, k = 1,2, -+, see
[25]. In practice, this singularity does not present a problem, because the norm of the incremental

rotation vector is always (much) smaller than .

Furthermore, the singularity can also be avoided by replacing rotation A, in (2.19), with rotation AX33,
which is related to (in generally) non-converged shell configuration at the last iteration. Let superscripts
k—1,k—2,..,0 denote computed iterations inside the last increment of the Newton-Raphson
procedure. We can write the shell director at the last computed iteration as d<71 = Ak71e;, where A¥71
is known. Using the same analogy as for the incremental rotation vector, the latter can be computed as
AR = n+1A(19 Mn+1)> Where ﬂ,"wfﬁﬂ is known iterative rotation vector that rotates the shell director
from configuration k — 2 into configuration k — 1, which are both (in general) non-converged.
Following the development in (2.20), the skew-symmetric tensor is defined as 9%/, Kin+1 € TySO(3) and

the shell director at the current deformed configuration can be expressed as
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sindy,

d = AR, )e; = AR (cosﬁMe3 + Iy X eg), (2.22)

M
where 9, is the current iterative rotation vector. Eq. (2.22) resembles Egs. (2.19) and (2.22), but with

the reference configuration set in the last computed increment. The variation of d again follows the
same guidelines as presented above. We note that index M comes from the fact that in the case of
iterative rotation vector, the rotations are always updated multiplicatively, as opposed to the incremental
and total vectors, where the update is either additive-multiplicative (additive inside a single increment
and multiplicative between the increments) or purely additive.

9 .
T .A l 49, dl,, = AA(O7 + Adp)es
0
9 A9 _
I L D dl,, = AA@, + A9))e;
mn
M Pu LY > diyi = AfTIADy)es
A

L )

[
current increment ﬂ

current iteration

Figure 2.1: Visualization of rotation schemes 7, / and M. Thick arrow denotes where the rotation update
happens.
Slika 2.1: Vizualizacija razli¢nih rotacijskih shem 7, 7 in M. Odebeljene puscice predstavljajo, kje se zgodi
posodobitev rotacij.

2.2.2.1 Algorithm T

The shell director position is described by the second expression in Eq. (2.19), and the total rotation
vector is updated additively. When the norm of the total rotation vector reaches m, this description has
an unwanted singularity.

2.2.2.2 Algorithm TQ

The shell director position is described by rewriting the first expression in Eq. (2.19) using quaternions,
which helps to maintain numerical orthogonality of the current rotation. To this end, the initial rotation
Ay = [Ao,ij]; i,j =1,2,3, is conveyed to the rotation quaternion §, by using the standard relations as
(seee.g. [187])

1 A0,32 - A0,23

1 . q
qo = 5/trAg + 1, qo = — [No13 —No31|, do = [ 0]; q4o ER,qo ER3.  (2.23)
2 4q0 A —A qO
021 — No12

Relations (2.23) are applicable only for trAy + 1 > 0. If this inequality is not satisfied, the algorithm
should be modified following standard procedures. The rotation quaternion that corresponds to rotation
A(9) from (2.19), with the total rotation vector ¥, can be obtained as (see e.g. [187])

4= [cos (g),gsin (g)]T =[q,q]". (2.24)
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By combining §, from (2.23) and § from (2.24), one can get the rotation quaternion §., that
corresponds to the rotation AyA(¥9) from (2.19)

Gtot
N@cocll’
where o denotes the quaternion multiplication. The shell director in the current configuration d is

A A~

Qtot =G0 ° q, C:Itot =

(2.25)

obtained by applying the quaternion algebra as
d =1[0,d]" = Geor o [0,e5]" o éI_Wz:ot' (2.26)
where § "o TEPTESENtS the conjugate pair of Gtor» defined as

~

q*tot = [ﬁtot,ll —ﬁtot,zl —67mt,3, —Etom]T' (2.27)
where c?wtyk, k = 1,2,3,4, is a component of §.,;. Our numerical computations show that the use of
quaternions in order to compute the current shell director produces better convergence in comparison
with the direct application of the second expression from Eq. (2.19). We attribute this to the fact that
numerical orthogonality of the current rotation is more accurately preserved by quaternion
multiplication than by rotation matrix multiplication.

2.2.2.3 Algorithms I and IQ

These algorithms avoid the singularity that appears in Algorithms T and TQ. The singularity is avoided
not theoretically, but practically (in computations) by using the incremental rotation vector. In

Algorithm I, the shell director is described by incremental rotation vector 9; and expression (2.21).

Moreover, in order to improve the convergence, expression (2.21) can be rewritten using quaternions
which can maintain numerical orthogonality of rotation. This approach will be called algorithm 1Q. The
procedure is the same as explained in Section 2.2.2.2 above, except that subscript 0 is replaced by
subscript n and the total rotation vector 9 is replaced by incremental rotation vector 9J;.

2.2.2.4 Algorithms M and MQ

These algorithms again avoid the singularity in a practical way. In Algorithm M, the shell director is
described by iterative rotation vector 9,, and expression (2.22).

In order to improve the convergence and numerical orthogonality of rotations, expression (2.22) can
again be rewritten using quaternions. This will be called algorithm MQ. The procedure is the same as
explained in Section 2.2.2.2 above, except that subscript 0 is replaced by subscript n + 1, superscript
k — 1 is added and the total rotation vector ¥ is replaced by iterative rotation vector 9.

2.2.3 Extensible director shell theory

In this section, we show that a modification of the inextensible director shell model described above
leads to an extensible director shell model with no rotational degrees of freedom. The latter considerably
facilitates the finite element implementation with respect to the inextensible director one.
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In the extensible director shell theory, the shell is modelled as a surface equipped with an extensible
one-director field. The position vector to the material point at the shell initial configuration is still of the
form given in (2.1). However, the basic kinematic assumption differs from the one adopted in the
inextensible director theory. Namely, the position vector to the material point at the shell deformed
configuration is for the extensible director theory defined as

x(§5,8%,0) = [Xo '8P +u@L N +7d(EH¢Y,  d=D+w, (2.28)

x0(£1,62)

where d is an extensible shell director, not necessarily of unit length, and w is the difference vector, see

Figure 2.2.

Figure 2.2: Extensible director shell model kinematics.

Slika 2.2: Kinematika modela lupine z raztegljivim smernikom.

The introduction of the difference vector allows for the derivation of a rotation-less shell theory. Note
that we use the same notation for the current shell director for both inextensible- and extensible-shell
models, see (2.2) and (2.28), which will enable avoiding repeating similar expressions. The components
of the Green-Lagrange strain tensor with respect to the basis R’ are obtained by using (2.28) in (2.5)-
(2.7). These components vary quadratically trough the thickness, i.e. E;; = ;; + {k;j + ({ )2p; j» where
K33 = Pg3 = P3a = P33 = 0. In the same manner as in Section 2.2.1, we apply truncation of the strains
E,p after the linear term, and truncation of the transverse shear strains E,3 = E3, after the constant
term. Note that in some studies on extensible shell theory, the linear part of the transverse shear strains
was not neglected. However, our numerical experiments show that retaining the linear part of the
transverse shear strains has practically no effect on results. Moreover, such experiments show that taking
into account all the terms of E;; considerably increases the computational time for an insignificant
change in results. The above-mentioned truncation leads to the membrane, bending and transverse shear
strains, which can be expressed as in (2.7) with d defined as in (2.28). In addition, the through-the-

thickness normal strain appears
1 1
&33 =E(x_3'x'3—X_3'X_3)=E<d~d—D-D>. (229)
1

where (o) 3 = d()/0¢, and its transformation to the orthonormal basis &;, leads simply to £33 = &33.

The transformation of the rest of the strains is performed as shown in (2.9). These strains and the energy

conjugate second Piola-Kirchhoff stress resultants are collected in the following vectors
& = [£11, 852,833, 2815]", K = [Ry1, Rz, 2R15]", Y = [P0 721%

_ e e e e (2.30)
n= [nllrnZZJn33'n12]T7 m= [m11»m22:m12]T, q= [qquZ]T-
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Note that both € and 1 have one component more than the corresponding vectors of the inextensible
director shell model, see (2.11). For k and y in (2.30), expressions (2.7) and (2.9) apply, except that the
current shell director is now described in a rotation-less manner by the second expression from (2.28).

As for the material model, we will use the isotropic Saint-Venant-Kirchhoff hyperelasticity, specialized
for the extensible director shell theory. Forces 7 relate to strains £ as @ = C™&, where €™ = tC, and C

is a part of the standard 3d constitutive matrix

1—v v v 0
E v 1—-v v 0 ]
C= v v 1-v 0o |. (2.31)
A+v)(1-2v) 1—=2v
0 0 0 >

For the moments and transverse shear forces, however, the constitutive relations remain the same as for
the inextensible director model, i.e. m = C’k, and q = €Sy, with C” and C° defined as in (2.12) and
(2.13).

The virtual work equation is a functional of displacement and difference vector and their variations (the
former are compliant with boundary conditions and the latter are kinematically admissible)

S (u, w; du, sw) = f (6g™Tn + Sk"m + 8yTq) dA — 81 (Su, Sw) = 0. (2.32)
M

The vectors of strain variations, 6&, 8k and 8y, which are functionals of u, w and their variations, are
defined with respect to the basis &;. Thus, the strain variations, defined with respect to the convected

basis R, which are

1

Seap =5 (Sua - Xop + Xoq Blp), Yo =Oug-d+xoe Sw, e =dw-d, (239
233

1

Skaﬁ = E(Su,a . d'B + xo,a . (SW”B + Su,ﬁ . d’a + u,/g . SW’Q),

have to be transformed to the basis &; by using the rules given in (2.9) and applying 8§&53 = 8&353.

By inserting the constitutive relations into the virtual work equation (2.32), the weak form of the
boundary value problem for the extensible director shell theory is obtained. The corresponding potential
energy reads

1 _
MN(u,w) = f 3 (ETC™e + KT CP Kk + YT C5y) dA — Ty (u, W) (2.34)
M

where [1qy; is potential of external loading, and strains in (2.34) are functionals of u and w. The mid-
surface displacement u and the difference vector w, which correspond to the minimum of the potential
energy (2.34), are the solution of the weak form of the problem.

The equations of this section represent the fundamentals of an elastic (6-parameter), extensible director
shell model. The first difference of this model with respect to the inextensible director one is that the
former is rotation-less, which considerably simplifies its finite element implementation, especially for
the shell dynamics formulations, e.g. [102]. Another difference is that it explicitly includes the through-
the-thickness stretching. Because this stretching is taken into account by the difference vector only, the
complete version of the through-the-thickness pre-integrated 3d constitutive relations cannot be applied.
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It can be applied only for the relation between 1t and €. For the relation between m and k, however, the
pre-integration of the plane-stress relations has to be adopted, as in the inextensible director theory.

2.3 Implementation for quadrilateral
2.3.1 Inextensible-director model interpolations

Let the initial mid-surface M be discretized by n,; non-overlapping isoparametric quadrilateral finite
elements, such that M = UZSI A,. Over an element A,, the initial mid-surface and shell director are

approximated as

4 N4
XBEW = ) NoEmXoa,  D'= D Na@mDq, Dl =1, (235
a=1 a=1

where subscript h denotes the approximation of a function of functional of the continuous shell model.
Here, (-), are nodal values, and &, are isoparametric coordinates that parametrize the element mid-
surface and are interpreted as & = & and n = &2 over A,. N, (&, 1) are bilinear Lagrange interpolation
functions defined over the bi-unit square A, = [—1, 1] X [—1, 1]. Moreover, D, is the exact normal to

the shell mid-surface at node a. The deformed configuration over the element is approximated as

Nen Nen

B=Xb+ut,  WED =) NaEmua, A= ) NG, (2:36)
a=1 a=1

Note that the interpolation for the shell director vector in (2.36) demands the application of the above
described finite rotation algorithms only at the nodes of the finite element. For this reason, the rotations
and rotational parameters are needed only at the nodes. For example, for Algorithms T and TQ, one has

d, =d,;(d,), where 9, is nodal total rotation vector.

After considering the spatial discretization and the relations between the mesh and the element degrees-
of-freedom, functional (2.14) becomes an assembly of finite element contributions with mesh nodal
values as the unknowns

" = AJe nen (uh, d”) = ALY, (NG (u", d") — NEH(u, d)), (2.37)

e=1 int ext

where A denotes the finite-element-assembly operator, see, e.g., [6], [41], [42], [73], [171].
2.3.2 Extensible-director model interpolations

Over an element A,, the initial mid-surface and shell director are approximated as in (2.36) and the
displacement vector u is interpolated as in (2.36). However, the shell director and the difference vector

for this 6-parameter shell model are interpolated differently, namely as

Nen

dh =DM wh, WhET = ) Ny mwg. (2.38)
a=1

After considering the spatial discretization and the relations between the mesh and the element degrees-
of-freedom, functional (2.34) becomes an assembly of finite element contributions with mesh nodal
values as the unknowns
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mh = A2, eh(ul, wh) (2.39)
2.3.3 Transformations for element discretization

In the following, we will extensively use the transformation from the curvilinear bases R,, @ = &, and
R%, a = &, 1 to the local Cartesian bases, with all the bases defined at the mid-surface of the element.
Let G and C sub/super-scripts denote a Gauss point (2 X 2 Gaussian quadrature is applied) and element

center-point, with the local Cartesian bases &g ; and & ;, respectively, given as

h,G h,G h,C h,C

s _ R xRy s _ R xRy
83 = Tl 83 =T el (2.40)

RS x R°| RYC X R)

and &, 1 &3, and e, = &5 X €,, see Figure 2.3. At the element center-point the transformation of the
covariant or contravariant components of the strains or stress resultants to the corresponding Cartesian
components is done using components of the following matrix

he 4
€ =[60p)  VEap = RE-2cp (2.40)
Replacing C by G in (2.40), one gets J& for the transformation of covariant or contravariant components

to the Cartesian components at the Gauss point. Furthermore, matrices J¢ and J§ are defined as
6 — [y ¢ _ phG 5
]C - []Caﬁ] ) ]Caﬁ - Ra : eC,B;

c c c he (2.41)
J¢ = [Iaaﬂ], J6op = Ra™ €G-

mid-surface

z
A\ Y
\

_ X

—
Figure 2.3: Shell quadrilateral finite element: coordinate systems and ANS points.
Slika 2.3: Stirivozli§¢ni lupinasti konéni element: koordinatni sistemi in ANS tocke.

2.4 Mixed shell finite elements

In this section, we present shell formulations for four-node quadrilateral element that allow for
independent interpolations of strains and/or stress resultants. Most of them rely on the Hu-Washizu
variational principle, whereas some of them rely on the Hellinger-Reissner variational principle. The

majority of the formulations are revisited, and some are novel. We will use the symbol "~ to denote the
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strains and stress resultants with respect to the covariant or contravariant bases. When these strains are

transformed to the local Cartesian coordinate, they get the symbol " or simply .
2.4.1 Assumed natural strain (ANS) concept

The Assumed Natural Strain (ANS) concept is based on the application of the interpolations for the
strains. Namely, at the collocation points of the element, the strains are evaluated by using the
expressions from the theory, and these strains are further interpolated across the element by suitable
functions. It was shown in [137] that the ANS concept falls under the class of the variational methods
based on the Hu-Washizu principle. It was also shown in [137] that the variationally consistent internal
forces are those that are orthogonal to the ANS strains. In practice, however, this is frequently not taken
into account and in many ANS formulations the internal forces are computed from the constitutive
relations, thus using variationally non-consistent internal forces.

In the shell finite element formulations, the ANS concept is widely used to avoid undesirable locking
effects such as the transverse shear locking, the membrane locking and the through-the-thickness locking
(the latter appears only in the extensible-director formulations).

2.4.1.1 ANS concept for transverse shear strains

In has been agreed that for the quadrilateral shell element, the most effective ANS interpolations for the
transverse shear strains are those presented in [48], which assume that the covariant transverse shear
strains are

7 [ =y + @ +n)yf
):1] _1i( n)y}) A +my | (2.42)
2l 211 -9y + 1+ Dy,
where A, B, C and D are mid-side points, see Figure 2.3, at which the finite element approximation of

the theoretical expression for transverse shear strains (2.7) are evaluated as

v =rh.d"-RL.D"  P=AB,CD. (2.43)
The transformation from covariant strain (2.42) to the Cartesian coordinate system is given by
=~ = 1T 1. -
[V1:V2] = ]g [V1;V2]T- (2.44)

The inextensible-director isoparametric quadrilateral with interpolations (2.44) is frequently called
MITC4, see e.g. [87], [88]. The application of ANS changes the functional I1®" in (2.37) only slightly,
because the orthogonality of the transverse shear stress resultant and the ANS transverse shear strains is

ANS _

assumed in the original Hu-Washizu functional. By using notation y []71,]72]T, the resulting

functional can be written as
ext

1
My, (u, d") = L 5 (& €™l i €Ot 4 AV CoYANS) dA — Mg (ul d)  (2:45)

integrated by 2 X 2 Gaussian quadrature. The same principle can also be applied to functional (2.39) for
extensible director element formulation.
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2.4.1.2 ANS concept for membrane strains

First in [87] and later in [89], Ko et al. presented a new shell quadrilateral denoted as MITC4+. The
formulation alleviates the transverse shear locking by using an assumed strain field described in section
2.4.1.1, while the membrane locking is alleviated using an assumed membrane strain field, which was
derived by adopting the ideas of [36] and [98]. The nonlinear version of the element is presented in [90].
The MITC4+ assumed covariant membrane strains are given as

&1 = (=1 +n*)(agep; + apedy + agefy) +

1 1 (2.46)
> (1—2ap — 1+ 2a,n?)ed + 5(1 —2ac +n+ 2acn?ely,
& =01+ fz)(aAgﬁAz +aces, + angz) +

1 g 1 D (2.47)
E(l —2ag + & + 2agé°)es, + 5(1 —2ap — &+ 2apé)ey,,

1 1

€12 =7 (=€ + 4axénedy + Z(f + 4dacéned +

(2.48)

%(TI + 4agén)e, + % (=0 + 4apénez, + (1 + agén)ery,
where points A, B, C, D and E are shown in Figure 2.3, and the strains at these points are evaluated
using expression from Eq. (2.7) as eg5 = 1/2(rk - rj — R% - R}), P = A,B,C, D, E. Note that & is
quadratic in 7, &, is quadratic in &, and €, is a bilinear function. For the theoretical background of

interpolations (2.46)-(2.48) and the related low-sensitivity to mesh distortion, we refer to [89], [36] and
[98]. The weighting factors that appear in the above expressions are

an = c5(c5 +1) _ Cn(cn ~1) _ CE(CE —1) an = Cn(cn +1) e = 2¢sCy (2.49)
A 2d B 2d ¢ 2d P 2d  ET d '
where c¢, ¢; and d measure element distortion
ce =md - xg, ey =m" - xg, d= c? +c2 -1 (2.50)

They are defined as (note that notations mé = m', m" = m?, X = x1 and x,, = x, are applied, and
that §g is Kronecker’s delta):

2
x __6 Xo m® - xp =65 C.n=0
d _ar]afl ﬁ - ﬁ; m n-= 1]
L L @50
=’ 27 Tle=o? Il X 2,1

The weighting factors in (2.49) are configuration dependent and are updated at every solution increment.
For solution increment n + 1, the converged configuration at solution increment n is used to compute
vectors in (2.51) and factors in (2.49). An illustration of distortion vectors in (2.50) is given in Figure
2.4.

The covariant membrane strains (2.46)-(2.48) are transformed to the Cartesian strains at the Gauss point

as

-1

2 2 2 1T o o -
[511'522»2512] =T¢ "[&11, 822 281517, (2.52)

where the transformation matrix is



24 Lavrenci¢, M. 2020. Numerical Procedures for Nonlinear Static and Dynamic Analyses of Shell Systems of Various Sizes.
PhD Th. Ljubljana, UL FGG, Third cycle doctoral study Built Environment.

2 2
[ (]gll) (]glz) ]g11]g12 ]
G _ 2 2
Té = | (1521) (]gzz) 15211322 ’ (253)
1216, )6, 216,08, 16,06, +18.06,]
and the resulting strains can be collected in a vector £4VS = [511, 55, 2§1Z]T. The contribution of the

elements to the potential energy functional reads as

ext

1
M, (Ut dh) = L 3 (£ANS . C™gANS 4 gl - CO KM + yANS - CSyANS) dA — ISR (uh, dM). (2.54)

cg = 0.333,cp = 0,d = —0.889

Figure 2.4: Distortion vectors for two in-plane distortions (top) and out-of-plane distortion (bottom).

Slika 2.4: Vektorji popacenja za dve ravninski popacenji (zgoraj) in izvenravninsko popacenje (spodaj).
2.4.1.3 ANS concept for transverse normal strain

For the extensible shell director model, assumed strain approach to avoid artificial thickness straining
was proposed by Betsch and Stein in [15]. The assumed transverse normal strains are given by
interpolating the transverse normal strains at element nodes as

Nen

2ANS _ z 1
€337 = &33 = Z Ny(&,1m) €334, €33q = 2 d,-d,—D,-D, |. (2.55)
a=1 1

By changing the membrane and through-the-thickness strains from (2.30) as &4VS =
[§11,€22,§§4?fvs, Zélz]T and by taking into account the ANS concept for the transverse shear strains
(which is applied by the same lines as presented in Section 2.4.1.1), the contribution of the element to
the potential energy functional for the rotation-less shell formulation reads as (see (2.34))
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ext

1 _
Mg" ans (uh wh) = 3 (84NS - TmEANS 4 gl - COh + yANS - €SyANS) dA — TG (uh, wh). (2.56)

e

2.4.2 Enhanced assumed strain (EAS) concept

The variational equations of the enhanced assumed strain (EAS) method can be derived from the Hu-
Washizu functional combined with a reparameterization of the strain field such that

€4S = el + €, (2.57)
where €” is the Green-Lagrange strain tensor compatible to the displacement field and € is the enhancing
part of the strain field, which does not have to be continuous over the element domain. This is in contrast
to the work of [143], where the displacement gradient was enhanced. Membrane, bending, shear and
through-the-thickness strain can be enhanced by the EAS method, but it was shown (see e.g. [17], [22]
for bending enhancement and [15], [34], [127] for transverse shear enhancement) that due to the
additional numerical cost, the small improvement of the results is not always justified. In this work we
focus only on the enhancement of the membrane part of the strains.

The contribution of the elements to the potential energy functional reads as
NEf (e, %, o749, 2) =

1 2.58
fA EGEAS . (C €E45) 4 gF4S . (Eh _ GEAS) dA — l'lﬁ;ﬁ(uh, dh)' ( )

€ €

where € = DIAG[C™, C?,CS]. The key assumption in the EAS formulation is the orthogonality

S

condition between the stress field and the enhanced strain field [ A o%45 . €dA = 0, which simplifies

functional (2.58) to a simpler two-field functional

. 1
nges(ut, dh, €) = fA <E €E4S . (C eEAS)> dA — ISk (uh, dh), (2.59)

ext

where no independent stress resultants are present.
2.4.2.1 Membrane EAS formulations for shells

The enhancing membrane strains are interpolated with respect to the element-center contravariant base

¢E=rla, E = [&)4,85,,28,]7, (2.60)
where I' is the interpolation tensor and @& the vector of the strain parameters of the element. The
dimension of the interpolation tensor I' depend on the chosen number of independent parameters &. The
interpolation functions are chosen in such a way that the compatible strains are enriched or decoupled,
see e.g. [12], [22], [2]. Namely, components £ and &%, need to be enriched, while component 2, is
decomposed. This is done by looking at the polynomial space of the compatible membrane strains of
the bilinear element, which is of the form

10 0n 000D 0 O
SQBESpano 10 0 &£ 00 0 & o0f. (2.61)
001 0O0¢&Emn 0 0 &

With the displacement-based strains £" expressed in the Gauss point Cartesian coordinate system, we

need to transform & from (2.60) to the same coordinates to get €. In order to get element that passes the
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patch test, it is assumed that & are defined with respect to the contravariant base at element’s center. To
this end, the following transformation is applied (see e.g. [143])

énl . o [%n
E=|4, =’,—CTg 15:’,—%& ! 522], (2.62)
28, J6 281,

where j = ||R? X R%‘ || The transformation matrix T¢ is defined in (2.53), but it is here assembled using

components of J&.

Using 4, 5 or 7 independent parameters @, the membrane strains £ are computed using expressions (2.60)
and (2.62). Interpolation functions, discontinuous over element boundaries, are defined as

E 0 0 O &E 0 0 0 O &E 0 0 0 &n 0 O
OnOO], r=|0 n 00 0], r=|0 n o0 0 0 ¢&n 0],(2.63)
00 ¢ 00 ¢ n ¢n 00<¢ n 0 0 ¢n

for 4-, 5- and 7-parameter formulation, respectively, see e.g. [12], [22], [2].

r =

For the shell formulation with ANS for the transverse shear strains and EAS for the membrane strains,
the element functional reads simply as

HE'KS (uh' d", §) =

f %(SEAS - CMeEAS L pch L e 4 yANS . CSyANS) dA — He'h(uh, dh) (2.64)
A

ext
e

Additional parameters & are condensed on the element level, thus yielding an element that has only
nodal displacements and rotations as global degrees of freedom.

2.4.3 Hybrid Hellinger-Reissner (HR) formulations

The two-field Hellinger-Reissner functional was used in the development of some of the first mixed
element formulations with very good properties, see e.g. [126], [141], [142]. It introduces the
displacement and rotation field u”", d" and the independent stress resultant field ¢#® as independent

variables. The contribution of the element to the Hellinger-Reissner functional is

1
Min(uh, dt, ot'R) = fA (eh (oif ——gllf c-laHR) dA — ISk (uh, dh), (2.65)

ext

where the independent stress resultants and displacement-derived strains are defined as
HR — [NHRT MHRT QHRT|T € = [eh T, kT, yhT]T (2.66)

respectively. Note that a/'R in (2.66) is comprised of a membrane, bending and shear parts. If the above

o

definition is used, the potential energy functional of the element takes a full Hellinger-Reissner form.
On the other hand, the HR functional can also be applied only for the membrane, bending or shear parts
of the shell response, see e.g. [142], [167], because these parts are not coupled for isotropic shells.

Considering discontinuous interpolations for the membrane part only, the potential energy functional of
the element is composed of the Hellinger-Reissner functional for the membrane stresses and the
quadratic strain energy function of the displacement-based strains, for the bending and shear parts
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gL, %, 0%%) =

1 1 1 :
j <eh NHR — = NHR. CTINHR 4 S (C) + Sy (Csyh)> dA — gL (ul, dm). (2.67)
A

ext
e

A similar functional can be straightforwardly composed for a combination of independent membrane

and bending or membrane and shear stress resultants.

A linear version of the formulation briefly presented here was first introduced in [59] and has its roots
in the pioneering work of [126]. Other interpolations that use different number of independent stress
parameters or different coordinate representations are also common in the literature. See e.g. [165] for
a short history of the developed formulations and comparison between different coordinate
representations, [180] for formulations with 9 or 7 parameters, and [9] for different interpolation of
transverse shear stresses.

2.4.3.1 HR formulations for shells

The performance of a mixed-hybrid HR shell element depends on the interpolations chosen for the stress
resultants. For plane stress quadrilaterals, “optimal” stress interpolation was derived in [126] (see, e.g.,
[179] for the discussion on optimality). Because the membrane and bending relations of the applied shell
model enforce the zero through-the-thickness normal stress constraint, these interpolations retain the
same level of optimality if applied to membrane forces and bending moments of shell quadrilateral, as
is the case in [59], while the interpolations for the contravariant components of the transverse shear

31 :z :z

it? Be (2.68)

forces may be chosen in the linear manner (see [59])
m
~13] [57 + - 77)513]

[ ] Bi+ (=B [y’flll] Bs+ (1 — P11
Bs + (f - 5)514 .

B, + (f 8510 ) m Bs + (f 85).312 )
Here, f3-s are stress resultant parameters of the element, and ¢ and 77 are constants that denote the
coordinates of the center of gravity of the element and are defined as, see [141]
|
f=—ffdz‘1, _=—f77dA (2.69)
Ae Jy,

The setting of £ = 77 = 0 corresponds to the original interpolations proposed in [126]. See supplement
material of [159] or Appendix A for details on numerical implementation.

The contravariant components of stress resultants (2.68) and (2.69) need to be transformed to the
Cartesian components that enter ¢/’/F in (2.65). For the element to pass the patch-test, each stress
resultant should have a constant part. This is achieved if the transformation for the whole element is
performed at one point of the element. For this purpose, the center-point is chosen, which leads to

o'k = [1444,M,]B, M, = DIAG[NT,NB,N§]|, (2.70)

where 1gy4g is unit matrix, f = [Bl, v, Bs, By, EM]T (note that the first 8 components of g differ

from f3;, -+, Bg in (2.68) due to the transformation), and



28 Lavrenci¢, M. 2020. Numerical Procedures for Nonlinear Static and Dynamic Analyses of Shell Systems of Various Sizes.
PhD Th. Ljubljana, UL FGG, Third cycle doctoral study Built Environment.

[(1511)2(77_77) (1521)2(5_5)] ]c (n—17) ]C (5_5‘)
NP =N =[G )-8, 6 -D | M= |t TS T @
l]gnlglz(n ~1) 16,5, (E -0 e o
Matrices N, N2 and NS contain the interpolation as well as the transformation from the covariant
coordinate system to the local Cartesian coordinate system at the element center, which is done using

components of J&. The detailed derivation of transformation is available in Appendix B .

To retain the same pattern of transformation, and to keep the components of all vectors in (2.65) in the
same basis, the displacement-derived strains are also transformed via center-point as

_ T _ -1
e" =Ny, x=|[el, el 26l 1y, Kby, 260y, 260, 2], N = DIAG[TE, TS, JE] . (2.72)

Note that here the last two components in y can be replaced by ANS interpolations #; and 7, from
(2.42) and the membrane components in y can be replaced by the ANS interpolations from (2.46) —
(2.48) such that
et = NS x+, xt = [511' &2, 2812, Kfp ng' ZK{IZ: 2£13, 2513]T:
N = DIAG[TE, T¢,JE] ",

in order to treat better the transverse shear locking and membrane locking, respectively. However, care

(2.73)

must be taken when performing transformation of these quantities, as expressions (2.44) and (2.52) are
no longer valid. Instead, we adopt here a transformation that relies on the components of J&, which are
provided in (2.41), and matrix T¢, which is obtained by using the components from (2.41) in place of
those in (2.53).

As was mentioned before, a partial or incomplete HR functional can be considered for the element
formulation. The direct advantage of this approach is a lower number of independent interpolation
parameters, which results in a shorter element code. Thus, the dimensions of N, and B in (2.70) are
changed. As is clear from (2.68), 5 parameters are used for the membrane, 5 for the bending and 4 for
the shear stress resultant. For an element with the membrane and bending part of the HR functional,
(2.70) changes to

ofR = [pHRT mHRTIT = [1,,,,M,]B, M, = DIAG|N®,N?], (2.74)

where 8 = [[31, -, Be) s+ B_lz]T. Other partial HR formulations can be obtained by following the

same procedure.

In all cases, the dditional parameters B are condensed on the element level, thus yielding an element
that has only nodal displacements and rotations as global degrees of freedom.

2.44 Hybrid Hu-Washizu (HW) formulations

A number of different mixed variational formulations can be derived from the classical Hu-Washizu
functional [161], which involves as independent variables the displacement and rotation field u”, d",
the independent stress resultant field 6/ and the independent strain field €//". The contribution of the
element to the Hu-Washizu functional is
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ext

(u dh HW HW) f < HW . ceHW 4 gHW . (6 HW))dA HEh(uh’dh). (2_75)

Hereinafter we only consider formulations based on the full Hu-Washizu functional, where the strains,

stress resultants, and displacement-derived strains in (2.75) are
HW — [gHW.T jHWT o HWT]T " = [n

€l = [eMT,Kch T,y T

respectively. Note, however, that the Hu-Washizu functional can be also considered only for the

HW.,T HW,T HW,T]T
)

eV =g ,m7,q

(2.76)

membrane, bending or the transverse shear parts of the shell response.

Introducing a and B as element strain and stress parameters vectors, respectively, the variation of l'[fl‘\’,lv
is SHﬁ'cv = %Hﬁ“}}v(di + wév, a + wda + B + w83)|w=0, where w is a scalar parameter, @ is the
vector of all nodal degrees of freedom, and 8@, da and 6 are admissible variations. The stationary
point SHIe_I'cv = 0 yields three equations that need to be linearized in order to be solved iteratively. The
condensation of iterative vectors Aa and A is performed from linearized equations. Inversion due to
condensation is possible for the sequence {Aa, AB} and it fails (due to singularity) if the vectors are

interchanged. A similar procedure (only for vector Af) is performed for the HR elements from Section
2.4.3. For implementation details we refer to [45], [59], [60], [142] and [159].

2.4.4.1 HW formulations for shells

The independent stress resultants are interpolated with respect to the element-center Cartesian

coordinate system, using the same vector of independent parameters § as shown in (2.68) — (2.71).

Two different interpolations are investigated for the contravariant components of shell strains with a@-s
as strain parameters of the element. The first interpolation is identical to the one presented in (2.68), as
proposed in [159], with 14 independent &-s. For the second interpolation, 20 independent &-s are used,

as proposed in [60], where the 6 additional &-s correspond to the EAS parameters.

In order to keep the components of vectors in scalar products in (2.75) in the same basis, the
transformation of contravariant strains to the Cartesian strains is again performed at the center-point of
element as
eV = [1g45 M;]aq, (2.77)
where either
a = [ay, -, ag @, -, &4]", M, = DIAG[N®, NP, N§], (2.78)
or
@ =[ay, ., @rq Oy, ) Aso] M, = | DIAG[NT, N2, Ng], DIAG[NT""4%, NP*AS, NEEAS] |, (2.79)
are used for the element with 14 or 20 components of a, respectively. Here N = N3, N =
DIAG[1,1,2]ND and N2 = DIAG[1,1,2]N2. The additional EAS interpolations are chosen in such a way
that they are orthogonal to the independent stress interpolations

$ 0 P
0 n], NiEAS:}.—CElF 0], (2.80)

Nm,EAS
0
0 0 JG n

_ ~bEAS _ JC o1
€ Ns =—T

JG
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with jc, T and J¢ defined in the previous sections. Note that only one of the possibilities for the
additional EAS interpolations is presented here. For more detail, we refer to [60], where this kind of
transformation was initially proposed, and to Section 2.4.2 of this manuscript.

Note that the same transformation as in (2.72) must be applied to the displacement-derived strains, to
retain the same pattern of transformation and to keep the components of all vectors in the same basis.
The membrane and shear components in y can again be replaced by the ANS interpolations as in (2.73)
to better treat the transverse shear locking and membrane locking. In [104] it was demonstrated that it
leads to near optimal quadrilateral.

The stress resultant interpolations (2.68) can be considered as optimal ones, while the strain
interpolations are just one of the possibilities. Other suitable interpolations may be applied (e.g., with
more parameters or/and with covariant strain components), which, however, produce only minor
changes in results according to [166] and [168]. The changes in the interpolation of the displacement-
derived strains y in (2.73) have a much greater impact.

2.5 Numerical examples

In this section, we compare the performance of mixed rotation and rotation-less finite elements, listed
in Tables 2.1 — 2.6. In these tables, the (variational) concepts for the membrane, bending, transverse
shear and thickness-stretching parts are summarized for each element. Note that all the formulations use
the ANS concept for the transverse shear. The finite rotation algorithms are summarized in Table 2.7.

Table 2.1: Controllers for adaptive load increments.
Preglednica 2.1: Kontrolerji za prilagajanje obteznih inkrementov.

Example A/1min A/1max AAinitl’al
2.5.1 1075 107t 51072
2.54.1 1078 51072 1072
2542 1078 51072 1072
2543 107* 1071 1071
2544 1078 107t 1072
2545 1078 51073 1073
2.54.6 1078 1072 1072
2.54.7 1078 21072 51072
2.54.8 1078 2107t 51072
2.5.4.9 10712 107* 107*

The nonlinear examples presented below were computed by the load control by either constant or
adaptive load increments. For the latter case, the incremental load multiplication factor at n-th increment
was computed as AA, = B(l,, I,_1)AA,_1, Ad, € [Adpin, Amay] (the total value of the load
multiplication factor was A, = 4,,_1 + A1,,0 < 4, < 1). The adjustable factor B depended on I,
which is the desired number of incremental iterations (set to 8 in all examples), and I,,_;, which is the

number of iterations in the last converged increment
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2
( L1 —1
2 - T _—1 ) L1 <1,
= 0 , (2.81)
11 -1
ll—z N_I )’ L1121,
o

The maximum allowed number of iterations N was set to 15. The values of controllers for examples

with adaptive load increments are given in Table 2.1. In all examples, the convergence was achieved

when the norm of the iterative displacement vector was less than 1078,

Table 2.2: Considered ANS elements.
Preglednica 2.2: Obravnavani ANS elementi.

FE Membrane Bending Shear Reference
MITC4 Disp. Disp. ANS [48]
MITC4+ ANS Disp. ANS [89], [90]

Table 2.3: Considered EAS elements (the number of parameters is in brackets).
Preglednica 2.3: Obravnavani EAS elementi (Stevilo parametrov je v oklepajih).

FE Membrane Bending Shear Reference
EAS4 EAS (4) Disp. ANS [2], [22]
EASS5 EAS (5) Disp. ANS [12], [22]
EAS7 EAS (7) Disp. ANS [2], [22]

Table 2.4: Considered HR elements (the number of parameters is in brackets).
Preglednica 2.4: Obravnavani HR elementi (Stevilo parametrov je v oklepajih).

FE Membrane Bending Shear Reference
HR-M HR (5) Disp. ANS [126], [142]
HR-MB HR (5) HR (5) ANS [126], [142]
HR-MS HR (5) Disp. ANS & HR (4) [59]
HR HR (5) HR (5) ANS & HR (4) [59]
+HR-MS  ANS+ & HR (5) Disp. ANS & HR (4) [107]
+HR ANS+ & HR (5) HR (5) ANS & HR (4) [107]

Table 2.5: Considered HW elements (the number of parameters is in brackets).
Preglednica 2.5: Obravnavani HW elementi (Stevilo parametrov je v oklepajih).

FE Membrane Bending Shear Reference
HW HW (10) HW (10) ANS & HW (8) [159]
HWEAS EAS (2) & HW (10) EAS (2) & HW (10) ANS & EAS (2) & HW (8) [60]
+HW ANS+ & HW (10) HW (10) ANS & HW (8) [104]

Table 2.6: Considered rotation-less elements.
Preglednica 2.6: Obravnavani elementi brez rotacij.

FE Membrane  Bending Shear Thickness stretch Reference
D-ANS Disp. Disp. ANS ANS [15]
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Table 2.7: Finite rotation algorithms.
Preglednica 2.7: Algoritmi za rotacije v konénih elementih.

Rotation algorithm Description

T Additive update
TQ Additive update using quaternions
I Multiplicative-additive update
1Q Multiplicative-additive update using quaternions
M Multiplicative update
MQ Multiplicative update using quaternions

2.5.1 Comparison of finite rotation algorithms

Four examples were chosen to evaluate the finite rotation algorithms from Table 2.7, implemented in
the MITC4 formulation, see Table 2.2. The geometric and material data of the considered beams in
Figure 2.5 are L = 10,w = 1,t = 0.1,E = 12 102 and v = 0. Three examples were performed by
imposing different load cases on the initially straight cantilever beam. One load case produced planar
rotations and the other two spatial rotations. The fourth example was performed on the cantilever beam
of circular shape that underwent large spatial rotations. The mesh of 25 X 1 elements and adaptive

control of load increments, see Table 2.1, were used for all four examples.
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Figure 2.5: Large rotation tests. (a) Roll-up of a cantilever beam. (b) Cantilever beam under three forces. (c)
Cantilever beam under moment and lateral force. (d) Circular beam under lateral force. (¢) & (f) Load steps for
tests (b) and (c), respectively.

Slika 2.5: Testi velikih rotacij. (a) Zavijanje konzole. (b) Konzola, obremenjena s tremi silami. (¢c) Konzola,
obremenjena z momentom in precno silo. (d) Krozni nosilec, obremenjen s precno silo. (e) & (f) Obtezni rezim

za testa (b) in (c), v tem vrstnem redu.
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In the first example, moment My, = 4wEI/L = 1256.6 was applied at its free end, see Figure 2.5 (a).
Large rotations of all the nodes were planar, see Table 2.8. The analytical solution predicts rolling of a
beam into a complete circle for the end moment 2rwEI /L. Thus, the analytical free end rotation for the
applied M,, is 720°, which is 95 % of the computed solution. Using a finer mesh of e.g. 100 elements

resulted in the final rotation of 723°, which is 100. 5% of the analytical solution. Figure 2.6 (a) shows
the applied moment versus vertical displacement u, at node A. The results are identical for the finite
rotation algorithms from Table 2.7 and for the rotation-less formulation from Table 2.6, which is in
Figure 2.6 denoted as D. For the latter, the moment was applied as proposed in [15]; at the free end, a
linear through-the-thickness normal-pressure distribution was applied in deformed configuration, and
such a load was used in the external virtual work.

In the second example, the free end was loaded by uniformly distributed forces F, = F, = 300, F, =
1200 in four load steps, s = 1, - 4, as seen in Figure 2.5 (e). With these load steps, we assured that the
rotations were large and spatial, see Table 2.8. Namely, the examples with spatial rotations are more
demanding for the finite rotation algorithms than the examples with planar rotations. Figure 2.5 (b)
shows the final deformed configuration. Figure 2.6 (b) shows how the displacements at node A were
changing during the load steps. The displacement response of all finite rotation algorithms from Table
2.7 and the rotation-less formulation (D) from Table 2.6 was identical.

In the third example, two load steps were used, see Figure 2.5 (f). First, moment M,, = 2nEl/L =
628.3 was incrementally applied at the free end. In the second load step, the moment was kept constant,
and F,, = 300 was incrementally applied, which moved the rotations out of one plane, see Figure 2.5 (c)
and Table 2.8. Regarding the moment loading, the following needs to be explained. The derived
formulations allow to apply two external moments around two orthogonal axes. For T-algorithm, the
applied incremental moment always rotates around x and y. This is not the case for the I- and M-
algorithms, where the reference frame for rotations (and moments) is updated at each load increment
and iteration, respectively. Thus, the applied incremental moments rotate around two axes of updated
frame, which no longer coincide with x and y. The T-, I- and M-algorithms will give identical results
only for incremental moments, which produce planar rotations (the case of the first load step). When the
rotations are not planar (the case of the second load step), the results will not be the same. This is
demonstrated in Figure 2.6 (c), where displacements at node A are given for the two load steps. In the
first load step, the results are identical for all the algorithms, which is not the case in the second load
step. While the difference between the T- and I-, M-algorithms is clearly visible, the difference between
I- and M-algorithms is smaller, but still present.

In the fourth example, the initial configuration of the cantilever beam was a circle with radius R = 2m /L,
see Figure 2.5 (d). Its free end was incrementally loaded by F, = 300. Table 2.8 shows the final

rotations, and Figure 2.6 (d) shows the displacements at node A.

The following can be concluded from the above examples:

i.  All finite rotation algorithms produce identical displacement response, see Figure 2.6, while the
rotations differ for all algorithms. An exception is the third example with the load case, which
includes moment and produces spatial rotations. For such a load case the T-, I- and M-algorithms
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ii.
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naturally give different results, because the I- and M-algorithms make moment load to be
configuration dependent. This cannot be removed for the I- and M-algorithms, designed for
formulations with two rotational degrees of freedom. For this reason, we recommend caution when
using them for problems with moments.

The difference in the final rotation is big when comparing the T-algorithm with the other two, see
Table 2.8. If, however, we compare the I- and M-algorithms, the difference is very small. In both
cases, the reference frame is updated during the computation, so the results are relatively close.
Even though the T-algorithm has singularity when the rotation norm at any node of the mesh is
km, k=1,2,---, see e.g. [25], it was able to step over the singular points, see Figure 2.5.
Nevertheless, we do not recommend the use of the T-algorithms for problems where the nodal
rotations norm is expected to exceed 7.

In the third example, the I- and M-algorithms could not reach the final solution. They stopped at
approximately A = 0.6 and 4 = 0.1, respectively, for s =2. The algorithms with quaternions (IQ
and MQ) did not have such problems. The reason is that by using the quaternion-based update
procedure, the loss of orthogonality of the incremental rotation matrix (in a numerical sense) can
be avoided, which makes the algorithms more robust.

The rotation-less formulation (D) produces results that are almost identical to the finite rotation
ones, see Figure 2.6. This indicates that the presented rotation-less formulation can handle well
finite rotation problems.

Concerning the computational speed of rotation algorithms, we can conclude that the 1Q-algorithm
is generally the fastest, with the T-algorithm close in second place, see

Table 2.9. When the quaternion (Q) update is used, the T-algorithm becomes slower (see TQ),
while the I- and M-algorithms become faster (see IQ and MQ). The latter is due to the fact that
using the rotation matrix update, 9 values (3 X 3 rotation matrix) need to be stored, while using
the quaternion update algorithm, the storage of 4 nodal values is required. Both the T- and TQ-
algorithms do not require storage of any nodal values, but due to additional operations required by
TQ, this algorithm is slower.

For the nonlinear examples in Section 2.5.4 below, the 1Q and T algorithms were used.

Table 2.8: Final rotations at node A for examples from Figure 2.6.

Preglednica 2.8: Kon¢ne rotacije vozli§¢a A za primere s slike 2.6.

(a) (b) (©) (d
Rot.\Ex.
All formulations T I M T I M T | M
by [°] 0 -39.3 -321 -3.18 142  -83.7 -83.1 -93.9 -89.32 -89.35

oy [°] 756.8 158 163.71 163.73 2745 24434 24431 565 6495 65.0
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Figure 2.6: Load versus displacements for large rotation tests. (a) — (d) correspond to respective tests from Figure
2.5.

Slika 2.6: Obtezba v odvisnosti od pomika za teste velikih rotacij. (a)—(d) se nana$ajo na pripadajoce teste s slike
2.5.

Table 2.9: Normalized CPU time for examples from Figure 2.6 for different finite rotation algorithms.
Preglednica 2.9: Normiran CPU ¢as za primere s slike 2.6 za razli¢ne rotacijske algoritme.

Alg.\Ex. (a) (b) (© (d)

D 1.43 1.26 / 0.96

I 1.15 1.21 / 0.86
1Q 0.83 0.80 0.72 0.96
T 1 1 1 1
TQ 0.94 1.11 1.40 1.04
M 1.19 1.12 / 0.96
MQ 0.79 1.68 1.37 0.96

2.5.2 Basic tests

2.5.2.1 Patch test
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Displacements for membrane test:

wex,y) = 1073 (x + 1/2y),

uy(x,y) = 1073(1/2x + y),
uz(x,y)=0.

Displacements and rotations for bending test:
uz(x,y) = 510" 4(x2 + xy + y?),
Ox(x,y)= 510~ %(x + 2y),

Py(x,y)= 510" *2x + y)

Load case | 1 2
Node E; E, M, M,
1 -20 -2 20 —10
2 0 0 20 10
a=40, b=20, t=0.1, E=10°,v=0.3 3 0 0 _20 10
4 —-20/ 0 -20  —10

Figure 2.7: Patch test data.
Slika 2.7: Podatki za patch test.

All the formulations from Tables 2.2 — 2.6 pass two sets of membrane and bending patch tests, see e.g.
[113]. The data for the first one are taken from [164]. Two arrangements of displacements and rotations
are imposed at nodes 1 — 4 in accordance with formulae from Figure 2.7. The exact solutions are
constant membrane strains &y, = &y, = 2&y, = 1073 and constant curvatures K, = Kyy = Kyy =

—1073. Linear versions of all the formulations computed these exact values.

The data for the second set are taken from [159]. Two loading cases are imposed in accordance with the
table in Figure 2.7. All formulations computed correct values of membrane forces n,, = 2,n,, =

Nyy = 0 for load case 1 and moments my, = my,, = my,, = 1 for load case 2.

2.5.2.2 Conditioning number

We checked the conditioning number of the initial (i.e. linear) stiffness matrix for the derived
formulations. To this end, we computed eigenvalues of stiffness matrix of a square element and distorted
(curved) element, see Figure 2.8, witha = 2,t = 0.02, E = 108,v = 0.3. Moreover, the same was done
for a simply supported plate with t/a = 1073, discretized with 100 elements, after [52].

Figure 2.8: Elements for eigenvalue analysis.
Slika 2.8: Elementa za analizo lastnih vrednosti.



Lavrencic, M. 2020. Numerical Procedures for Nonlinear Static and Dynamic Analyses of Shell Systems of Various Sizes. 37
PhD Th. Ljubljana, UL FGG, Third cycle doctoral study Built Environment.

All the formulations have six zero eigenvalues that correspond to rigid body modes. The curves in Figure
2.9 (a) and (b) exhibit a jump at a certain deformation mode number. Lower eigenvalues (before the

jump) are related to the bending-dominated modes, while higher eigenvalues (after the jump) are related
to the stiffer membrane- and shear-dominated modes.

b
(@) g7 — , , , ()107
MITC4, MITC4+ / /
//;‘ D-ANS o
< 10° 1 < 10°
) [ 2 D-ANS, MITC4, EAS4 )
© N [
Z [ MITC4, MITC4+, EAS4, EASS, ch
,8) EAS7, HR-M, HR-MS, +HR-MSJ o HR-MB, HR, HW,
5] o 103 HWEAS, +HR, +HW
HR-MB, HR, HW
HWEAS, +HR, +ﬁ|wJ MITC4+, EAS5, EAS7,
HR-M, HR-MS, +HR-MS
- - 101 = ‘ : :
16 20 24 8 12 16 20 24
deformation mode number deformation mode number

Figure 2.9: Eigenvalues of square (a) and distorted (b) element.
Slika 2.9: Lastne vrednosti kvadratnega (a) in popacenega (b) elementa.

The additional curve shows a rotation formulation without any ANS treatment, which differs
considerably from other curves. One can conclude that the difference is due to shear locking remedies.
The membrane locking remedies show a large influence on the distorted element values, see Figure 2.9
(b). The D-ANS, MITC4 and EAS4 elements show pollution of bending-dominated modes 7-11 by
excessive membrane deformations. After the jump (deformation mode 12), the EAS4 element has
identical modes as the EASS, EAS7, HR-M and HR-MB elements, which are similar to those of the rest
of elements. MITC4 and MITC4+ have the same membrane-dominated modes 13-15, but they differ
from the rest of formulations.

Table 2.10 shows that the condition number of the stiffness matrix C = A4 /Amin (here, 1 is a non-
zero eigenvalue) is of the same order for the considered formulations for all three tests. The rotation-
less formulation does have larger C than the finite rotation ones, but not significantly. The maximal

increasing factors (compared to the MITC4 formulation) are 1.75 and 1.24 for single-element and plate
tests, respectively.
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Table 2.10: Stiffness matrix condition number.
Preglednica 2.10: Koeficient pogojenosti togostnih matrik.

Square element Distorted element Simply supported
FE plate
c c
c 10* c10* c10°

CMiTCA CMITCA4 CMiTCA

D-ANS 15.17 1.75 22.28 1.87 7.14 1.240
MITC4 8.67 1.00 11.93 1.00 5.75 1.000
MITC4+ 8.67 1.00 17.65 1.45 5.75 1.000
EAS4 8.67 1.00 12.21 1.02 5.73 0.996
EAS5 8.67 1.00 16.22 1.36 5.73 0.996
EAS7 8.67 1.00 17.41 1.46 5.73 0.996
HR-M 8.67 1.00 16.82 1.41 5.73 0.996
HR-MB 12.86 1.48 29.06 2.44 5.73 0.997
HR-MS 8.67 1.00 16.82 1.41 5.73 0.996
HR 12.86 1.48 29.06 2.44 5.73 0.997
HW 11.70 1.35 26.52 2.22 5.74 0.997
HWEAS 12.86 1.48 29.04 243 5.73 0.997
+HR-MS 8.67 1.00 17.79 1.49 5.73 0.996
+HR 12.86 1.48 30.24 2.53 5.73 0.997
+HW 11.70 1.35 27.6 2.31 5.74 0.997

The simply supported plate example in Figure 2.10 shows the importance of the ANS treatment for the
shear locking. The element without ANS is the only one producing different results, while the rest of
the formulations behave the same. For a cylinder with the same material characteristics as the plate,
height L = 20, radius R = 10,t/R = 10~*, and discretized with 200 elements, the produced graph is
similar to that in Figure 2.10, and the maximum increasing factor is 1.26. This also indicates that the
finite rotation formulations are only slightly more robust (i.e. better conditioned) than the rotation-less

formulation, for both flat and curved thin shells.

102 a=20, t=0.02, E=103, v=0.3
/__z_—;/‘// L a
e b
s T
S | | TT T \7\4\\(,\:,\4‘
1o 1 Y\b e S [ e e
/ LT ) \r‘,\j\rﬁ
[ [\\' o I e = # a
| \\rr S| == =l \\j
7 “\\ﬁ\ \r: \L\‘\ﬁ:\/\4
010 : ' ' : ' : Sl \;*;\"\f\ S
0 100 200 300 400 500 600 S % htyy |

deformation mode number *
Figure 2.10: Simply supported plate eigenvalue analysis.
Slika 2.10: Clenkasto podprta plo$¢a za analizo lastnih vrednosti.
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2.5.3 Linear tests

2.5.3.1 Cook’s membrane

The membrane is clamped at one end and subjected to force F = 1 at the opposite end (the force is
uniformly distributed along the edge), see Figure 2.11 (a). The data are E = 1,v = 1/3 and thickness
t = 1. Nonlinear version of the example is presented in Section 2.5.4.1. This is a membrane problem
test, which also incorporates the element distortion. This test primarily shows how well a formulation
can handle the in-plane bending, where the in-plane shear dominates.

(a) b) 1r
" -
() /
y & [
A‘F A § 0.95} ‘
3 16 @ I' MITC4, MITC4+)
P ' L |
A YO8 el
.l £ 09 | EAS4, EAS5, EAS7, HR-M,
I % {' HR-MB, HR-MS, HR,
= 8 L/
o & | HWEAS, +HR-MS, +HR
2LA1 A1 [ !
ceo 44 € 085
%r" . 2
| -
0.8 ' : : :
! 4 N 0 10 20 30 40 50
# 48 92 number of elements per side

Figure 2.11: Cook’s membrane: initial and deformed meshes for nonlinear analysis with MITC4 element (a), and
linear convergence (b).
Slika 2.11: Cookova membrana: zacetna in deformirana mreza za nelinearno analizo z MITC4 elementi (a) in
linearna konvergenca (b).

Complete test results are shown in Table 2.11. Figure 2.11 (b) presents normalized vertical displacement
at point A (with respect to the reference FE solution 23.91, taken from [141]) only for non-matching
formulations. One can see that the EAS, HR and HW elements from Tables 2.3 — 2.5 exhibit very fast
convergence, while the rotation-less element from Table 2.6 and the ANS elements from Table 2.2
converge much slower. The D-ANS formulation shows the poorest convergence. Thus, the EAS, HR or
HW improvement of the membrane part of the shell response is very favorable for the (flat) membrane
problems. On the other hand, the ANS treatment of the membrane part of the shell response does not
show any improvement. The MITC4+ convergence matches exactly the MITC4, and +HR and +HW
match exactly HR and HW. This is due to the fact that the membrane parts of the MITC4 and MITC4+
element formulations are identical for a flat geometry, see also [89].
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Table 2.11: Cook’s membrane: linear convergence.
Preglednica 2.11: Cookova membrana: linearna konvergenca.

FE\mesh 2x2 4x4 8x8 16x16 32x32 48x48
D-ANS 10977 17.334 21.55 23.208 23.725 23.839
MITC4, MITC4+ 11.845 18.299 22.079 2343 23.818 23.896
EAS4, EAS5 21.05 23.016 23.689 23.883 23.94 23.953

EAS7, HR-M, HR-MB,
21.129 23.022 23.689 23.883 23.94 23.953
HR-MS, HR, +HR-MS, +HR

HW, +HW 20.52  22.841 23.638 23.869 23.936 23.951
HWEAS 21.119 23.021 23.689 23.883 23.94 23.953

2.5.3.2 Raasch’s hook

Raasch’s hook is a curved beam-like shell, which consists of two arches with different radii of curvature,
see Figure 2.12. It is clamped at one end and subjected to force F at the opposite end (the force is
uniformly distributed along the edge). Two different width to thickness ratios are considered, w/t = 10
and w/t = 102, with w = 20, and forces F = 1 and F = 1000, respectively. The material data, E =
3300 and v = 0.35, are taken after [86]. The shell was analyzed with meshes of (2N + 3N) X N
elements, with N € {2, 4,8, 16,32, 48}. Here, N is the number of elements in the width direction, and

2N and 3N are the number of elements in the hook length direction in the first and second arch,

respectively.
(a) \
~ 150°
o o F
//// QQ)- .A
46 € »
®
, 60>+ © w=20
14 il |

Figure 2.12: Raasch's hook: geometry (a) and initial and deformed meshes for nonlinear analysis with MITC4
element (b).
Slika 2.12: Raascheva kljuka: geometrija (a) ter zacetna in deformirana mreZa za nelinearno analizo z MITC4
elementom (b).

The results are presented in Figures 2.12 and 2.13, only for non-matching formulations, while complete
results are given in Table 2.12. They show that the shell deforms in a combined membrane-bending
manner. Figure 2.13 (a) presents the convergence of normalized displacement u, at point A. For w/t =
10, the computed values are normalized with the reference displacement 5.02, which was obtained with
Abaqus [1] for amesh of 20 X 144 X 2 3D 20-node elements with reduced integration (C3D20R) [164].
For w/h = 102, the computed values are normalized with the reference displacement 4660, obtained
by mesh of 20 X 136 X 2 eight-node assumed-stress hybrid solid brick elements [86]. In general, the
convergence of all the formulations is excellent and better than for Cook’s problem. The convergence
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is almost the same for all the formulations. It is interesting to note that the convergence for thicker shell

is slower than for the thinner one and that the converged value slightly differs from the reference results.
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Figure 2.13: Raasch's hook: linear convergence for w/t = 10 (a) and w/t = 102 (b).

Slika 2.13: Raascheva kljuka: linearna konvergenca za w/t = 10 (a) in w/t = 102 (b).

Table 2.12: Raasch’s hook: linear convergence for u, for thick shell (top) and thin shell (bottom).

50

Preglednica 2.12: Raascheva kljuka: linearna konvergenca za u, za debelo lupino (zgoraj) in tanko lupino (spodaj).

FE\N 2 4 8 16 32 48
w/t =10
D-ANS 4.758 4.837 4.924 4.992 5.023 5.030
MITC4, MITC4+ 4.761 4.840 4.926 4.994 5.025 5.032
EAS4, EASS, EAS7, HR-M,
4772 4.843 4.927 4.994 5.025 5.032
HR-MS, HR, +HR-MS, +HR
HR-MB, HR, HWEAS, +HR  4.791 4.848 4.928 4.995 5.025 5.032
HW, +HW 4.783 4.846 4.928 4.995 5.025 5.032
w/t = 102
D-ANS, MITC4, MITC4+ 4647.6  4654.1 4659 4663.1 4668.2 4672.2
EAS4, EASS, EAS7, HR-M,
4647.7 4654.1 4659.2 4663.2 4668.2 4672.2
HR-MS, HR, +HR-MS, +HR
HR-MB, HR, HWEAS, +HR  4667.7 4658.7 4660.3 4663.5 4668.3 4672.2
HW, +tHW 4661 4657.1 4659.8 4663.3 4668.2 4672.2

2.5.4 Nonlinear tests

2.5.4.1 Cook’s membrane

The data for the nonlinear Cook’s membrane test are the same as for the linear one (see Figure 2.11),

with Young’s modulus changed to E = 2, as proposed in [139] for nonlinear version of this example.

Adaptive control of load increments was used, see Table 2.1. Figure 2.14 (a) shows the convergence for

nonlinear analysis of vertical displacement at node A and load F = 1. The graphs resemble those for

linear analysis, see Figure 2.11. The HR, EAS and HW elements exhibit excellent convergence. On the
other hand, MITC4, MITC4+ and D-ANS require a very fine mesh to converge. Figure 2.14 (b) shows
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vertical displacement at node A versus applied load for a 4 X 4 mesh. The solution, referred to as ref.,
is for 48 X 48 mesh of HWEAS elements. The response for the EAS, HR and HW formulations is
already close to the reference one, while MITC4, MITC4+ and D-ANS are quite away.

(a)osF — ; ' — 1 (b ’ ; ; =
B T — D-ANS - MITC4 ---- MITC4+ /% 5
- - EAS4 - EASS —  EAST /i
I 08} /
% ~== HR-M — HR-MB o /./
4 /
o HR-MS HR P
§ 85t 087 - hw - - Hweas 7
Q £4
£ £ - - +HR-MS //
— 4 o
% 5| /Y[EAS4, EAS5, EAS7, HR-M, ] 0 L — R 7
= f\|HR-MB, HR-MS, HR, HWEAS 7S
& - dHW A
— ref. A
7.5} 02F} Vs
7. - - - - 0. » ‘ . .
0 10 20 30 40 50 0 2 4 6 8
number of elements per side vertical displacement

Figure 2.14: Cook’s membrane: nonlinear convergence (a) and load versus displacement for 4 X 4 mesh (b).

Slika 2.14: Cookova membrana: nelinearna konvergenca (a) in obtezba v odvisnosti od pomika za 4 X 4 mrezo

(b).

2.5.4.2 Raasch’s hook

Ratio w/t = 103 was used and Poisson’s ratio changed to v = 0.3, as proposed in [91], [90] and [104]
for nonlinear version of the test, while the rest of the data were the same as in Section 2.5.3.2, see Figure
2.12. We used the same set of regular meshes. In addition, we also used a set of distorted meshes with
pattern as shown in Figure 2.15. The ratio between the longest and the shortest element edge (in the
length direction of the hook) L, 45 /Lmin Was set to 1.5 and 2 for first and the second arch, respectively.
Adaptive control of load increments was used, see Table 2.1. This is a demanding test for shell
formulations, especially for distorted meshes. This single curved shell exhibits membrane-bending
deformations.

Figures 2.16 (a) and 2.17 (a) show convergence (for nonlinear analysis) for displacement u, at point A
for F = F, = 10™*. The computed converged solution, u, = 78.55, was reached by all formulations for
regular meshes (some of them needed very fine meshes) and by the majority for distorted meshes. In
contrast to the linear version of the test, the differences are large. MITC4+ exhibits the best convergence
and is in the same range as +HR-MS, +HR and +HW. MITC4, D-ANS and EAS4 perform worst. Mesh
distortion significantly influences MITC4, D-ANS and EAS4, while having a minor effect on MITC4+,
+HR-MS, +HR and +HW.

Figures 2.16 (b), (¢) and 2.17 (b), (c) present the applied force versus displacement u,, at point A, shown
in Figure 2.12, for two regular and two distorted meshes, see Figure 2.15. As the reference result, we
adopt the solution computed with regular mesh of (64 + 96) x 32 HWEAS elements. MITC4+, +HR-
MS, +HR and +HW are superior; they provide excellent agreement with the reference solution already
for mesh (b), and are almost insensitive to mesh distortion. MITC4, D-ANS and EAS4 perform worst;
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they are far from the reference solution for mesh (b), and they show significant mesh-distortion
sensitivity. They do not get very close to the reference solution even for fine distorted mesh, see Figure
2.17 (c). The other EAS formulations, as well as the HR and HW formulations, perform better. They are
still quite sensitive to mesh distortion, but they reach the reference solution for a fine distorted mesh,

see Figure 2.17 (c).

The results show that the description of membrane effects is of major importance for this test. The
formulations with the displacement-based description of membrane effects (and even the EAS
formulation with only four parameters, i.e. EAS4) show poor performance. The EAS formulations with
5 and 7 parameters (EASS5 and EAS7) perform better and yield identical results as the hybrid
formulations without independent bending stress interpolations (HR-M and HR-MS). The group of the
HR-MB, HR and HWEAS formulations also performs identically. However, the EAS, HR and HW
formulations are all outperformed by the ANS treatment of membrane effects applied in MITC4+ as
well as in +HR-MS, +HR and +HW. It is demonstrated that the applied ANS membrane treatment almost
eliminates any sensitivity to mesh distortion. Note that this test (with curvature in one direction) also
shows that the ANS treatment of membrane effects (MITC4+) is far more effective for nonlinear
problems than for linear ones.

Table 2.13 shows the computational details of some of the selected formulations. It demonstrates that
(of the selected elements) the +HW formulation is the most robust while at the same time
computationally very fast. It does not require any back steps and on average less iterations to converge
in a certain load increment.

’Lmax

~Limin
Figure 2.15: Raasch's hook: distorted meshes with N = 4 and N = 16.
Slika 2.15: Raascheva kljuka: pokvarjene mrezez N = 4 in N = 16.
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Figure 2.16: Raasch's hook, regular mesh: (a) nonlinear Figure 2.17: Raasch's hook, distorted mesh: (a)
convergence, (b) N = 4 mesh, (¢) N = 16 mesh. nonlinear convergence, (b) N = 4 mesh, (c) N = 16
Slika 2.16: Raascheva kljuka, obicajna mreza: (a) mesh.

nelinearna konvergenca, (b) mreza N = 4, (c) mreza  Slika 2.17: Raascheva kljuka, pokvarjena mreza: (a)
N =16. nelinearna konvergenca, (b) mreza N = 4, (¢) mreza
N = 16.
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Table 2.13: Raasch’s hook: computational details for F, = 10™* and N = 16 for regular mesh (top) and distorted
mesh (bottom).

Preglednica 2.13: Raascheva kljuka: ra¢unske podrobnosti za F, = 10™* in N = 16 za obi¢ajno mreZo (zgoraj) in
pokvarjeno mrezo (spodaj).

FE MITC4 MITC4+ HW +HW
Displacement u, (uuf [%]) 75.12 (96) 77.66 (99) 77.87 (99) 77.73 (99)
Normalized CPU time 1.00 1.13 0.18 0.22
Req. no. of load increments 92 96 22 22
Total number of iterations 883 930 120 124
Number of back-steps 3 4 0 0
Displacement u, (uuf [%]) 61.68 (79) 77.19 (98) 76.77 (98) 77.29 (98)
Normalized CPU time 1.00 1.15 0.20 0.27
Req. no. of load increments 91 96 22 22
Total number of iterations 874 931 120 124
Number of back-steps 6 4 0 0

2.5.4.3 Hemisphere with a hole

We considered a hemispherical shell with a hole, which is subjected to alternating radial point forces P,
as shown in Figure 2.18, see e.g. [152], [102]. The material and geometric data are R = 10,E =
6.825107,v = 0.3, and t = 0.04. Due to the symmetry, we modelled only one quarter of the shell and
applied symmetry boundary conditions. Both uniform and distorted meshes were used. The distorted
mesh pattern has on the symmetry edges the ratio between the longest and the shortest element
Lmax/Lmin = 16, with the in-between elements changing linearly from L, ;;, t0 Ly,4,. Adaptive control
of load increments was applied, Table 2.1. This double curved shell at first exhibits large, almost

inextensible deformations, which are followed by large membrane forces (including shear).

=8

Figure 2.18: Hemispherical shell: problem data and distorted meshes.
Slika 2.18: Polkrozna lupina: podatki o problemu in pokvarjeni mrezi.

Figures 2.19 (a) and 2.20 (a) show convergence (for nonlinear analysis) for displacement u,, at point A
for P = 400. The converged displacement is u, = 4.07, reached by all formulations for a regular
48 X 48 mesh. Convergence of MITC4+, +HR-MS, +HR-MBS and +HW is superior, whereas the
convergence of D-ANS, MITC4 and EAS4 is the worst. Mesh distortion influences the convergence of
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all the formulations. Nevertheless, the convergence of MITC4+, +HR-MS, +HR-MBS and +HW is still
superior.

Figures F2.19 (b) and 2.20 (b) compare load-displacement curves for point A for regular and distorted
4 X 4 meshes, see Figure 2.18. As the reference solution, we adopt the one obtained by regular mesh of
48 x 48 HWEAS elements. For the coarse mesh, the group of MITC4+, +HR-MS, +HR-MBS and +tHW
performs best, and the group of D-ANS, MITC4 and EAS4 performs worst. The curves of the other
formulations represent the third group; they are almost identical and lie between the solutions of the first
two groups. Mesh distortion affects all the formulations, but the result can still be presented in three
groups. Although not shown, the results of all formulations converge to the reference solution, for both
regular and distorted meshes, for 16 X 16 elements (with only the first group of formulations being
slightly away from the reference solution). The robustness and speed of the formulations are compared
in

Table 2.14. A normalized CPU time shows that the hybrid formulations are computationally the fastest.
This is partly due to the fact that they allow for very large load increments and require no back-steps.
Note that +HR-MS, +HR-MBS and +HW are fast and can also provide reliable results already for coarse
mesh.
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Figure 2.19: Hemispherical shell, regular mesh: (a) Figure 2.20: Hemispherical shell, distorted mesh: (a)
convergence, (b) displacement for 4 X 4 mesh. convergence, (b) displacement for 4 X 4 mesh.
Slika 2.19: Polkrozna lupina, obic¢ajna mreza: (a) Slika 2.20: Polkrozna lupina, pokvarjena mreza: (a)
konvergenca, (b) pomik za 4 X 4 mreZo. konvergenca, (b) pomik za 4 X 4 mreZzo.
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Table 2.14: Hemispherical shell: computational details for P = 400 for regular and distorted 16 X 16 mesh.
Preglednica 2.14: Polkrozna lupina: racunske podrobnosti za P = 400 za obic¢ajno in pokvarjeno mrezo 16 X 16.

Regular mesh Distorted mesh
Req. no. of Req. no. of
load Total no. of Normalized No. of back-  load Total no. of Normalized No. of back-
FE increments iterations CPU time steps increments iterations CPU time steps
D-ANS 20 192 1.70 1 24 234 1.51 2
MITC4 16 150 1.00 1 16 151 1.00 1
MITC4+ 16 152 1.46 1 16 152 1.22 1
EAS4 16 150 1.22 1 16 152 1.11 1
EASS 16 152 0.76 1 16 151 1.20 1
EAS7 16 152 1.27 1 16 151 1.11 1
HR-M 14 122 1.32 2 13 109 0.89 1
HR-MB 14 118 1.19 2 13 119 0.82 1
HR-MS 10 55 0.49 0 10 55 0.49 0
HR 10 57 0.51 0 10 57 0.53 0
HW 10 57 0.76 0 10 57 0.44 0
HWEAS 10 57 0.78 0 10 57 0.51 0
+HR-MS 10 55 0.78 0 10 55 0.40 0
+HR 10 57 0.38 0 10 57 0.49 0
+HW 10 57 0.62 0 10 57 0.56 0

2.5.4.4 Twisted beam

We consider the twisted beam problem, shown in Figure 2.21, see also e.g. [164], [90], [91]. The beam
with material data E = 29 10° v = 0.22 and thickness t = 0.0032 is clamped at one edge and
subjected to either in-plane or out-of-plane force, P, = 0.1 and P, = 0.1, respectively. Adaptive control
of load increments was applied, see Table 2.1. The used mesh was 4 X 24. The reference solution was
obtained by mesh of 12 X 72 HWEAS elements.

3

Figure 2.21: Twisted beam: (a) initial data; deformed configurations for the in-plane force (b), and out-of-plane
load (c).
Slika 2.21: Zavit nosilec: (a) zaCetni podatki; deformirane konfiguracije za silo v ravnini (b) in silo izven ravnine

(©).
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Table 2.15: Twisted beam: computational details for P = 0.1 for in-plane and out-of-plane load case.
Preglednica 2.15: Zavit nosilec: racunske podrobnosti za P = 0.1 za silo v ravnini in izven ravnine.

In-plane loading Out-of-plane loading
Req. no. of load Normalized CPU No. of back- Req. no. of load Normalized CPU No. of back-

FE increments time steps increments time steps
D-ANS 77 0.86 10 85 0.97 14
MITC4 66 1.00 13 84 1.00 11
MITC4+ 73 1.38 14 80 1.14 8
EAS4 65 1.12 13 84 1.45 12
EASS 79 1.18 11 87 1.42 10
EAS7 79 1.21 11 87 1.39 10
HR-M 220 4.39 70 189 3.73 56
HR-MB 225 4.01 77 195 4.18 61
HR-MS 14 0.18 0 14 0.21 0
HR 14 0.22 0 14 0.22 0
HW 14 0.21 0 14 0.22 0
HWEAS 14 0.21 0 14 0.25 0
+HR-MS 14 0.19 0 14 0.15 0
+HR 14 0.20 0 14 0.19 0
+HW 14 0.18 0 14 0.21 0
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(a) — D-ANS ---- MITC4 (b)

008l --- MITC4+ - - EAS4 | 0.08 |

— - EAS5 — - EAS7
- HR-M HR-MB

oseT HR-MS HR | i
* HW = HWEAS & [—R-M, HR-MB, HR-MS,

0.04 1 — +HR-MS — +HR ] 0.04F |HR, HW, HWEAS,

— HW — ref EAS5, EAS7
BHET o (b-ANs, MITCa, EASA
% 0.5 1 15 2 25 %y 1 2 3 4 5 6

-y -Uz
Figure 2.22: Twisted beam: Load-displacement curves for the in-plane (a) and the out-of-plane (b) load cases.
Red dots mark deformed configurations in Figure 2.21 (b) and (c).
Slika 2.22: Zavit nosilec: krivulje sila-pomik za obtezbo v ravnini (a) in izven ravnine (b). Rdece tocke
oznacujejo deformirane konfiguracije na sliki 2.21 (b) in (c).

In Figure 2.21 (b) and (c), we show deformed configurations for both load cases. These configurations
are marked with red dots on the response curves in Figure 2.22, where load versus displacements at
point A is shown. For the in-plane load case, see Figure 2.22 (a), all the formulations perform similarly
(however, the results do not match the reference solution), except D-ANS, MITC4 and EAS4, which
stand out in a negative way. For the out-of-plane load case, see Figure 2.22 (b), MITC4+, +HR-MS,
+HR and +HW give the most accurate response (very close to the reference solution), whereas D-ANS,
MITC4 and EAS4 again perform worst among the formulations. In Table 2.15, we compare robustness
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and speed of the used formulation by the normalized CPU time and the number of load increments it
took, to arrive to the final configuration. It can be observed again that all the (+)HR and (+)HW
formulations, except HR-M and HR-MB, are the fastest. The former also compute the response using
much larger steps and they require no back-steps in the solution procedure. The latter, on the other hand,

require a large number of back-steps and very small load increments to arrive at the final configuration.
2.5.4.5 Hyperbolic paraboloid under edge load

We considered a hyperbolic paraboloid shell, with mid-surface defined as z = x2 — y?2, with (x,y) €
(—=L/2,L/2) and L = 1. The shell thickness is t = 0.001. The material data are E = 2 10! and v =
0.3. One edge of the shell is clamped and the other edges are free, see Figure 2.23 (a). The shell is loaded
at the free edge, opposite to the clamped one, by a uniform line force f = 400. Two mesh densities are
considered: a coarse mesh of 16 X 16 elements and a very fine mesh of 112 X 112 elements. In addition
to the regular meshes, distorted meshes are considered as well, see Figure 2.23 (b). For a distorted mesh,
the length of the element edge changes linearly with the ratio L, 4, /Lmin = 4. Adaptive control of load
increments was applied, see Table 2.1. With this example, we illustrate that mesh distortion introduces
imperfections, which can have significant influence on results, if the bifurcation points are present on
equilibrium path. A similar problem was presented in e.g. [8], [S7], [109], however, the load was self-
weight (the final free-edge displacement was roughly 10-times smaller than for the here-presented
example), and the stability analysis was not of interest.
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Figure 2.23: Hyperbolic paraboloid: (a) Initial and deformed configurations for MITC4 element, (b) distorted
mesh pattern for 16 X 16 mesh.
Slika 2.23: Hiperboli¢ni paraboloid: (a) zacetna in deformirana konfiguracija za MITC4 element, (b) vzorec

pokvarjene mreze za 16 X 16 mrezo.

The results are presented in Figures 2.24 and 2.25, where the displacements u, and u,, at node A are
given with respect to the load f,, represented as the total resultant of the applied line force. Results for
regular and distorted meshes are presented together on each of the response graphs. For a regular mesh
(which is symmetrical with respect to the plane y = 0, see Figure 2.23 (b)), the horizontal displacement
of node A was u,, = 0 at all times. Thus, the deformed configurations were symmetric with respect to
the plane y = 0. However, a bifurcation point was reported for symmetrical meshes during the

computations. The type of the bifurcation point was symmetric positive, see e.g. [150]. All the
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formulations detected the bifurcation point for a 112 X 112 symmetrical mesh at approximately f, =
240, see yellow dots in Figure 2.25. For a 16 X 16 symmetrical mesh, some formulations located it at
approximately f, = 240 (i.e. MITC4+, +HR-MS, +HR and +HW), others located it at much higher
loads, at approximately f, = 400, while D-ANS, MITC4 and EAS4 did not locate it at all for the applied
range of the load, see Figure 2.24. This demonstrates that some formulations were precise with location
of the bifurcation point already for the coarse mesh.
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Figure 2.24: Load-displacement curves for 16 X 16 Fjgure 2.25: Load-displacement curves for 112 x 112
mesh. (a) displacement —u, (b) displacement w,,. mesh. (a) displacement —u, (b) displacement ,,.
Slika 2.24: Krivulje sila-pomik za 16 X 16 mreZo. (a) ~ Slika 2.25: Krivulje sila-pomik za 112 X 112 mreZo.
pomik —u, (b) pomik u,,. (a) pomik —u, (b) pomik w,.

Distorted mesh introduced small unsymmetrical imperfections, which broke the symmetry, see Figure
2.23 for initial and Figure 2.26 for deformed configurations. This resulted in vanishing of the bifurcation
point. The results were not symmetric any more, i.e. u, for node A was not zero. The f, —u,, curves
for node A are given in Figure 2.24 (b) for the coarse mesh, and in Figure 2.25 (b) for the fine mesh.
For the coarse mesh, the computed responses are quite different. The majority of the formulations
predicted negative u,, at node A, some changed the initial sign but soon failed (+HR-MS and +HW),
and some (+HR and MITC4+) changed the sign even two times. For the fine mesh, all the formulations
gave very similar (almost identical) results for the solution branch below the bifurcation point. However,
it is interesting to note that (+)HR-MS, (+)HR, (+)HW and HWEAS found also a solution branch above
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the bifurcation point, probably due to their ability to take very large increments. Note i) that (+)HW
jumped to the above branch already for a 64 X 64 mesh, (+)HWEAS and (+)HR for 80 X 80 mesh,
(+)MR-MS for 112 x 112 mesh, while the other formulations did not jump to the above branch, even
for 160 x 160 mesh; ii) that changing the distortion of the mesh by switching the location of longest
and shortest element produces results that are identically symmetrical with respect to u,, = 0 in Figure
2.24 (b) and Figure 2.25 (b).

Figure 2.26: Hyperbolic paraboloid: final deformed configurations for 16 X 16 mesh. (a) MITC4+ distorted
mesh, (b) HR-MS distorted mesh, (¢) +HW regular mesh.
Slika 2.26: Hiperboli¢ni paraboloid: kon¢ne deformirane konfiguracije za 16 X 16 mrezo. (a) MITC4+

pokvarjena mreza, (b) HR-MS pokvarjena mreza, (c) +HW obicajna mreza.

2.5.4.6 Thin deployable ring

The data for this example are presented in Figure 2.27. The example has similarities with the snap-
through-of-an-elastic-ring example, which was studied in e.g. [54] and computed by shell finite elements
in [122]. We show the ability of the derived formulations to represent a deployment phenomenon, where
the ring folds into three smaller rings with the radius of 1/3 of the initial one, and by further increasing
the load regains its initial configuration. We chose a ring with the following geometric and material
data: R = 500, H = 5, thickness t = 1,F = 2 10°,v = 0.3. We considered two meshes of 60 X 1 and
400 X 1 elements. The rotation ¢ = ¢,, = 4m was imposed at one upper node, while the lower end of
the ring was clamped, see Figure 2.27. Adaptive control of load increments was used, see Table 2.1.
This example is a test for both the finite element formulations and the adopted finite rotation algorithm.

Figures 2.29 and 2.30 show the moment reaction M, at the node where the rotation is imposed, versus
displacements u,, u, and rotation ¢, at the same node. It is interesting to note that all the formulations
can handle this problem without any difficulties. Moreover, they behave almost in the same manner for
the chosen meshes. Exceptions are MITC4 and MITC4+, which give slightly different response curves
than the rest of formulations. Nevertheless, the +HR and +HW formulations were the most accurate,
since their results with the coarse mesh were the closest to the converged results obtained with the fine
mesh. In Figure 2.28, a sequence of deformed configurations is shown for a mesh of 400 X 1 HWEAS
in order to present how the ring folds and unfolds. The configurations are connected by red dots to the
curves in Figure 2.30. On the M — ¢, curve in Figures 2.29 (¢) and 2.30 (¢), there are four limit points
and three points with M = 0. The second one of the latter points, located at ¢,, = 2, is related to the
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folded three-circles configuration. Note that the moment-displacement curves for ¢, € [27, 4] are
mirror images of the curves for ¢, € [0,27], for performing mirroring over line M = 0 or for a sequence
of two mirrorings over lines M = 0 and u,, = 0. Similarly, M — ¢, curves for ¢,, € [2m, 47] are mirror

images of the curves for ¢, € [0,27], for a sequence of two mirrorings over lines M = 0 and ¢, = 2.

clamped

Figure 2.27: Thin deployable ring data.
Slika 2.27: Podatki za tanek zlozljiv obro¢.
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Figure 2.28: Thin deployable ring: Sequence of deformed configurations that correspond to the red dots in Figure
2.30.
Slika 2.28: Tanek zloZljiv obroc¢: zaporedje deformiranih konfiguracij, ki se nanasajo na rdece pike na sliki 2.30.
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Figure 2.29: Thin deployable ring: Moment

displacement and moment rotation curves for 60 X 1

mesh.

Slika 2.29: Tanek zlozljiv obro¢: krivulje moment-

pomik in moment-rotacija za mrezo 60 X 1.

Figure 2.30: Thin deployable ring: Moment
displacement and moment rotation curves for 400 X 1
mesh.

Slika 2.30: Tanek zloZzljiv obro¢: krivulje moment-
pomik in moment-rotacija za mrezo 400 X 1.
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2.5.4.7 Cylindrical panel

In the four following tests, we apply only four shell formulations that we identify either as well-
established (MITC4) or near optimal (MITC4+, HW, +HW).

Thin cylindrical panel, considered also in [90], is clamped at one edge and subjected to distributed
moment M = AM,, along the opposite edge, see Figure 2.31. This is a pure bending test. Regular and
distorted meshes shown in Figure 2.31 are used; the ratio Ly, /Linax = 1/12.
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Figure 2.31: Cylindrical panel: (a) initial and final deformed configuration for regular mesh (MITC4) (b)
distorted mesh.
Slika 2.31: Cilindri¢ni panel: (a) zacetna in deformirana konfiguracija za obic¢ajno mrezo (MITC4), (b)

pokvarjena mreza.
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Figure 2.32: Cylindrical panel: response for (a) regular mesh and (b) distorted mesh.
Slika 2.32: Cilindri¢ni panel: odziv za (a) obi¢ajno mreZo in (b) pokvarjeno mreZzo.
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Figure 2.32 shows the applied load versus displacements u, and —u, of point A; the reference results
obtained by regular mesh of 48 X 48 HW elements match perfectly those obtained for 32 X 32 regular
mesh of MITC9 elements in [90]. The response of all formulations is practically the same for the regular
mesh, see Figure 2.32 (a). For the distorted mesh, see Figure 2.32 (b), MITC4 is affected the most, HW
shows reasonable results, while MITC4+ and +HW give similar results as for the regular mesh. The
results indicate that for membrane locking remedy in pure bending case, MITC4+ is more effective than

the mixed-hybrid treatment. The robustness and speed of the formulations are compared in Table 2.16.

Table 2.16: Cylindrical panel: computational details for M = M,, for regular mesh (top) and distorted mesh
(bottom); Uy o = —9.21.

Preglednica 2.16: Cilindri¢ni panel: racunske podrobnosti za M = M, za obi¢ajno mrezo (zgoraj) in pokvarjeno
mreZo (spodaj); Uy rer = —9.21.

FE MITC4 MITC4+ HW +HW
Displacement —u, (_;:jef [%]) 9.30(101)  9.30(101)  9.30(101) 9.30(101)
Normalized CPU time 1.00 0.89 0.23 0.23
Req. no. of load increments 22 22 7 7
Number of total iterations 205 205 41 41
Number of back-steps 0 0 0 0

Displacement —u, (=——[%]) 6.83 (74)  8.92(97)  8.35(91) 8.93(97)

xref
Normalized CPU time 1.00 0.95 0.19 0.33
Req. no. of load increments 22 35 7 7
Number of total iterations 220 370 41 41
Number of back-steps 1 1 0 0

2.5.4.8 Doubly twisted beam

We consider a modified version of the twisted beam-like shell problem considered in e.g. [90], [91],
[164] and Section 2.5.4.4. The beam is clamped at one edge and subjected to two forces, P = AP, =
AP,, at the opposite end. The twist is 2. The shell undergoes considerable bending, which is followed
by stretching, see Figure 2.33 (b). Thus, this is a test for membrane-bending shell behavior.

In Figure 2.34, displacements u, and u,, of point A are shown versus P; reference results were obtained

by regular mesh of 20 X 60 HW elements. Regular and distorted meshes were used, with 12 X 4 and
6 X 20 elements, respectively, and ratio Ly,in /Lmax = 1/2, see Figure 2.33 (a). Despite a coarse regular
mesh, there is almost no difference in response between the formulations, which match well the
reference results, see Figure 2.34 (a). Mesh distortion, see Figure 2.34 (b), greatly affects MITC4 (the
results are far from the reference solution and useless), the HW solution is affected considerably, while
MITC4+ and +HW show incredibly little sensitivity to mesh distortion. Table 2.17 shows that HW and
+HW are the fastest, do not require back-steps and take large load increments.
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L=10,w = 4,
t = 0.0032, v =022,
E = 29106,

Py = P; = 0.08

Figure 2.33: Doubly twisted beam: (a) problem data and distorted mesh (b) initial and three deformed
configurations for +tHW (regular mesh).
Slika 2.33: Dvojno zavit nosilec: (a) podatki o problemu in pokvarjena mreza, (b) zacetna in tri deformirane
konfiguracije za +HW (obicajna mreza).
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Figure 2.34: Doubly twisted beam: load-displacement curves for (a) regular mesh and (b) distorted mesh. Red
dots mark deformed configurations in Figure 2.33 (b).
Slika 2.34: Dvojno zavit nosilec: krivulje obtezba-pomik za (a) obi¢ajno mreZo in (b) pokvarjeno mrezo. Rdece
pike oznacdujejo deformirane konfiguracije na sliki 2.33 (b).

The twisted beam was also chosen to check for a possible undesirable hysteresis because of the
configuration dependent weighting factors (2.49) applied in MITC4+ and +HW. We chose the twist of
/8 and distorted mesh with ratio L,,qx/Lmin = 4, see Figure 2.35. The uniformly distributed load
P = APy was increased until A = 1, which produced large membrane strains, and then decreased to P =
0. Figure 2.35 shows no hysteresis effect, which confirms that the weighting factors in (2.49) were

carefully calibrated.
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Table 2.17: Doubly twisted beam: computational details for P = 0.08 for regular mesh (top) and distorted mesh
(bottom); Uy, ,.r = 4.75.

Preglednica 2.17: Dvojno zavit nosilec: racunske podrobnosti za P = 0.08 za obicajno mrezo (zgoraj) in
pokvarjeno mrezo (spodaj); Uy ref = 4.75.

FE MITC4 MITC4+ HW +HW
Displacement u,, (u:fef [%]) 452(95)  4.53(95)  4.52(95) 4.53(95)
Normalized CPU time 1.00 1.37 0.10 0.09
Req. no. of load increments 61 78 7 7
Total number of iterations 664 802 43 43
Number of back-steps 10 14 0 0
Displacement u,, (uuyf [%]) -0.04 (-1)  4.74(100) 4.91 (103) 4.73 (100)
y.re

Normalized CPU time 1.00 13.5 0.93 1.71
Req. no. of load increments 7 56 7 7
Total number of iterations 51 585 41 43
Number of back-steps 0 9 0 0
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Figure 2.35: Beam with the twist of /8 (left) and hysteresis response (right).
Slika 2.35: Nosilec, ukrivljen za /8 (levo), in histerezni odziv (desno).

2.5.4.9 Thick deployable ring

The thick deployable ring example, see Figure 2.36 (a), was studied in detail in [54] and was recomputed
by isogeometric Reissner-Mindlin (RM) and Kirchhoff-Love (KL) shell formulations in [122]. The
example has similarities with the thin deployable ring example in Section 2.5.4.6, but the orientation of
the rotation is different. The ring is clamped along the bottom cross-section and subjected to imposed
rotation @ = A®, along the top cross-section. We used meshes of 80 X 1, 1200 X 1 and 1200 X 4
elements. Because our formulations do not have drilling rotation, the meshes were in the plane of the
ring. This is in contrast to the mentioned isogeometric computations in [122], where the elements were
oriented perpendicular to the plane of the ring and drilling rotation was applied. For this reason, our
results do not match closely those from [122]. According to [54], at @ = 2m, the ring deploys into three
circles with a radius R/3, and its initial shape is regained at @ = 4m. The example is a test for coupling
of bending and twisting, with large parts of the ring exhibiting almost rigid-body motion.
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Figure 2.36: Thick deployable ring: (a) problem data; (b) 80 X 1 mesh; deformed configurations at points
marked in Figure 2.37 for MITC4 (top) and for +HW (bottom).
Slika 2.36: Debel zloZljiv obro¢: (a) podatki o problemu, (b) 80 X 1 mreza; deformirane konfiguracije ob
razli¢nih tockah, oznacenih na sliki 2.37, za MITC4 (zgoraj) in za +HW (spodaj).
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Figure 2.37: Thick deployable ring: load-displacement curves for 80 X 1 mesh; red dots mark deformed
configurations in Figure 2.36 (b).
Slika 2.37: Debel zlozljiv obro¢: krivulje obtezba-pomik za mrezo 80 X 1; rdece pike oznacujejo deformirane

konfiguracije na sliki 2.36 (b).

The results are given in Figures 2.37 and 2.38, where moment-rotation curves are shown; M is the sum
of reactions at nodes with imposed rotation. Figure 2.37 shows that MITC4 and MITC4+ exhibit severe
membrane locking for the coarser mesh and predict a completely deviating solution. It seems that the
solution is non-physical, because at @ =~ 2m the elements cross each other, see Figure 2.36 (b). The



Lavrencic, M. 2020. Numerical Procedures for Nonlinear Static and Dynamic Analyses of Shell Systems of Various Sizes. 59
PhD Th. Ljubljana, UL FGG, Third cycle doctoral study Built Environment.

present ANS membrane treatment has no effect for this example, because MITC4 and MITC4+ behave
in the same way.

The HW and +HW formulations predict solutions that are qualitatively close to those presented in [122]
and [54] and their results change only slightly with mesh refinement. For the 1200 X 1 mesh, the results
of all formulations almost coincide; however, MITC4 and MITC4+ fail to converge at @ = 2.6m, see
Figure 2.38 (a). For the 1200 X 4 mesh, the formulations provide the same response up to the final
rotation @ = 4, see Figure 2.38 (b). Here we show the number of negative pivots (NP) on the solution
path; a change on NP indicates the occurrence of critical (i.e. limit or bifurcation) point. It is interesting
that the formulations do not predict critical points at the same configurations. Moreover, MITC4 and
MITC4+ detect two more than HW and +HW.
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Figure 2.38: Thick deployable ring: load-displacement curves for (a) 1200 X 1 and (b) 1200 X 4 mesh.
Slika 2.38: Debel zlozljiv obroc¢: krivulje obtezba-pomik za (a) mrezo 1200 X 1 in (b) mrezo 1200 X 4.

2.5.4.10 Pinched cylinder

The cylinder is clamped at one edge and subjected to two opposite vertical forces P = AP, at the other
edge, see Figure 2.39 (a). Due to the symmetry, only one fourth of the cylinder is modeled and
symmetrical boundary conditions are considered. Initial and deformed meshes of 8 X 8 and 20 x 14
elements are shown in Figure 2.39 (a) and (b), respectively. Reference solution is taken from [152],
where a 32 X 32 mesh was used. We applied the path-following method [150] to compute the complete
response that included the snap-troughs and snap-backs, see Figure 2.40. The latter were associated with
artificial mesh-dependent localized buckling due to sharp configuration changes of one or several
elements, see Figure 2.39 (b) and (c). For this particular example, the problem of artificial mesh-
dependent buckling was already reported in [44], see also [22]. As can be seen from Figure 2.40 (a) and
(b), MITC4+ and +HW are somehow more prone to catching artificial buckling than MITC4 and HW,
although the equilibrium path is non-smooth for all of the formulations. Nonetheless, when a finer mesh
of 16 X 24 elements is used (not shown here), all the results coincide with the reference solution.
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R =1.016,L = 3R,
t = 0.03,P, = 2000,
E =2.0685107,v = 0.3

Figure 2.39: Pinched cylinder: (a) initial, (b) MITC4 deformed configurations, and (c) +HW deformed
configuration at points marked in Figure 2.40 (a).
Slika 2.39: Prescipljen cilinder: (a) zacetna, (b) MITC4 deformirane konfiguracije in (¢) +HW deformirane
konfiguracije na tockah, oznacenih na sliki 2.40 (a).
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Figure 2.40: Pinched cylinder: load-displacement curves for (a) 8 X 8 mesh and (b) 14 X 20 mesh.
Slika 2.40: Prescipljen cilinder: krivulje obtezba-pomik za (a) 8 X 8 mrezo in (b) 14 X 20 mreZo.

2.6  Chapter conclusions

In this chapter a review of some widely used and other novel mixed shell finite elements was conducted.
We described the implementation details for all the used formulations, as well as for the different
rotation algorithms that can be used for the 5-dof inextensible director shell model. As for large rotation
treatment, we conclude that the quaternion-based update greatly improves the robustness and in case of
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incremental or iterative rotations also the speed of the algorithm. The additive total rotation algorithm
can encounter a singularity, but this was not the case in any of the presented examples.

Although all of the used formulations pass the basic patch and conditioning number test, their
performance is vastly different when it comes to some more demanding examples. It was shown that the
6-dof rotation-less formulation (D-ANS) is as effective as the MITC4 formulation. Nevertheless, the
deficiencies of both, which had been known already, see e.g. [22], [89], [104], [159], were again
highlighted by our diverse set of numerical tests.

It is now understood theoretically (see e.g. [114]) and has been confirmed by numerical experiments
(see, e.g., [159] and the examples in this chapter) that the use of mixed-hybrid formulations is essential
to get finite elements that allow for large solution steps. For the theoretical discussion on the ability of
mixed formulations to take large solution steps, we refer to [114], where this issue is discussed for
nonlinear mixed solid finite elements and the Hellinger-Reissner functional, but the conclusions are
applicable also for the Hu-Washizu functional and shell finite elements. The main conclusion in [114]
is that for mixed HR elements, the tangent stiffness matrix in the current iteration is much closer to the
secant stiffness matrix of the current increment (than for the displacement-based elements). The reason
is better iterative approximation of the converged incremental stresses. As a consequence, mixed
formulations allow for larger solution steps and smaller number of iterations in comparison with the
displacement-based formulations.

We used different variations of the mixed-hybrid element formulations, based on the Helliger-Reissner
(HR) or Hu-Washizu (HW) functionals. It has been shown that not only a full HR or HW functional can
be used, but a partial functional can also be the starting point of for the formulation of an elements. Only
the membrane part or the combination of membrane and bending parts of the functional do not offer any
great improvements. Great improvements are, however, observed if shear and membrane treatment are
applied. Thus, the HR-M and HR-MB elements are not ideal candidates for use, while the HR-MS, HW,
HW and HWEAS elements all produce good improvements compared to the MITC4 formulation. They
are robust, converge fast and can take very large solution steps, thus allowing for very fast computations,
as was shown in e.g. [59], [60], [159], [104] and confirmed by our extensive numerical experiments.

Unfortunately, the mixed-hybrid shell finite element formulations do not completely remove membrane
and transverse shear locking. It was shown in [159] that it is possible to cure the transverse-shear locking
in mixed-hybrid shell element by applying the ANS interpolations on the top of the Hu-Washizu
interpolations for the stress resultants and strains. However, such mixed-hybrid shell element still
remains sensitive to membrane locking for distorted meshes, as has been clearly shown by our numerical
examples. On the other hand, the same numerical examples have demonstrated that the mesh distortion
sensitivity can be effectively reduced by assumed natural strain interpolation of membrane strains, in
particular by the recent MITC4+ version derived in [90].

Numerical examples show that the MITC4+ shell element converges fast and displays little sensitivity
to mesh distortion. However, its weak spots are flat finite element meshes, since the membrane ANS
enhancement has no effect on flat elements. Thus, MITC4+ behaves as MITC4. The formulation is also
unable to compute large load increments; thus, it is not among the fastest.
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As for the enhanced assumed strain (EAS) elements, it has been shown that at least 5 independent
parameters are required to sufficiently improve the behavior of the elements, see also e.g. [22], [2]. The
EASS and EAS7 elements provide good results in terms of convergence behavior, but they are sensitive

to mesh distortion and are not capable of computing very long increments.

Based on [104], and confirmed by the numerical experiments here, the optimal choice for a formulation
when computing a difficult shell problem is any of the formulations that combine the incredible features
of MITC4+ and HW. We have demonstrated here that such a combination is easy to achieve and it
results in robust elements that allow for large increments, show fast convergence and are low sensitive
to mesh distortion.
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3 NUMERICALLY DISSIPATIVE TIME-STEPPING SCHEMES FOR STRUCTURAL
DYNAMICS

Chapter abstract

In this chapter we move on to dynamic analysis. We revisit some existing time-stepping schemes for
structural dynamics with algorithmic dissipation, which fall either into the class of generalized-a
methods or the class of energy-decaying (and momentum-conserving) methods. Some of the considered
schemes are designed for the second-order and some for the first-order form of the differential equations
of motion. We perform a comparison (for linear dynamics) of their characteristics and we study how
these features extend to nonlinear dynamics, by performing numerical tests on examples of shell
structures. For the considered schemes we illustrate their ability to decay/dissipate energy, their ability
to fully/approximately conserve the angular momentum, and we estimate the nonlinear order of accuracy
by error indicators. Let us finally note that this chapter is an extract of an article by Lavrenc¢i¢ and Brank
[105].

Nonlinear numerical examples in this chapter are computed using the dynamic extension of previously
analysed MITC4 finite element, see Table 2.2 and Sections 2.2.1, 2.3.1 and 2.4.1, using the rotation
algorithm IQ, see Table 2.7 and Section 2.2.2.

3.1 Chapter introduction

Compared to the static analysis, which was addressed in the previous chapter, dynamic analysis provides
an alternative environment in which to perform difficult nonlinear calculation, with the effects of inertial
forces taken into account. In the following chapter the characteristics of some implicit time integration
schemes will be investigated and a theoretical and numerical comparison of the chosen schemes that fall
either in the group of a-methods or the energy-decaying methods will be conducted. Most of the used
schemes are designed to dissipate the unnatural higher structural frequencies that arise in the finite
element models as a direct consequence of spatial discretization, as it was recognized very early that in
order to truthfully represent the behavior of the structure, these spurious modes should be damped.

Among the a-methods mentioned above, the classical and popular ones are the HHT scheme of Hilber,
Hughes and Taylor [65], the Wood-Bossak-Zienkiewicz scheme [170] (hereinafter called BAM), and
the Chung and Hulbert scheme [38] (hereinafter called GAM). A more recent a-method is the JWH
scheme of Jansen, Whiting and Hulbert [77]. A comparison of JWH against the composite Bathe scheme
[7] performed in [80] suggested that JWH is among the best one-step a-methods. In the rest of this
chapter (as in [96]), the four above mentioned a-methods (HHT, BAM, GAM and JWH) will be
collectively called the generalized-a schemes (G-a). For linear dynamics, the G-a schemes are
unconditionally stable, high-frequency dissipative and second-order accurate [49], but (except JWH)
with poor overshoot performance [80].

The unconditional stability of the time-stepping schemes is well defined for linear dynamics by the
spectral radius [67], [69], while in the nonlinear regime several criteria exist, see [49], among which
energy preservation is arguably the most important. According to the energy criterion, the scheme is
said to be unconditionally stable in nonlinear elasto-dynamics if for free motions (V.4 — V) +
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(K41 — Ky) < 0 is valid for a time step [t,,, t,,4+1], where V and K are potential and kinetic energies,
respectively. This equation is in general not satisfied for the a-methods, even for small time steps.
Moreover, the a-methods fail to conserve linear and angular momentum, see e.g. [131], [5]. Thus, the
a-methods do not preserve physical constants of the motion of the underlying nonlinear continuous
system. Subsequently, its structure is lost in a numerical solution. As a consequence, the (predominantly)
good features of the a-methods in linear dynamics do not necessarily transfer to nonlinear dynamics. In
general, these schemes may show undesirable energy fluctuations and the study in [49] indicates that
the G-a schemes show oscillations in the intermediate frequency range. Despite this, it was reported in
[96] that the G-a schemes can perform well for nonlinear problems, even for numerically stiff ones, as
shown in [158] for BAM. However, for some other numerically stiff cases, the algorithmic failure of the
G-a schemes was reported [108].

The energy-momentum conserving scheme, introduced by Simo and Tarnow [146], [145], on the other
hand, fulfils the energy criterion for nonlinear elasto-dynamics. Due to its design it conserves the total
mechanical energy of the system, which renders it unsuitable for some nonlinear applications, such as
stability problems, see e.g. [102] and [108]. These kinds of observations were a motivation for the
extension of the energy-momentum conserving scheme that includes algorithmic dissipation. In fact, a
very elegant way of numerical dissipation was found that enables energy decay in nonlinear elasto-
dynamics in a sense that (V.41 — V) + (K41 — K) + AD = 0 for free motions, where AD > 0 is
numerical dissipation in the time step, [4], [5], [26]. This energy-decaying property nicely coincides
with the basic indicator of the stability in the nonlinear regime.

In this chapter, we analyze and compare the generalized-a and energy-decaying schemes in both linear
and nonlinear settings. For linear dynamics, we compare the accuracy, dissipation, dispersion, as well
as the overshoot behavior. For nonlinear dynamics, we compare the results of numerical tests on shell-
like examples. They are a difficult test for dynamic schemes, because numerically stiff equations have
to be solved as a result of a large difference between the bending (and shear) and the membrane
deformation modes that coexist in shells. On the basis of these examples, we compare the ability of the
dissipation/decaying of the energy, the ability to fully/approximately conserve the angular momentum,
and we estimate the nonlinear order of accuracy by different error indicators. Let us mention that for the
nonlinear version of the generalized-a schemes, we apply the algorithmic evaluation of the stresses, the
idea taken from the energy-momentum conserving concept [96]. Besides the illustrative comparison on
numerically stiff problem, the novelty of this chapter is also the application of the JWH scheme for
shells, which has not been reported yet.

The rest of the chapter is organized as follows. In Section 3.2, the governing equations of the motion of
a discrete system are summarized, which is followed by the description of the generalized-a schemes
(in Section 3.3) and energy-decaying schemes (in Section 3.4). In these three sections, we do not
claborate on any particular solid or structural model, with its specific details, but we rather keep the
equations in a generic (and simple) form, providing the essential information about the schemes.
Sections 3.5 and 3.6 are devoted to the analysis of the schemes in linear and nonlinear settings,
respectively, and the findings are summarized in Section 3.7.
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3.2 Space-discrete equations of motion

For a nonlinear solid or structural model, which is discretized in space by the standard finite element
method (and has ny,s nodal degrees of freedom, excluding those with the essential boundary conditions),
the equation of motion and the initial conditions may be written as

Gdyn(u(t)) = Fine(u(t):ﬁ(t)) + Cil(t) + Fint(u(t)) - Fext(t) = 0: (3.1)

u(0) = u, u(0) = u,.

Here, u:[0,t; > 0] » R™dof is vector of ng,¢ unknown functions in time that represent nodal
generalized displacements (i.e. displacements and rotations if the latter are included in the model), t €
[0, t¢] denotes time on the interval of interest, and superimposed dot denotes time derivative, i.e. &t =
du/dt and it = d?u/dt?. Furthermore, Fj,, is a vector of nodal inertial forces (which depend, for a
structural model with large rotations, not only on acceleration and initial density p, but also on
configuration because of the gyroscopic effect caused by the rotation of e.g. beam cross-section frame
or shell director, see e.g. [146], [23]), C is a positive semi-definite matrix that models damping (which
is in many cases an artificial damping rather than a physical damping), F.; is a vector of nodal external

loading (which are considered in this work as conservative), and Fj, is a vector of nodal internal forces.

The second-order differential equation (3.1) can be reduced to the first-order equation by introducing an
additional unknown v: [0, t; > 0] —» R™dof, which is a vector of my,¢ unknown functions in time (with
mg,r not necessarily equal to ng,¢) that represent nodal generalized velocities (i.e. velocities associated
with translations and rotations if the latter are included in the model). In this case, the equation of motion
and the initial conditions may be written as

Edyn(u(t)'v(t)) = Fine(u(t)'v(t)) + C‘U(t) + Fint(u(t)) - Fext(t) = 0:

o(®) = w(@®) or v(6) MY ), (3-2)

u(0) = u,, v(0) = v,.
As indicated, Eq. (3.2), can be fulfilled either in a strong form (when time derivatives of generalized
nodal displacements equal generalized nodal velocities) or in a weak form over the discretized spatial
domain.

Eq. (3.1); and Eq. (3.2): represent equilibrium at the nodes of the finite element mesh time for any t €
[0, t¢], i.e. the inertial, viscous and internal nodal forces are in equilibrium with the external nodal forces.
It is worth noting that above we have assumed a standard spatial finite element discretization, with only
nodal degrees of freedom. This assumption includes nonlinear solid/structural finite element
formulations that are locking-free because of the locking remedies that do not extend the number of
degrees of freedom, such as the B-bar method or the assumed natural strain method. Therefore, the
mixed finite element formulations based on e.g. Hu-Washizu or Hellinger-Reissner variational
principles, which are characterized by additional degrees of freedom and additional equations, are not
covered by (3.1) and (3.2). For the mixed finite element formulations, see e.g. [104], [107], many of the
below considered schemes, especially those belonging to the class of energy-decaying/conserving (and
momentum conserving) methods, have to be reformulated, see e.g. [13]. We address this challenge in
Chapter 4, where we derive energy-decaying schemes for some mixed-hybrid formulations.
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In what follows, we will assume elastic material and € = 0. The solution of (3.1) or (3.2) will be
searched for at the discrete time points 0 = tg, 1, **, tp, the1, ***, tr by an implicit time-stepping scheme
with an algorithmic (i.e. numerical) dissipation.

3.3  Generalized-a methods
3.3.1 Some generalized-a methods for the second-order system

A class of implicit time-stepping schemes, denoted as generalized-a (G-a) methods (see e.g. [38]), was
designed for an optimal numerical dissipation while maintaining the second-order algorithmic accuracy.
However, these features are valid for linear dynamics and do not necessarily extend to nonlinear
dynamics.

The G-a methods use colocation points, tyq. and t,,q, on a generic time interval [ty, ty41], which
are defined as

tnras = At tngr + (1 — apty, thtaym = ¥m tns1 + (1 — am)ty, (3.3)
where af and ay, are free parameters. For known initial values, u, = u(t,), i, = u(t,), and it, =

it(t,), the G-a scheme computes solution of Eq. (3.1) on the time interval [ty, t,41], which is w4

u(t,,1), by satisfying
Fine(un+am:un+am) + Fint,n+af - Fext(tn+(xf) =0, (3.4)
(note that C = 0 was assumed) and applying the following convex combinations
Upio = AUy + (1 — )uy, for a = ay, ap,, g, = Om iner + (1 — ap)il,. (3.5)

Here, one can choose the definition of the vector of internal nodal forces Fijgn4q,- It can be defined
either as (7):
Fintntar = % Fingner + (1 — @) Fingn = ¢ Fing(Unyq) + (1 — ap) Fine(uy), (3.6)
or as (ii):
Fil’lt,n+(Xf = Fint(un+(Xf)' 3.7)
or yet as (iii) with the algorithmic stresses as proposed e.g. in [146], [80] and [96]. For the total
Lagrangian formulation with the 2nd Piola-Kirchhoff stresses (collected in vector §), the option (iii)

reads as:

— ANel e e — eT e
Fint,n+af - Ae=1Fint,n+af' Fint,n+ocf - f Bn+o(f algdvf (3'8)
Ve

where A is the finite element assembly operator, n,; is the number of elements in the mesh, V¢ is the
initial volume of the element, Ff,; ., o, is the vector of the internal nodal forces of the element, Bf o, =
B¢ (ufH_af) is a matrix that relates the variation of the element’s strain field at ¢, o with the variation
of the nodal displacements of the element, and Sg, ; is a vector of the algorithmic stresses of the element

Sag = aSps1 + (1 — apSh = apS°(ug,q) + (1 — ap ¢ (up). (3.9)
Here the superscript e again denotes element related quantities. It denotes both nodal values of the

element as well as scalar, vector or matrix fields over the element (the types of quantities will be obvious
from the context).
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Option (iif) for the computation of Fij¢nyq, Will be chosen for the G-a schemes (and also for all other
schemes) considered in this work. Note that for linear dynamics the three ways of computing Finen g
i.e. (3.6), (3.7) and (3.8), are identical.

Table 3.1: Parameters of the considered Newmark schemes (NTR, NMD), G-a schemes (BAM, HHT, GAM,
JWH), and energy-momentum-conserving scheme (EMC) expressed by spectral radius, see e.g. [38], [96], [77].
Preglednica 3.1: Parametri obravnavanih Newmarkovih shem (NTR, ND), G-a shem (BAM, HHT, GAM, JWH)
in sheme, ki ohranja energijo, gibalno in vrtilno koli¢ino (EMC), izrazeni kot funkcija spektralnega radija, glej
npr. [38], [96], [77].

Scheme am as 4 y Poo Description
NTR 1 3 — Poo 1 Trapezoidal rule
- 1 1 —_— —
NMD (per +1)2 2 poo +2 €[0,1) Dissipative Newmark
2
BAM 1 1 €[0,1) Wood-Bossak-Zienkiewicz
2 Poo 1 .
HHT 1 1 1 1 € [E' 1) Hilber-Hughes-Taylor
Poo Z(l—af+am)2 St an
GAM ) 1 €[0,1) Chung-Hulbert
~ P

Energy-momentum

EMC  1tPe 1400 1 eVt
conserving

3= P 1 1 .\
JWH 20+ 1+p / 3 +a,—a €[01) Jansen-Whiting-Hulbert

A G-a scheme for Eq. (3.1) is completed by an approximation of nodal accelerations and velocities at
th+1- To this end, the Newmark approximations [118] are the usual choice

. Y y-B. v—=28, .
Uptg = (un+1 - un) - u, — At uy,
BAt B 28 (3.10)
. 1 1. 1-2B '
Unp4+1 =ﬁAt2 (un+1_un)_'BAtun_ 2,8 Uy,

where At = t, ;1 — t, is a time step, and § and y are two free parameters. Note that the initial conditions
(3.1), define the initial accelerations as ity = M™1(Fex(0) — Finc(uo)). Applying the above presented
equations in (3.4) yields a nonlinear system of equations for u,,,, which is solved iteratively by the

Newton-Raphson method that requires spatial linearization of Eq. (3.4).

The free parameters of the G-a algorithms, ap,, @,  and y, become mutually dependent after the
enforcement of the conditions that maximize accuracy, optimize algorithmic dissipation, and provide
unconditional stability. For linear dynamics, these conditions were studied in detail in e.g. [38], [64],
[170], and the conditions for the second-order accuracy were assessed also for nonlinear dynamics in
[49]. When the arguments from the above mentioned references are taken into account, a,, as, § and y
become functions of a single (user-defined) parameter, which is spectral radius of the amplification
matrix at infinity denoted as p,, € [0,1]. The spectral radius controls the amount of the algorithmic
dissipation in a sense that smaller p,, means larger dissipation, and for p,, = 1 there is no dissipation.
It is worth noting that the dissipation of the G-a method relates to the decaying of the norm of the
discrete solution and not to the decaying of the kinetic and/or potential energy of solid/structure.
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These choices for a,,, af, § and y in Table 3.1 for the three G-a schemes, denoted as GAM, BAM and
HHT, provide unconditional stability, minimize low-frequency dissipation, maximize high-frequency
dissipation and guarantee the second-order accuracy for at least displacements and velocities (all of the
above applies for linear dynamics and does not necessarily extend to nonlinear dynamics). Remember
that BAM denotes the Bossak-a method (sometimes referred to as WBZ, see e.g. [170]), HHT is Hilber-
Hughes-Taylor method [65], and GAM is the method of Chung and Hulbert [38] (sometimes also
referred to as CH).

3.3.2 Generalized-a method for the first-order system

The G-a schemes described above are based on the second order system of equations (3.1). For the first-
order system of equations (3.2), Kadapa et al. [80] proposed a G-a scheme, referred to as JWH. The
JWH was initially developed for fluid dynamics by Jansen et al. [77], while Kadapa et al. [80] recently
adapted it for structural dynamics, see also [79].

For known initial values for the time interval [ty,, ty4+1], w, = u(ty), , = u(t,) and v, = v(t,), IWH
computes solution of Eq. (3.2) at t,,, 1, which are nodal generalized displacements u,,, by satisfying

Fine(un+o(m'i7n+am) + Fint,n+onf - Fext(tn+(xf) =0, (3-11)
(note that C = 0) and assuming strong equality of Eq. (3.2): as
Untas = 1:ln+ocm- (3.12)

Approximations of displacement time derivatives, velocities, and velocity derivatives at ¢, in terms

of u, ., are for JWH given by an algorithmic parameter y as (see [77] and [80] for details)

. y—1.
Upt = VAt (un+1 - un) + Tun;
_ Qp 3 Yy —an . ar — 1
Vnel T o ong (Upyq —up) + ver u, + af vy, (3.13)
. Am 1 y—-1, v—an.
Un+1 = —afyZAtZ (Ups1 —uy) — ayAt Uy + v vy + )/ZTfAtun'

In addition to the combinations (3.5);, the following convex combinations apply:
Untay = @m Un+1 + (1 — ay)ity,
Vntae = A Unp1 + (1 — apvy, (3.14)
Vntoy = @m Vn+1 + (1 - am)vy.

According to the studies [77] and [80], JWH is (for linear dynamics and for the parameters from Table
3.1) second-order accurate, unconditionally stable, dissipative in the high-frequency range, and with
negligible dissipation in the low-frequency range.

3.4 Energy-decaying methods

Several other (classical) schemes can also be obtained for specific values of ay,, ay, f and y in terms of
P, see e.g. [96] and [97]. Three of them (NTR, NMD and EMC) are presented in Table 3.1. NTR
denotes classical non-dissipative (p,, = 1) Newmark trapezoidal rule with § = 1/4 and y = 1/2, and

NMD is dissipative Newmark scheme of the first-order accuracy [67]. The energy and momentum
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conserving scheme (EMC) is non-dissipative (p,, = 1), with @, = af =y = 1/2 and § = 1/4, which
collapses to the mid-point rule for linear dynamics.

3.4.1 Energy and momentum conserving scheme

The energy and momentum conserving (EMC) scheme basically consists of: (i) the application of the
mid-point rule in Eq. (3.4) as

‘l:l +1 — u
Fine un+1/2:% + Fint(un+1/2:sglg) - Fext(tn+1/2) = 0' e = 1'nel (3-15)
~———— —————
in+1/2
where
1
Unt1/z2 =5 (Ups1 +uy),
3.16
. _ Up1 — Uy _ . . . _ 2(un+1 - un) . ( )
Uni1/2 = A0 = E(un+1 +uy) > Uy = A W
and (ii) the algorithmic evaluation of stresses in (3.15) as (see (3.9))
Soig = (S5 +52)/2 (317)

The importance of EMC lies in the following relation (which was proven e.g. in [146], [4] and [13]) for
the time increment At = t,, .4 — t,, with no external loading:

Va1 = Vo) + (Kpyr — Kp) =0, (3.18)
where V and K are the potential and kinetic energy. In fact, the design of algorithmic stresses (3.17)
enables energy conservation (independently of At) for a nonlinear elastic structure for an increment with
no external forces. Thus, EMC is energy-conserving algorithm. As an aside, it should be noted that the
stress formula (3.17) is valid for the St. Venant-Kirchhoff hyperelasticity, while the other hyperelastic
models require its modification, see e.g. [130]. It is also worth noting that EMC conserves the momenta
because of the desirable property of the mid-point rule, which is conservation of the linear and (more
importantly) angular momentum, see e.g. [146] and [67].

Despite these advantageous features of EMC, the need was recognized for an extension of EMC in a
sense of a controlled numerical dissipation in the high-frequency range in order to gain the robustness
necessary to solve stiff problems. Namely, for the numerically stiff problems, EMC tends to compute
highly oscillatory response with large error in the high-frequency range, see e.g. [102], [108], which
diminishes its applicability for stiff structural dynamics problems. The energy conserving/decaying

schemes considered in this work are summarized in Table 3.2.
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Table 3.2: Energy-conserving/decaying schemes, see e.g. [4], [5].
Preglednica 3.2: Sheme, ki ohranjajo/disipirajo energijo, glej npr. [4], [5].

. . Angular
Linear dynamics L
Scheme ) agp Bep momentum Description
notation .
conservation
EMC EMC 0 0 Yes Energy-momentum conserving
ED1 ED1 =fgpp >0 =agp>0 No Energy-decaying, first-order
Energy-decaying, momentum
EDMC1 ED1 = ﬁED >0 = Agp >0 Yes 24 . ying
conserving, first-order
Energy-decaying, momentum
EDMC2 ED2 >0 \ Yes gy-decaymng N

conserving, second-order

3.4.2 Energy-decaying scheme of the first-order

It was shown in e.g. [4], [5], [26], [18] and [132] that EMC can be adapted to become numerically
dissipate in a very favorable way by producing a controllable decaying of the total energy in time. To
this end, two modifications of EMC need to be performed. The first modification changes the mid-point
velocity approximation (3.16), by introducing a term t4;5 that produces dissipation of the kinetic energy.
The dissipative term is applied in the computation of the mid-point velocity simply as

8 Upyqp — Up 1 . , 1 . .
un+1/2 = T = E(un+1 + un) + IBED E(un+1 - un) =
gis (3.19)
u _ 2(un+1 B un) B unAt(l - :BED)
mH At(1 + Pep) '

The inclusion of velocity-dissipation via 4;s in approximation of 4/, in (3.19) makes the latter
depart from the direction of the mid-point rule (2,,, + u,)/2, which is the one that guaranties the
conservation of angular momentum. Thus, the loss of the conservation of angular momentum is a price
to pay for introducing the dissipation in the kinetic energy. The second modification changes the
algorithmic stresses (3.17) by including the term S§;; which triggers dissipation of the potential energy.
This dissipative term is applied as

e (8541 +S8%)  agp(Shi1 —S7)

alg = 2 + 2 .

—_— ———
e
Sdis

(3.20)

glg from (3.20) into the equilibrium equation (3.15), one gets a

By inserting 11,4 from (3.19) and S
scheme that decays energy in a controllable manner. In particular, the following holds for free motions:

Vps1 = V) + (Kpyy —Kp) +D =0, D=0, (3.21)
where D is dissipation of the total energy (i.e. the sum of kinetic and potential energies) within the time-
step interval. The newly introduced free parameters agp and Sgp control dissipation in the kinetic and
potential energy, respectively. They multiply the difference between successive values of unknowns
within the time step, which is more likely smaller for the low-frequency than for the high-frequency
modes. Thus, the scheme is expected to be more dissipative in the high-frequency range than in the low-

frequency range, especially for small At.
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In what follows, this time-stepping algorithm will be referred to as energy-decaying (ED1) scheme. It
follows from (3.21) that ED1 enables the total energy to decay in time when the loading is not applied.
It is worth noting that relation (3.21) does not hold for the G-a schemes from Section 3.3. Consequently,
the incremental change of the energy dissipation for the G-a scheme can be negative, which is an
undesirable and non-physical result. The reason is that the numerical dissipation for the G-a schemes
relies on the decaying of the norm of the discrete solution rather than on the decaying of the energy, as
will be illustrated in Section 3.6.

However, the above described extension of EMC, which lead to ED1, lowers the second-order accuracy
of EMC to the first-order accuracy of EDI, and destroys the preservation of the angular momentum.
The reason for the former is the first order difference in dissipation functions tg;s and S§;s, i.c.
gis~0(At) and S§;s~0(At). The reason for the latter is the departure from the direction of the mid-

point rule velocity approximation (3.19) by including the dissipative term tg;s.
3.4.3 Energy-decaying momentum-conserving scheme of the first-order

It was recognized in e. g. [13], [56], [50], [132] and many other works that the conservation of momenta
is an important feature that makes a given time integration method numerically successful. The
conservation of the angular momentum can be regained for the energy-decaying scheme, if the velocity
dissipation vector is designed so that it has the direction of the mid-point rule velocity approximation,
which is ¥y,41/, = (V41 + v)/2. Let us apply this idea for the first-order system of equations (3.11).

In this case, the governing equations are

v +1 bl /4
Fine un+1/2'¥ + Fine(Un+1/2, Saig) = Fext(tns1/2) = 0, (3.22)

N——
Vn+1/2

with Sglg as in (3.20). Moreover, another equation applies, enforcing the weak form of the equality
between iy 1/, and vy 41/, + Vgis, where the velocity dissipation vector vg;s (that produces dissipation

in the kinetic energy) has the direction of 1.1/, = (Wn41 + v)/2. The weak form is

ué, , —ué / W, —v9)? ve,. +7v° \
AT f sv° o+l B 1+ ntl B ntl Bl f=o, 3.23
e=1 Ve | pO At BED vreH_l)Z _ (US)Z 2 ( )
\ g?lis

where, u® denotes the interpolation of generalized displacements field over the element by using
interpolation functions and nodal values of the element u¢ (this kind of notation is used also for others
interpolated quantities in (3.23)), v denoted the variations of generalized velocities, v¢ = ||[v¢|| is
Euclidean norm of v°, and vg;s = ggisVn+1/2 is the dissipative part of the approximation of velocity.
Note that the degrees of freedom of the element are now engo¢ + emgqs, with R€"dof 3 ¢ < u € R™dof
for generalized displacements and R®™dof 3 ¢ c v € R™Mdof for generalized velocities.

Expressions (3.22) and (3.23) restore the direction of the mid-point rule velocity approximation that
conserves angular momentum. We will call such scheme energy-decaying and momentum-conserving
scheme of the first-order accuracy and denote it as EDMCI, after [4].
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3.44 Energy-decaying momentum-conserving scheme of the second-order

The extension of EDMCI1 to the second-order accuracy, namely to EDMC?2, is a rather demanding task.
A possible approach, presented in [5] and [131] for solids and in [132] for shells, is summarized below.

The idea is to extend the dissipative part of the algorithmic stresses, S§;s from (3.20), and velocity v§;s,

see (3.23), to be of the order O(At?). To this end, the quasi-intermediate parameters (marked with ~)
are introduced as

Gis = (55 —88)/2, 55 =S8+ P(S5y, —S8) = S§is = (S5, —S8)/2 (3.24)
and
g = @S — v (WEyy — v8) (3.25)
dis = (g, )T — (9?2 '

where [ is a parameter (yet to be given), and ﬁn needs to be designed for the second-order

approximations as (), = ("), + 0(At?). The latter can be achieved by a cross-coupling of the stresses
and velocities as

At
B = agp N (T§ — vas1) (3.26)
and
~e e At e e e e
Un =V — p_haED(ﬁ — 1) (Sh+1—S%) - (£n+1 — &), (3.27)
0

As
where h is a suitable geometric constant, with the role to provide dimensionally consistent expressions,

and & are deformations. Note that here agp controls dissipation of both kinetic and potential energy.
Equations (3.26) and (3.27) form a linear system of two equations for f and 7 at each integration point,
which can be pre-solved in a closed form that expresses the quasi-intermediate parameters in terms of
the basic variables, u,,; and v, which appear in v5,,, Su,, and €5, ;. The solution of this linear
system is straightforward to compute.

Because of the cross-coupling, a (considerably) more involved linearization of governing equations is
required for EDMC2. It was shown in [5] that EDMC2 obeys the energy relation (3.21) unconditionally
in At, and is second-order accurate. The incremental dissipation in total energy, D, which is the sum of

dissipations in kinetic and potential energy, is always positive or zero.

3.5 Comparison of schemes in linear setting

In this section, the features of the considered time-stepping algorithms are revisited on a linear,
undamped, unforced, single-degree-of-freedom system with mass m and stiffness k. Its motion is
described by

i+w’u=0 © v+w?u=0, u=v (3.28)
where u is displacement, v is velocity, and w = \/k/_m is natural frequency with time period T = 21/ w.
This equation can be seen as one of the modal equations of a multi-dimensional system. Although w
characterizes physical response of the system, ratio At/T = Atw/(2m) = Q/(2m) is used when
analyzing a time stepping algorithm.
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3.5.1 Amplification matrices

The exact solution of Eq. (3.28) for the initial conditions u(0) = ug, u(0) = u, is, see e.g. [67], u(t) =
ci1cos(wt) + cq,sin(wt), where ¢q; and ¢4, are constants expressed by u, and 1. By defining X(t) =
{u(t),u(t),i(t)}T, one has
X(t) = c;cos(wt) + c,sin(wt), (3.29)
where ¢; and c, are vectors of constants. A numerical solution of (3.28) can be written in a recursive,
one-step form as
X, =AX,,Vne|[0/,..,N—1], (3.30)
where N is the number of discrete time-points, A is the amplification matrix, and X;, i € [0,1, ..., N — 1],
is
Xinc—a = {wi, 4, @37, Xiywn = {wi, vy, 1, 237, Xigp = {wg, v} (3.31)
Here, NG — a={NTR, NMD, BAM, HHT, GAM, EMC} and ED={ED1, ED2}, see Table 3.1 and Table
3.2. An alternative form of (3.30) is

X,.1 =AX,,vne[o01,.. N—1], (3.32)
where
Xing—a = {wi, Atwy, At2iYT, X ywn = {w, Atw;, Aty At?03T, X gp = {w, At} T, (3.33)
and the alternative version of amplification matrix A is obtained by transformation
A =QAQ, (3.34)
where Q has the following forms for the NG — o, JWH, and ED
Q = DIAG[1, At, At?], Q = DIAG[1, At, At, At?], Q = DIAG[1, At]. (3.35)

Note that the terms of A depend on 2 = wAt = 2m At/T.

The amplification matrix A for the NG — o can be obtained if Egs. (3.4)-(3.10) are used to numerically
solve (3.1). For JWH and ED, (3.11)-(3.14) and (3.19)-(3.27) are applied, respectively. The forms of the
amplification matrix are:

1
am + (a — 1)p0N? amAt > (aym — 2B)At?
1 Y
Anc-u =} - B-NPa+an (B E) AtQ%a; + At(ay, —v) |, (3.36)
-
1
—w? —aiQw -1+ E(Zﬂ - D% + ap,
[a{"n +Dy20%  apyAt Atam(am —v)  yAPag(am —v)
Ay = L | Y20 YD tan vyl —aw)  Atam(@n=y) |00
WH ™ Djwn | —vowa U 2 =y)Paf +D  Atag(am—y) ||
—w?ay, —vDwas Quaely —am) %2 —y)02%af +D
Agp; = (A)7T'A, (3.38)
and
Appz = (A3 — AL(A5)TTAQ) ™M1 — AL(A5)™), (3.39)

where
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Dng—o = am + afﬁ_Qz,

Dywn = ai + afy?0?, D = (af — ar), D = (a2 — ay)
Depy = 4 + 02 + 20%(Bep + agp(1 + 2Bgp)), (3.40)
1 2 —At(1 + Bep) 1 2 At(1 = Bp)
A =7 [ 2 ] ’ A, = _[ 2 ] )
2 Atw* (1 + agp) 2 2 |-Atw (1 — agp) 2
and
1r 2 At Ir o -4t -1 1 —agpAt
As _E[Ath 2 ]'A4 _E[Ath 0 ] " Zagy A5 T [aEDAth 1 ] (3.41)

A remark on the amplification matrix for EMC is needed. The accelerations in EMC are obtained by
post-processing and do not directly enter the formulation. Therefore, for EMC, Ayg_q should reduce to
Agwmc, consisting of the first two rows and columns of Ayg_q. For EMC, Ang_o(1,3) = Ang_a(2,3) =

0, and the first two eigenvalues of Ayg_ equal those of Agpc, Which is the reason why Ayng_ 1S also
applicable for EMC.

3.5.2 Numerical dissipation and spectral radius

For linear dynamics, the stability condition follows from the spectral analysis of the amplification
matrix. A spectral radius of an algorithm is defined as

p = max(|4l]), (3.42)
where 4; is the i-th eigenvalue of A. A scheme is said to be unconditionally stable in linear dynamics if

p <1 for any 2 € [0, ), see e.g. [27]. Notation p,, = limg,_,p is also used. The restrictions on the

parameters of G-a and JWH to achieve unconditional stability in linear dynamics are given in e.g. [38],
[49], [67] and [77].
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Figure 3.1: Spectral radius versus At/T. Left: agp = fgp = 0.2 (i.e. p,, = 0.67 for EDI1) and p,, = 0.6. Right:

agp = Pep = 0.04 (i.e. p, = 0.92 for ED1) and p,, = 0.9.
Slika 3.1: Spektralni radij v odvisnosti od At/T. Levo: agp = fgp = 0.2 (0z. p,, = 0.67 za ED1) in p,, = 0.6

Desno: agp = fgp = 0.04 (0z. po, = 0.92 za ED1) in p,, = 0.9.

In order to assess numerical dissipation, we will perform spectral analysis of amplification matrices
(3.36)-(3.39). Let us recall that an algorithm is said to be convergent if for a fixed t,, and n = t, /At, an
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algorithmic solution of (3.28), which is denoted as u,,, converges towards exact solution u(t,) as At —
0. For a convergent algorithm, the first two eigenvalues of amplification matrix are complex conjugate
forany 2 € [0, ), see e.g. [38], [182], [186]. These two, A, and A, are called the principal roots, while
A5 (and also A4, if applicable) is called the spurious root.

The magnitude of p indicates the amount of numerical dissipation; the smaller the spectral radius, the
higher the numerical dissipation. To represent the physical behavior of the structure as realistically as
possible, the low frequencies (i.e. the basic structural modes) should be preserved. Thus, for At/T — 0
an algorithm should provide p = 1. On the other hand, it is desirable that high frequencies are damped
out; thus, for At/T — oo, an algorithm should provide p,, < 1. For a smooth decrease of p while (2

, if applicable) has to hold for any {2 € [0, o),

increases, the condition |A3] < |4, (and |4,4] < |14,
see e.g. [38]. A violation of this results in a cusp, such that with 2 also p increases. Such an algorithm
possesses more numerical dissipation for frequencies near the cusp than in the high-frequency range.
Note that ED1 exhibits such a cusp if agp # Bgp, see e.g. [5].

Provided that the algorithm is convergent, the principal roots of A can be written as, see e.g. [65],

My = A+ Bi=exp(Q(—¢ + 1)), (3.43)
where i = v/—1, & is the algorithmic damping ratio, and 2 = @At = 27 At/T, where & is algorithmic
natural frequency with algorithmic time period T = 2m/@. According to [38], high-frequency
dissipation is maximized if

limg,_,,, B(2) =0. (3.44)
For the G-a schemes, an optimal dissipation was discussed in [38] and more recently revisited in [49].
Condition (3.44) holds also for ED1 and ED2, as can be straightforwardly checked by looking at the
principal roots of the corresponding amplification matrices.

Figure 3.1 presents spectral radius versus At/T for different values of user-defined dissipation
parameters p,, and agp = Pgp. Note that, according to [5],

|1 — agpl 11— Pepl
1+agp " 1+ Bep
for EDI1 and p,, = 0 for ED2. One possible interpretation of the spectral radius function is the following:

Po = Max (3.45)

The later the drop of the function and the sharper it is, the better dissipation features the scheme has.
Figure 3.1 shows that JWH and GAM have the latest drop; thus they preserve frequencies in the low
and also in the middle range. In contrast, NMD and ED1 have the fastest drop, thus dissipating already
in the low frequency range. Other schemes are in-between these two extremes, except NTR and EMC,
which are non-dissipative with constant p = 1. ED2 is an exception, since it yields p, = 0 for any

choice of agp, with the latter influencing only the beginning of the drop, see also [5] and [132].
3.5.3 Numerical dissipation and algorithmic damping ratio, dispersion

Following standard exercise, see e.g. [65], the algorithmic solution of undamped system (3.28) can be
written in a form that resembles the analytical solution of a damped system
u, = exp(—€aty) (cq cos(@ty) + ¢, sin(@ty)) + ¢33, (3.46)

where
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o = Q/At,Q = arctan(B/A),
& = —1n(4% + B?)/2Q.

Numerical dissipation can now be presented by the algorithmic damping ratio &. Moreover, the

(3.47)

algorithmic dispersion can be illustrated by a relative error in the period elongation (T — T) /T, where
T =2n/wand T = 21/, see e.g. [65].

The results are shown in Figures 3.2 and 3.3. Period elongation error in Figure 3.2 demonstrates that
longer time steps cause artificial elongations of the periods. Lower frequencies with longer periods are
less affected by longer time step than higher frequencies with shorter periods. Of the G-a schemes,
BAM and HHT exhibit the highest error in period elongation. ED1 behaves similarly to EMC, whereas
ED2 shows much less error than the other schemes. Figure 3.2 (right) shows that for a small dissipation
the schemes yield practically the same error in period elongation, with the exception of HHT and BAM,
which still suffer slightly more than others from this phenomenon, and ED2, which shows considerably
less error than the other schemes.
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Figure 3.2: Error in period elongation versus At/T. Left: agp = fgp = 0.2 and p,, = 0.6. Right: agp = fgp =
0.04 and p,, = 0.9.
Slika 3.2: Napaka v podalj$anju nihajnega ¢asa v odvisnosti od At/T. Levo: agp = fgp = 0.2 in p,, = 0.6.
Desno: agp = fgp = 0.04in p,, = 0.9.

Algorithmic damping in Figure 3.3 presents the results from Figure 3.1 in a different view. It is
confirmed again that in the low-frequency range, ED1 and NMD have much stronger damping in
comparison with the other schemes and their first-order accuracy is reflected in nonzero slope at At /T =
0, see also [S]. They converge quicker to the final level of dissipation, thus affecting the middle and
higher frequencies in the same manner. GAM and JWH, on the other hand, reach the final damping level
gradually, so that the intermediate frequencies are less affected in comparison with the higher
frequencies. Moreover, they leave low frequencies practically intact even for a considerable dissipation.
ED?2 is again a special case, since its dissipation starts gradually, but continues to rise as At/T — oo,

which is in contrast to all other schemes that always converge to a certain &, = limy, JT—00 &
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Figure 3.3: Algorithmic damping ratio versus At/T. Left: agp = fgp = 0.2 and p,, = 0.6. Right: agp = Pgp =
0.04 and p,, = 0.9.
Slika 3.3: Razmerje algoritmi¢nega dusenja v odvisnosti od At/T. Levo: agp = fgp = 0.2 in p,, = 0.6. Desno:

3.5.4 Overshoot analysis

Qgp = ﬁED = 0.04in P = 0.9.

A tendency to significantly overshoot the exact solution in the early response was discovered in [55]
and later investigated in e.g. [64], [80] and [49] (the latter for GAM, BAM and HHT). The overshoot is

independent of the algorithmic stability. Tamma et al. [153] classified a method that suffers from m*™-

h

order displacement overshooting and n™-order velocity overshooting as the [Um, Vn]-algorithm.
According to this classification, GAM, BAM and HHT are [UO, V1]-algorithms, while two families of
algorithms developed in [81] and [186] that do not suffer from overshoot are classified as [UO, VO].
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Figure 3.4: Overshoot analysis. Absolute error in displacement at first time step. Left: agp = fgp = 0.2 and

Poo = 0.6. nght dgp = BED = 0.04 and P = 0.9.

Slika 3.4: Analiza prekoracitve. Absolutna napaka v pomiku po prvem ¢asovnem koraku. Levo: agp = fgp =

0.2 in p,, = 0.6. Desno: agp = fgp = 0.04in p,, = 0.9.
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Slika 3.5: Analiza prekoracitve. Absolutna napaka v hitrosti po prvem ¢asovnem koraku. Levo: agp = fgp =
0.2 in ps, = 0.6. Desno: agp = fgp = 0.04in p,, = 0.9.
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Figure 3.6: Overshoot analysis. Absolute error in acceleration at first time step. Left: agp = fgp = 0.2 and p,, =
0.6. Right: agp = Bgp = 0.04 and p,, = 0.9.
Slika 3.6: Analiza prekoracitve. Absolutna napaka v pospesku po prvem ¢asovnem koraku. Levo: agp = Bgp =
0.2 in p, = 0.6. Desno: agp = fgp = 0.04 in p, = 0.9.

In this work, we assess the overshoot behavior of the schemes by studying the problem (3.28) withm =
1,T = 1,uy = 1, and 15 = 0. Displacement, velocity and acceleration are considered after one time-
step and compared to the analytical solution. Absolute errors in time t = At are shown in Figures 3.4 —
3.6. They indicate that stronger damping results in larger errors, and that an overshoot in velocity is
observed for NMD, GAM, BAM and HHT, see Figure 3.5 (left). This confirms the known characteristic
of these schemes, which is numerical amplification of high frequencies for At/T > 1. The other
considered schemes do not exhibit overshoot in velocity. Moreover, none of the considered schemes

exhibits overshoot in displacement or acceleration, see Figures 3.4 and 3.6.
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3.5.5 Accuracy analysis

In this section, we numerically investigate global and local solution errors, in order to determine the
order of accuracy of the considered schemes. Local errors for the system (3.28) can be collected in a

vector as

ens1 = {1 Ca i) (3.48)
where ey, ., eq,,, €i,,, are local displacement, velocity and acceleration errors, respectively. Note that
for JWH, vector ey, also includes the error in auxiliary variable v, e,, , ,, while for EMC and ED, no
acceleration error is included, because the schemes evaluate acceleration by post-processing. The local
errors at t,, 4 can be expressed as

en+1 = X(thy1) — AX(ty). (3.49)
where X(t,,,) and X(t,) are exact solutions at t,,; and t,, respectively, see e.g. [182]. The global
error at t,,,; is defined as difference of exact and algorithmic solution at that time-point:

T

Ens1 = {Eupys Bunyy By} = X(tnsn) = X (3.50)

Substituting Eq. (3.49) into (3.50) and by recursively using the obtained expression, global error at t;,,
is expressed by local errors as:

n
Eni1 = Z A'lg; + APFLIE (3.51)
i=0
where E|, is the initial error, see [70] and [182]. Following [182], we set the initial error to be zero for

the analysis bellow.

Let us study the local and global errors by analyzing the problem (3.28) subjected to non-zero initial
conditions, as proposed in [70] and [182]. We choose the following data:

w=2nT=1Luy,=uy=1 (3.52)
Both local and global errors were evaluated at time t,,,.; = 0.4 + At. The algorithmic order of accuracy
was estimated by using different time steps in the range from 10™* to 0.1. Two levels of dissipation
were considered: parameters agp = Sgp = 0.02 and p,, = 0.9 for small dissipation, see Figure 3.7, and
parameters agp = fgp = 0.35 and p,, = 0.5. The latter is the lowest p,, applicable to all schemes, see
Figure 3.8, for large dissipation. The orders of accuracy are visible from the error graphs in Figures 3.7
and 3.8, as they correspond to the slopes of the lines. They are given in Table 3.3, which shows that they
are equal for both levels of dissipation, as expected. For JWH, we show the results for velocity v rather
than for 1. The order of accuracy for the former is O(At?) and for the latter it is O (At), for both local
and global errors. Note that the errors for some schemes change the slope in the interval of the considered
values for At, however, in Table 3.3, the minimum approximate slope is taken into account. Table 3.3
shows that of the considered G-a schemes BAM, HHT, GAM and JWH are second-order accurate in
displacement and velocity, and first-order accurate in acceleration, while NTR and NMD are second-
and first-order accurate, respectively. As for the energy-momentum schemes, EMC and ED2 are second-
order while ED1 is first-order accurate.
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Figure 3.7: Displacement, velocity and acceleration error for agp = Sgp = 0.02 and p, = 0.9.

Slika 3.7: Napaka v pomikih, hitrostih in pospeskih za agp = fgp = 0.02 in p,, = 0.9.
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Figure 3.8: Displacement, velocity and acceleration error for agp = fgp = 0.35 and p,, = 0.5.
Slika 3.8: Napaka v pomikih, hitrostih in pospeskih za agp = fgp = 0.35in p,, = 0.5.
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Table 3.3: Order of accuracy for considered schemes (displacements, velocity, acceleration).
Preglednica 3.3: Red natan¢nosti za obravnavane sheme (pomiki, hitrosti, pospeski).

agp = Bep = 0.02,p, = 0.9 agp = Bep = 0.35,p, = 0.5

Scheme

Local error Global error Local error Global error
NTR (3,3, 2,2,2) (3,3,3) (2,2,2)
NMD (3,2,1) (1,1,1) (3,2,3) (1,1,1)
BAM (3,2,1) (2,2,1) (3,2,1) 2,2,1)
HHT (3,2,1) (2,2,1) (3,2,1) (2,2,1)
GAM (3,2,1) (2,2,1) (3,2,1) (2,2,1)
EMC (3,3) (2,2) (3,3) (2,2)
JWH (2,2,1) 2,2,1) (2,2,1) (2,2,1)
EDI1 2,2) (L,D) (2,2) (1,D)
ED2 (3,3) 2,2) (3,3) 2,2)

3.5.6 Linear example

We compare the considered schemes for problem (3.28) withm = 1,T = 1,k = (2n/T)*m = 4m? and

the initial conditions ug = 1,15 = 0.
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Figure 3.9: Model response for At = T /10, analytical solution is in black. Left: displacement for agp = SBgp =
0.2 and p,, = 0.6. Right: displacement for agp = fgp = 0.04 and p,, = 0.9.
Slika 3.9: Modelni odziv za At = T /10, analiti¢na resitev je oznacena s ¢rno. Levo: pomiki za agp = fgp = 0.2
in po, = 0.6. Desno: pomiki za agp = Pgp = 0.04 in p,, = 0.9.

Different levels of numerical dissipation and time step lengths At are used, to demonstrate the influence
of both values on the response of the system. Figures 3.9 and 3.10 show that for a longer time step At =
T /10, displacement response is much more strongly damped, compared with a shorter time step At =
T/100. This is directly correlated to Figure 3.1, where for At/T = 0.01, no drop is yet observed on all
the curves, with the exceptions of ED1 and NMD, while for At/T = 0.1 all the curves display at least a
slight drop. As before, for the same values of dissipation parameters p,,, NMD exhibits the strongest
dissipation, while NTR and EMC both yield identical response with no dissipation. Period elongation is
also evident, if we compare the considered schemes with the analytical solution, but it is more noticeable
for a longer time step, while for a shorter time step, no elongation is observed even at the final time ¢ =
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20s. A noticeable exception is ED2 for agp = 0.2, where the period elongation is less evident even for
a longer time step, which is directly correlated to the ED2 curve in Figure 3.2.
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Figure 3.10: Model response for At = T /100, analytical solution is in black. Left: displacement for agp =
Bep = 0.2 and p,, = 0.6. Right: displacement for agp = Bgp = 0.04 and p,, = 0.9.
Slika 3.10: Modelni odziv za At = T /100, analiti¢na resitev je oznacena s ¢rno. Levo: pomiki za agp = fgp =

0.2 in p,, = 0.6. Desno: pomiki za agp = fgp = 0.04 in p,, = 0.9.
3.6 Comparison of the schemes for nonlinear stiff equations

In this section, we analyze the performance of the above considered schemes in nonlinear elasto-
dynamics. To this end, we implemented the schemes for a geometrically exact, inextensible director
shell model with large rotations with Reissner-Mindlin kinematics, presented in detail e.g. in [23], [28],
[140] and [142]. In particular, the implementation was carried out for the four-node, isoparametric, shell
finite element, with the assumed natural strain formulation of Bathe and Dvorkin [48] for the transverse
shear strains, and with the stress-resultant material model of the Saint-Venant Kirchhoff type. The
rotations of the shell director are treated by an additive approach (iterative components of rotation vector
are added in order to get incremental rotation vector), update of reference configuration frame at the end
of each increment, and a quaternion regulation of the current rotation matrix at each increment
(algorithm IQ from Table 2.7), see e.g. [26], [27], [104]. Thus, the description of the shell director
rotation is singularity-free. Used shell formulation is described in detail for static formulations in
Chapter 2, where it is denoted as MITCA4.

Because of a large difference between the bending and the membrane deformation modes, see e.g. [104],
[107], the shell finite element formulations yield numerically stiff equations. The numerical stiffness
presents a significant challenge in computing the dynamic response and is therefore a demanding test
for the time-stepping algorithms. Consequently, the numerical examples below will illustrate how the
above considered schemes perform for the nonlinear stiff problems.

Let us mention that our shell formulations for NTR, NMD, GAM, HHT, BAM, JWH, EMC and ED1
have 5 nodal degrees of freedom (3 displacements of the mid-surface and 2 rotations of the inextensible
shell director), and that our shell formulations for EDMC1 and EDMC2 have 11 nodal degrees of
freedom (3 mid-surface displacements, 2 rotations of the shell director, 3 mid-surface velocities and 3
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shell director velocities). We will omit a more detailed description of these finite element models and
their implementations in this section. Nevertheless, we refer to Chapter 2 for description of static
formulation and Chapters 4, 5 and 6 for its expansion to dynamics. Furthermore, let us recall the basic
references:

(1) For NTR, we refer to [27].

(i1) For G-a (GAM, HHT, BAM) and NMD, we refer to [97], [96].

(iii) For EMC, we refer to [146], [23] and [26].

(iv) For ED1, we refer to [26].

W) For EDMCI1 and EDMC2, we refer to [4], [5] and [132].

(vi) To our best knowledge, a JHW shell formulation (of any kind) has not been applied so far,

but we omit its description as well.

We may also mention a few additional useful references for shells: [102], where NTR, NMD, GAM,
HHT, BAM, EMC and EDI1 are implemented for a rotation-free shell with 6 kinematic parameters,
[158], where NTR, BAM and EMC are implemented for a solid shell with enhanced assumed strains
and [37], where NTR and EMC are implemented for a shell finite element with the drilling degree of
freedom.

3.6.1 Vibration of a clamped S-shaped plate

Figure 3.11: Clamped S-shaped plate problem.
Slika 3.11: Problem vpete plos¢e S oblike.

Let us consider a vibration of an S-shaped plate, presented in Figure 3.11, which was previously
analyzed in e.g. [132]. The plate is clamped at two edges and subjected to an impulsive corner force as
shown in Figure 3.11. The plate data are: thickness h = 0.05, material density p = 5, Young’s modulus
E = 2 10°, and Poisson’s ratio v = 0.3. The plate is at rest at t = 0. Its dynamic response was computed
up to ty = 10 by using constant time steps At = 2 107N for N € [1,2,3,4,5]. Thus, the difference
between the largest and the smallest time step is 10°. Two different levels of dissipation were
considered: (i) smaller dissipation with p,, = 0.9 (for the dissipative schemes from Table 3.1) and

agp = Pep = 0.05 (for the energy-decaying schemes), and (ii) larger dissipation with p,, = 0.6 and

Agp = ﬁED =0.2.
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Figure 3.12: Clamped S: deformed meshes for EDMC2, agp, = Bgp = 0.2 and At = 0.02.
Slika 3.12: Vpeti S: deformirane mreze za EDMC2, agp, = fzp = 0.2 in At = 0.02.
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Figure 3.13: Clamped S: total energy error. Left: agp = fgp = 0.2 or p,, = 0.6. Right: agp = fgp = 0.05 or
P = 0.9.
Slika 3.13: Vpeti S: napaka v celotni energiji. Levo: agp = fgp = 0.2 ali p,, = 0.6. Desno: agp = fgp =
0.05 ali p, = 0.9.
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Figure 3.14: Clamped S: displacement error. Left: agp = fgp = 0.2 or p,, = 0.6. Right: agp = fgp = 0.05 or
P = 0.9.
Slika 3.14: Vpeti S: napaka v pomikih. Levo: agp = fgp = 0.2 ali p,, = 0.6. Desno: agp = Pgp = 0.05 ali
P = 0.9.
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The results are presented in Figures 3.12 — 14. Note that the non-dissipative NTR was not able to
compute a solution for any of the chosen At. Figure 3.12 presents some deformed configurations,
showing that out-of-plane deformations (associated with the lower-frequency bending modes) are
accompanied by some in-plane deformations (related to the higher-frequency membrane modes).

In Figure 3.13, a relative error in the total energy (which is the sum of the kinetic and the potential
energies) is shown with respect to At for the final time of the analysis t¢. For each considered scheme,
the error was computed as
€Eior — |Etot - Etot,lim|' (3.53)
where Eiot1im 1s the total energy computed for the smallest chosen time step At = 2 107> (for a
considered scheme). The slopes of the lines in Figure 3.13 indicate the order of accuracy of the schemes
in an energy sense. Recall that the kinetic and potential energies are complicated expressions of the
solution itself, i.e. of generalized displacements (and velocities) and their time derivatives. From Figure
3.13, one can conclude that:
e for the second-order schemes EDMC2 and EMC, the energy-convergence is of order two,
e for the second-order schemes HHT and BAM, the energy-convergence is of order two for small
At and of order one for large At,
e for the second-order scheme GAM, the energy-convergence jumps between orders one and two,
e for the second-order schemes JWH, the energy-convergence is of order one (except for small
dissipation and small At where it is of order two),
e for the first-order schemes NMD, ED1 and EDMC1, the energy-convergence is of order one for
small At and less (almost constant) for large At.
Thus, only the slopes of the EDMC2 and EMC energy lines do not depend neither on At nor on
dissipation, and the slope of the JWH energy line depends only slightly on At for small dissipation. For
the other schemes, the slope of the energy line is At-dependent.

Figure 3.14 shows the norm of a generalized displacement error (following [132]), which is calculated
on the basis of nodal differences at ¢ as
1/2

ug, —UG i ”)2 . (3.54)

Mnode
ew=| 2, (1
a=1

Here, u® are generalized displacements at node @, and u,, are the values obtained for At = 2 107°.

Error ey is computed for each of the considered schemes. One can see that the slopes in Figures 3.13
and 3.14 do not match. Nevertheless, some similarities can be observed. In Figure 3.14, there are
basically two sets of curves: one for the first-order schemes and one for the second-order ones. The
displacement-convergence of the first-order schemes is approximately of order one (for small At) or less
(for large At), and the displacement-convergence of the second-order schemes is approximately of order

two (for small At) or less (for large At). Thus, the displacement-error of all the schemes is At-dependent.

Note that our results are in approximate accordance with [49] (i.e. only for At < 2 1072) where they
state that GAM, BAM and HHT are second-order accurate for displacements and velocities also in
nonlinear regime.
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3.6.2 Flying L-shaped plate

t
Figure 3.15: Flying L problem: mesh N = 2 with 2 elements per width.

Slika 3.15: Problem letecega L: mreza N =2 z 2 elementoma po Sirini.

Let us consider an L-shaped plate from Figure 3.15, which is tossed in space by a set of impulsive nodal
forces producing large bending and membrane deformations. The plate has thickness h = 0.1, material
density p = 1, Young’s modulus E = 5 10° and Poisson’s ratio v = 0.3. At t = 0, it stays at rest. The
dynamics of the plate is analysed until t; = 20 by using the time steps At € [2 1072,1072,1073,1074].
The chosen damping factors are: p,, = 0.6 (for the dissipative schemes from Table 1) and agp = Sgp =

0.2 (for the energy-decaying schemes).

=2 t=3 t=4 W t=5
\\\s‘\ g \\ ‘
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Figure 3.16: Flying L: deformed configurations (N = 2) for EDMCI, ayp = Bgp = 0.2 and At = 0.001.
Slika 3.16: Leteci L: deformirane konfiguracije (N = 2) za EDMCI, agp = Bgp = 0.2 in At = 0.001.

The results are presented in Figures 3.16 — 3.18. Figure 3.16 shows some deformed configurations
illustrating considerable vibrations during the plate motion. The dissipative schemes, which damp high-
frequency stiff membrane vibrations and preserve low-frequency bending vibrations are able to compute
a response for the chosen time steps. An exception is EDMC2, which falls for At = 0.02. On the other
hand, non-dissipative EMC cannot compute responses for At = 0.02 and At = 0.01, and non-
dissipative NTR is not able to compute a solution for any of the chosen At.
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Figure 3.17: Flying L: evolution of the total energy for (a) BAM, (b) HHT, (c) JWH, (d) ED1, (¢) EDMC1 and
(f) EDMC2.
Slika 3.17: Leteci L: sprememba celotne energije za (a) BAM, (b) HHT, (c) JWH, (d) ED1, (e) EDMCI1 in (f)
EDMC2.

Figure 3.17 show evolution of the total energy with time for chosen time steps. After the end of the load
application, the deformations are predominantly bending ones, i.e. low frequency modes, which are not
dissipated, and the schemes compute almost constant energy. After that, high frequency vibrations,
associated with small patches of elements, are observed, which are damped by the dissipative schemes
(the amount depends on the properties of the scheme) and the energy begins to decrease. After effective
dumping of these high-frequency vibrations, the energy becomes again almost constant. A similarity of
curves can be noticed for G-a schemes, BAM, HHT and JWH. A similarity of curves can be also noticed
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for the first-order energy-decaying schemes, ED1 and EDMCI, but the latter curves differ from those
of G-a schemes. ED1 and EDMCI1 start with considerable dissipation earlier than G-a schemes. We
note that the chosen dissipation parameters for ED1 and EDMCI1 equal p,, = 0.67 (see (3.45)), which
is more than p,, = 0.6 that was chosen for G-a schemes. Second-order schemes tend to “flatten” the
energy curved by reducing At, with this being most clearly expressed in EDMC2. There is no such effect

for the first-order schemes.
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Figure 3.18: Flying L: evolution of (a) linear and (b) angular momentum for At = 0.01.
Slika 3.18: Leteci L: sprememba (a) gibalne koli¢ine in (b) vrtilne kolicine.

Table 3.4: Flying L: maximal linear momentum change in one time step after t > 1.
Preglednica 3.4: Lete¢i L: najve¢ja sprememba gibalne koli¢ine v enem koraku po ¢asu t > 1.

aX(lan+1” - "Ln”> (%]

1Ll
At
NTR, NMD, EMC, HHT,
BAM GAM JWH

ED1, EDMC1, EDMC2
21072 1107* 210° 710°° 0
1072 3105 61077 210°° 0
107 31077 0 21078 0
107* 1107° 0 0 0

Table 3.5: Flying L: maximal angular momentum change in one time step after ¢ > 1.
Preglednica 3.5: Leteci L: najvecja sprememba vrtilne kolic¢ine v enem koraku po ¢asu t > 1.

aX(Illn+1ll - ”]n”) (%]

Tl
At
EMC, EDMC1,
NTR NMD BAM HHT GAM JWH ED1
EDMC2
2102 15 0.06 0.10 0.1 0.04 0.06 0.03 0
10-2  0.29 0.02 0.02 0.01 0.01 0.02 0.01 0
10-3 0002 210™* 410™* 410™* 310™* 510°* 110~* 0
10+ 003 510 110~ 510™¢ 210=¢ 310 310°° 0
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Figure 3.18 present evolution of the linear and angular momentum, L and J, respectively. The ordinate
axes on Figure 3.18 (a) and (b) show the norms Y3_;|L;| and Y3_, |J;|, correspondingly. Figure 3.18 (a)
and Table 3.4 illustrate that NTR, NMD, EMC, HHT, ED1, EDMC1, EDMC2 exactly conserve linear
momentum, and that also BAM, GAM and JWH (i.e. G-a schemes with a,,, # 1) have good properties
in linear momentum conservation (they preserve it almost exactly). More importantly, Figure 3.18 (b)
and Table 3.5 show that EMC, EDMCI1 and EDMC2 also exactly conserve the angular momentum,
whereas the other schemes do not possess this conservation property for J (the deviations from 0 are
much larger than in the case of L, especially for NMD and ED1). The G-a schemes manage to conserve
angular momentum only approximately (the conservation is improved though if small time steps are
used). NTR performs the worst of the considered schemes with a large jump in the angular momentum
just before its blow up. We note that 0 in Tables 3.4 and 3.5 means that the value is less than 1077,

In order to check dependency of results on the mesh, two additional meshes presented in Figure 3.19
were chosen. The deformed configurations for the finer mesh are given in Figure 3.20, and evolution of
the total energy in time is shown in Figure 3.21. We note that self-contact can be observed in Figure
3.20, as we did not implement any procedures to avoid its occurrence. Figure 3.21 shows that there is
smaller difference in energy curves for ED1 and EDMCI1 than in the case of HHT and JWH.
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Figure 3.19: Flying L: refined meshes (N =4 and N = 8) with 4 and 8 elements per width.
Slika 3.19: Leteci L: zgoscene mreze (N =4 in N = 8) s 4 in § elementi po S$irini.

t=10

Figure 3.20: Flying L: deformed configurations (N = 8) for EDMC1, agp = Bgp = 0.2 and At = 0.001.
Slika 3.20: Leteci L: deformirane konfiguracije (N = 8) za EDMCI1, agp = fzp = 0.2 in At = 0.001.
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Figure 3.21: Flying L: evolution of the total energy for different mesh densities for (a) HHT, (b) JWH, (c) ED1

and (d) EDMCI.
Slika 3.21: Leteci L: Sprememba celotne energije za razli¢ne gostote mrez za (a) HHT, (b) JWH, (c) ED1 in (d)
EDMCI.
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Figure 3.22: Short cylinder: geometry and loading.
Slika 3.22: Kratek cilinder: geometrija in obtezba.

We compute a classical example for shell dynamics, the flying cylinder, see Figure 3.22 and e.g. [23],
[26], [50] and [146]. The data are: R = 7.5, H = 3, thickness h = 0.02, density p = 1, elastic modulus
E = 2 108 and Poisson’s ratio v = 0.3. The cylinder is loaded by impulsive forces acting at the nodes
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marked in Figure 3.22. Att = 0, the cylinder is at rest, and for t > 1, the cylinder exhibits free motion.
The example was computed for different time steps, At € [2 1072,1072,51073,1073,107*], and two
versions of dissipation parameters, p., € [0.6,0.9] and agp = Bgp € [0.05,0.2]. Of special interest are
results for t > 1, where we monitor kinetic, potential and total energy of the cylinder, as well as the

linear and angular momentum.

(a) (b)
e R
£ . = S —~ e o e - T S s o
5 . h ) | et
400 F) ™ S 400 | Sl ——————
| T —— | G YW
| | e,
| oSO T | ey
! \~ [ - -
300 f{ N, s0ff Tl
| = |
I YA I
- | . - |
S | T~. S |
“ 200 e 200
P T - |
l !
| — NTR —-- NMD —— HHT BAM | — NTR —-- NMD —— HHT BAM
100 100 |
, GAM JWH EMC ED1 | GAM JWH EMC ED1
{ —— EDMC1 —- EDMC2 [ —- EDMC1 —- EDMC2
I} 1}
O ! 1 1 o ! 1 1
0 10 20 30 40 0 10 20 30 40

t

t

Figure 3.23: Short cylinder: total energy evolution for At = 0.02. Left: agp = Bgp = 0.2 or p,, = 0.6. Right:
agp = Bgp = 0.05 or p,, = 0.9.
Slika 3.23: Kratek cilinder: spreminjanje celotne energije za At = 0.02. Levo: agp = Bgp = 0.2 ali p,, = 0.6.
Desno: agp = Bgp = 0.05 ali p,, = 0.9.

Figure 3.23 shows energy evolution for both chosen levels of dissipation for time interval [0, tr = 40].
A large difference can be observed between the results of the first order NMD, ED1 and EDMCI1 and
the second order schemes: the dissipation is much larger for the first-order schemes and the difference
between the results in Figure 3.23 (a) and (b) is considerable for the first order schemes. The difference
for the second-order schemes is less noticeable. For EDMC2 and At = 0.02, algorithmic failure
occurredatt = 1 and t = 29, see Figure 3.23 (a) and (b), respectively, whereas NTR (because of blow-
ups) and EMC (because of algorithmic failures) did not manage to provide results for the complete time

period of interest.
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Figure 3.24: Short cylinder: step by step change of total energy for t > 1 and p,, = 0.6, agp = Bgp = 0.2: (a)
EDMCI, (b) EDMC?2, (c) GAM, (d) JWH, (e) HHT and (f) NMD.
Slika 3.24: Kratek cilinder: sprememba celotne energije po posameznih korakih za t > 1 in p,, = 0.6, azp =
Bep = 0.2: (a) EDMCI1, (b) EDMC2, (¢c) GAM, (d) JWH, (¢) HHT in (f) NMD.

Let us recall that the energy-decaying in nonlinear elasto-dynamics is a basic indicator of an algorithmic
stability in the nonlinear regime. To this end, Figure 3.24 and Table 3.6 show normalized incremental
changes in total energy. Negative values on ordinates in Figure 3.24 (and in Table 3.6) are associated
with positive incremental energy dissipation, whereas positive values denote negative incremental
energy dissipation (which is non-physical). As in the previous example, the influence of the time step
on the level of dissipation is clearly seen. The results in Figure 3.24 are presented only for At €
[1072,51072,1073], but the trend is the same for the other chosen time steps shown in Table 3.6. For
GAM, JWH, BAM and HHT, the total energy can increase substantially from one time step to another,
indicating negative incremental energy dissipation, see Figure 3.24 (c) and (d) and Table 3.6. In this
regard, JWH performs the worst among all G-a schemes. Although JWH performs well in the linear
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dynamics, it seems that it is outperformed by the other G-a schemes in the nonlinear setting.
Surprisingly, NMD performs well and computes positive incremental energy dissipation for all time
steps. On the other hand, ED1, EDMC1 and EDMC2 are designed to dissipate the total energy.
Therefore, it is not surprising that their incremental energy dissipations are always positive, see Figure
3.24 (a) and (b) and Table 3.6. The EMC exactly conserves the energy. Although not shown in the
previous example, note that the same conclusions on energy dissipations can be made for the flying L

example.
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Figure 3.25: Short cylinder: step by step change of total energy for t > 1 and p,, = 1: (a) EMC, GAM, JWH, (b)
NTR, NMD, HHT, BAM.
Slika 3.25: Kratek cilinder: sprememba celotne energije po posameznih korakih za t > 1 in p,, = 1: (a) EMC,
GAM, JWH, (b) NTR, NMD, HHT, BAM.

In Figure 3.25, we present normalized incremental changes in total energy for p,, = 1. For this case,
the schemes JWH and GAM conserve the energy and also the linear and angular momentum. The energy
conservation is due to the application of the algorithmic stress resultants. This would not have been the
case for any other type of computation of stress resultants. Namely, for all considered schemes, the
algorithmic stress resultants are chosen to be computed as a combination of stress resultants at t,, and
tha1, see Eq. (3.8), (3.9) and text below (3.9). The conservation of linear and angular momentum is
because for p, = 1 one gets af = a,, = 1/2 for GAM and JWH, i.e. the mid-point rule, see Table 3.1.
This makes GAM for p,, = 1 equal to EMC, and JWH becomes an energy and momentum conserving
scheme with displacements and velocities as unknowns. The second conclusion from the results for
P = 1 is that NMD, BAM and HHT transform to NTR, as can also be checked from Table 3.1 and
Figure 3.25 (b). Thus, the schemes in Figure 3.25 (a) exactly conserve the energy for p,, = 1, while the
schemes in Figure 3.25 (b) show a blow up of energy, which causes the schemes to fail.

In Figure 3.26, we show the error (3.53) in total energy for different At. We look at the total energy at
time t = 5, where Eyotjiy in (3.53) is computed for each scheme for At = 10™*. The approximate
second order inclination of the lines in Figure 3.26 is seen for NTR, EMC and EDMC2, whereas for
BAM and HHT the energy-error changes between first order and second order. The latter is also valid
for JWH and GAM, although with the predominant energy-error of the first order. NMD, ED1 and
EDMCI clearly show approximate first order inclination of energy lines. Note that the slopes of the
lines match well with the S-shaped plate example. Table 3.7 shows the CPU time for different At for
the considered schemes, except for NTR, which fails to compute complete response for all time steps.
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Note that the schemes need a similar CPU time to arrive at the final configuration. The exceptions are
ED1, which is approx. 15% faster, and EDMC1, which is approx. 20% slower, compared to GAM.

Table 3.6: Short cylinder: maximal total energy change in one step after ¢ > 1 for p,, = 0.9 or agp = frp = 0.05.
Preglednica 3.6: Kratek cilinder: najvecja sprememba celotne energije v enem koraku po t > 1 za p,, = 0.9 ali

App = ﬁED = 0.05.

En1—E
max (M) [%]
At En
NMD BAM HHT GAM JWH ED1 EDMC1 EDMC2
2102 —0.009 0.023 0.029 0.067 0.245 —0.008  -0.002 -31077
102 —0.003 0.003 0.004 0.011 0.037 -0.003 -7107* -5107°
510-3 —8107* 0.001 0.001 0.002 0.012 -8107* -210"* -810~
1073 -410"> 2107 3107% 71075 0.006 -510"> -110"% 21073
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== ) EMC, EDMC2
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Figure 3.26: Short cylinder: total energy error at t = 5 for p, = 0.9, agp = frp = 0.05.
Slika 3.26: Kratek cilinder: napaka v celotni energiji ob ¢asu t = 5 za p,, = 0.9, agp = Sp = 0.05.

Table 3.7: Short cylinder: CPU time [s] for p,, = 0.6 or agp = frp = 0.2.
Preglednica 3.7: Kratek cilinder: racunski ¢as [s] za p, = 0.6 ali agp = Bgp = 0.2.

At NMD BAM HHT GAM JWH EMC ED1 EDMC1 EDMC2
21072 16 17 18 18 17 / 14 21 /
1072 29 30 30 31 35 33 24 37 33
51073 53 53 54 53 57 57 48 71 57
1073 196 221 236 237 241 264 203 299 249
107* 3136 3309 3239 3206 3275 3170 3018 3621 3233
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3.7 Chapter conclusions

In this chapter we revisited some generalized-a and energy-decaying schemes. Many of the former
schemes are popular choices for commercial and research finite element codes, whereas the latter
schemes are unnecessarily neglected in this regard. We made a condensed, yet comprehensive and
illustrative comparison of these schemes, both in linear and nonlinear regime, in order to highlight their
advantages and disadvantages.

For linear dynamics, the JWH scheme shows the best dissipative properties of all. It also does not suffer
from overshoot in velocity like other generalized-a schemes (NMD, GAM, BAM and HHT). On the
other hand, the dissipative properties of the second-order energy-decaying scheme deviate from the
others in the sense that its spectral radius at infinity is zero and it completely removes higher-frequency
modes.

For nonlinear dynamics, the momentum conservation plays a key role in achieving physically correct
discrete representation of a problem. While most of the generalized-a schemes achieve an approximate
conservation of linear momentum, none can conserve the angular momentum, which is accomplished
only by the energy-momentum conserving and some of the energy-decaying schemes (if generalized
velocities are used as additional degrees of freedom). The generalized-a methods do not decay the sum
of potential and kinetic energies, although Erlicher et al. [49] reported that generalized-a methods show
asymptotic energy stability in their nonlinear tests for large amounts of dissipation. The JWH scheme
performs the worst of the G-a schemes in this sense, as its energy oscillations are the biggest. On the
other hand, the energy-momentum conserving scheme ensures strict conservation of energy and
momentum, but algorithmic failure can still occur because of non-damped oscillations. The energy-
decaying and momentum-conserving schemes seem as a natural choice for nonlinear problems, because
they preserve momenta and controllably dissipate the energy. Their deficit is that EDMCI is only first-
order accurate, while EDMC2 can fail for longer time steps.

To the best of our knowledge, JWH has not yet been analyzed in such detail in the nonlinear setting. It
has been reported before that the properties of JWH in linear dynamics are excellent [80], but this study
shows that JWH does not extend these properties to nonlinear dynamics. Among the considered
generalized-a schemes, JWH is no better that the other generalized-a schemes in nonlinear regime.
Moreover, for larger time steps and small chosen dissipation, JWH may easily fail, which is also the
case for HHT. Furthermore, the nonlinear numerical examples show that the level of energy dissipation
in general depends on the scheme accuracy (a lot), the chosen values for user controlled dissipation
parameters, and the density of the chosen mesh.

The energy-decaying (and momentum-conserving) schemes seem to be the best option for nonlinear
dynamics, because the fundamental structure of non-discretized equations is preserved and the decay of
the energy can be controlled. However, the second-order accurate energy-decaying scheme that is
considered in this chapter is obviously not optimal, and a better version should be searched for.
Moreover, it demands generalized velocities as additional degrees of freedom, which complicates its
implementation for the standard finite element formulations.



Lavrencic, M. 2020. Numerical Procedures for Nonlinear Static and Dynamic Analyses of Shell Systems of Various Sizes. 97
PhD Th. Ljubljana, UL FGG, Third cycle doctoral study Built Environment.

4 ENERGY-DECAYING AND MOMENTUM-CONSERVING SCHEMES FOR
TRANSIENT SIMULATIONS WITH MIXED SHELL QUADRILATERALS

Chapter abstract

We present the four-field and the three-field mixed functionals that can be used to derive in an elegant
way the energy-decaying and momentum-conserving (EDMC) time-stepping schemes for transient
simulations with mixed finite elements. The functionals are applied for derivation of EDMC schemes
for the previously identified high-performance mixed-hybrid shell finite elements that combine the
assumed natural strain concept and mixed interpolations of Hu-Washizu or Hellinger-Reissner type.
functionals are extended to the transient regime, where their robustness is preserved. The superior
properties of these shell finite elements that are reflected in statics by very large solution steps and low-
sensitivity to mesh distortion are through the four-field and the three-field mixed functionals extended
to transient simulations. The content of this chapter is taken from the yet unpublished article [106].

Nonlinear numerical examples in this chapter are computed using the dynamic extensions (EDMC1 and
EDMC?2 schemes) of previously analysed finite elements MITC4, MITC4+, EASS, +HW and +HR, see
Tables 2.2 — 2.5 and Sections 2.2.1, 2.3.1 and 2.4.1 — 2.4.4. Furthermore, the rotation algorithm IQ was
applied in all elements, see Table 2.7 and Section 2.2.2.

4.1 Chapter introduction

When investigating shell structures, a long-term time-domain analysis involving large displacements,
rotations and strains due to dynamic loads is a difficult task. This is a consequence of the fact that
discrete equations of shells are very stiff but also owing to the existence of conservation laws that should
be appropriately represented in the mechanical model, including the conservation of momenta and
energy under the proper boundary conditions. These properties are fundamental to the underlying
physical system and have motivated the development of many works that inherit them. See e.g. [146]
for the description of energy and momentum conserving (EMC) scheme and [23] for the implementation
details of the EMC scheme for shell quadrilaterals.

On the other hand, for structural dynamic problems discretized with finite elements, it has often proven
desirable or even necessary for the time-stepping schemes to controllably dissipate the unresolved high-
frequency modes, so that their adverse effects on the numerical solution can be avoided, see e.g. [102],
[108]. Therefore, a time integration scheme with controllable numerical dissipation in high-frequency
modes and at the same time with less numerical dissipation in the low-frequency range is desirable. To
this end, many single-step schemes with numerical damping have been proposed as an extension of the
Newmark method. Such schemes are e.g. various a-methods proposed in [38], [65], [170] for linear
dynamics and extended to nonlinear dynamics in [97], among many others.

Algorithms that are unconditionally stable for linear dynamics often lose this stability in the nonlinear
case. Therefore, energy criterion is used to evaluate the scheme stability in the nonlinear regime, see
e.g. [97], [105], [132], stating that a scheme is unconditionally stable in nonlinear elasto-dynamics if for
free motion (V14 — V) + (K41 — Ky) < 0 is valid for a time step [t,, t,4+1], where V and K are
potential and kinetic energies, respectively. This equation is in general not satisfied for the a-methods,
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even for small time steps, see e.g. Chapter 3 or [132], [105]. It was also recognized, see e.g. [97], [132],
[102], [105], that in order to achieve robustness, a time integration scheme must not only have some
numerical (i.e. algorithmic) damping, but at the same time ensure the preservation of the underlying
physic, i.e. the conservation of momenta, which the a-methods fail to achieve, see e.g. [105], [132]. The
energy-decaying, momentum-conserving (EDMC) schemes, proposed in [4], [5], [132] or [51], on the

other hand, manage to conserve these properties, which brings them to the focus of our attention.

We listed in Section 2.1 properties that an almost “optimal” finite element should possess and later
extensively tested a large assortment of mixed formulations that improve the underlying displacement-
based finite element. Let us list some of the most prominent again: (i) assumed natural strain (ANS)
technique, see e.g. [48] and [89] for the treatment of transverse shear and membrane strains,
respectively; (ii) enhanced assumed strain (EAS) technique, see e.g. [22], [12] and [143]; (iii) mixed-
hybrid formulations based on the Hu-Washizu (HW) or Hellinger-Reissner (HR) functional, see e.g.
[59], [60] and [159]. In Chapter 2, as well as in articles [104] and [107], we have concluded that in order
to obtain a near optimal quadrilateral shell finite element, one should combine the ANS and hybrid HW
or HR formulations.

Since some frequently applied techniques, such as ANS, EAS or reduced integration, do not affect the
design of the EMC or EDMC schemes, their use has often been reported also in the shell dynamics field.
The ANS for transverse shear strains, proposed by Dvorkin and Bathe in [48], has been widely applied
to the shell elements in dynamics. On the other hand, the more recent ANS for membrane strains,
proposed by Ko et al. in [89], has not yet been used in a shell dynamics formulation to the best of our
knowledge. Vu-Quoc and Tan [158] developed a mixed Hu-Washizu type variational formulation,
employing the EAS method for the solid shell element and EMC time-stepping scheme. Gebhardt and
Rolfes [50] further developed a mixed EAS formulation for extensible director rotation-less shell

formulation and applied the energy-decaying scheme following the ideas of [4], [5], [132].

Possible applications of the Hellinger-Reissner- or Hu-Washizu-based mixed-hybrid formulations in the
domain of shell dynamics is, on the other hand, still rather unexplored. The first truly mixed-hybrid
formulation for shell dynamics was developed by Betsch and Janz [13], who extended the Hu-Washizu
type variational formulation for inextensible director shell finite elements for the energy-momentum

conserving (EMC) time-stepping scheme.

In this chapter we aim to present variational formulation and time discretization that yield an energy-
decaying, momentum-conserving scheme for mixed-hybrid formulations, based on the Hu-Washizu or
Hellinger-Reissner functional.

The rest of the chapter is organized as follows. In Section 4.2 we introduce the proposed approach to
design the EDMC integrator on a simple spring pendulum model. We start by the development of
variational formulation and then develop the discretization in time for which we derive discrete balance
laws. This is done separately for the formulations based on the Hu-Washizu and Hellinger-Reissner
variational formulations in Sections 4.2.2 and 4.2.3, respectively. In Section 4.3, the presented
formulations are then developed in the framework of mixed-hybrid shells. Section 4.4 is devoted to
numerical examples, while conclusions are drawn in Section 4.5.
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4.2  Spring pendulum formulation

Following the disposition in [13], we study mixed dynamic formulations for spring pendulum in order
to prepare a foundation for a more demanding problem, namely mixed dynamic formulations for shells,
which will be addressed in Section 4.3.

Figure 4.1: Simple spring pendulum.

Slika 4.1: Preprosto vzmetno nihalo.
4.2.1 2-field formulation

For the spring pendulum from Figure 4.1, the equations of motion can be derived by imposing the

stationarity of the following function, see e.g. [13]
te

G(q,v) = f (L(gv) + (4 - v) - ByL(q, v))dt, @.1)

to
where (g, v) € R3 x R3 are space-state coordinates in time interval [t, t,], denoting the position vector
and velocity of the particle with mass m, respectively. ( . ) denotes the time derivative and L(q,v) =

K(v) — V(q) is the Lagrangian, defined as the difference between the kinetic energy
1
K= Ev - Mv, (4.2)

where M = DIAG(m, m, m) is the mass matrix, and the potential energy. The latter is the sum of the
deformation energy and the potential of external forces as
V =Vint + Vext, (4.3)
where V;,, = Ce?/2, C is a material constant, and € represents the Green-Lagrange strain € =
(1%(q) — 13)/(213), where I(q) = \/q - q is illustrated in Figure 4.1 and l; = I(t,). Inserting (4.2) and
(4.3) into functional (4.1), the latter can be rewritten as
te
G(qv) = ft ((iI - %v) MY — Vi (e(@) — Vext(‘l)) dt, (4.4)
0
and its stationarity is
8G(q,v; 8q,6v) =
o . . (4.5)
(8q - Mv+(q—v) Mév—8eDV;:(€) +6q - forxe)dt =0.

to
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Here, 8(-) denotes the variation of (+), and the following notation is used: DV, (€) = dV;y,(€)/de,
8¢ = De(q) - 6q, where De(q) = de(q)/dq, and f,.; = —dV,.r:(q)/dq encompasses conservative
external forces acting on spring pendulum.

4.2.2 4-field Hu-Washizu formulation

Let us introduce strain e/ and spring force a#" besides the position q and velocity v, as well as the
constraint
e(q) — ™™ =0. (4.6)
As shown in [13], one can extend the functional (4.4) by using ¢/ as the Lagrange multiplier for
enforcing (4.6). This results in a 4-field Hu-Washizu-type functional
Guw (q,v, eV, oWy =

te
| ((q ~20) MY = (Vi () 4 Vg (@) + 0¥ () eHW>)> dt.
to

Its stationarity reads as

(4.7)

te
8Gyw (q,v, €™,V 8q, 6v, 8¢, 86W) = | (8q- Mv + M&v - (q — v)

to (4.8)
~8€"WDVine (€M) + 8q - fexe — 8™ (e(q) — €"7)

—8e oW + §eW gHW)dt = 0,
Integrating per-partes the first product on the right hand side of (4.8) and taking into account that §q =
0 at the end-points t, and t,, we arrive at

SGHW (ql v, EHWI O-HW; 8qr 61): 86HW; SO-HW) =
te

(8q - (—M7V + fo. — De(q@)a™) + MSv - (4 — V) (4.9)

to
+ 8e"W (aHW — DV, (e"W)) — 80" (e(q) — e”W)) dt = 0.

Considering that the variations 8q, 5v, §e®" and 56" are arbitrary, we arrive at the Euler-Lagrange
expressions
Mv + De(q)O'HW = fexts
e(@ =€, (4.10)
q=",
oW = DVint(eHW):

where the first equation represents the equilibrium of inertial, internal and external forces, the second
equation is constraint (4.8), the third equation provides relation between the velocity and time derivative
of position, and the last equation is the constitutive one. These equations of motion are supplemented
by the initial conditions for ¥, ¢, € and o'W, which have to be consistent with the initial g and v

according to (4.10); and (4.10).
4.2.2.1 Balance laws
We can now check if the basic constants of the spring pendulum motion, which are the total energy,

linear momentum and angular momentum, defined as
E=K+V, L = Mv, J=M(q xv) (4.11)
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respectively, are preserved by the derived equations. To this end, let us multiply (4.10), and (4.10)4 by
variations and make the sum as
8q - (MV — f e + De(q@)at™) + 8™ (DV, (eW) — aHW) = 0. (4.12)
This kind of representation of Egs. (4.10); and (4.10)4 does not introduce any changes in their strength.
We further differentiate (4.10), with respect to time to get the consistency condition, see [13]
€ = De(q) - q = €W, (4.13)
Thus, the four equations of motion in (4.10) are replaced with (4.12), (4.13) and (4.10)3, for the purpose
of the mentioned check. For later use, let us write the time derivative of kinetic and potential energy,
(4.2) and (4.3), as
K=Mv-v
V = DVint(fHW) et — fext ’ q' (4'14)

eHW ¢ ¢HW

and the time derivative of linear and angular momentum, (4.11), and (4.11)3, as
L=mv
. (4.10)3 (4.15)
J=M@xv+qxv) = M(qXD)

The conservation of the total energy can be checked by choosing (8¢, §e™) = (g, é#") for admissible
variations. By inserting the choice in (4.12), we get

q-MV—q- fexe +q-De(q) a™W + W DV, (W) — €W gHW =0 , (4.16)
By using the remaining two Egs. (4.10); and (4.13) in (4.16), we obtain

Mv-v+ (_q 'fext) + éHWDVint(GHW) + i (q : DE(q) - éHW) =0
K

Vext Vint =0, see(4.13) 4.17
- (4.17)
>K+V=E=0
Eq. (4.17) shows that the total energy is preserved in time, i.e. the power of external forces —Vext =

fext - @ equals the changes of kinetic and deformation energy K + V;,,. We may also choose
(8q,8¢™) = (q,¢") = (¢, 0) for admissible variations for V¢ € R3, and assume zero external forces
(i.e. foxe = 0). From (4.13) it follows that this choice leads to 0 = é#" = ¢ = De(q) - ¢ and allows for
simplification of Eq. (4.16) into

c-Mv=c-L=0=>L=0 (4.18)
which shows the conservation of linear momentum. In order to prove the conservation of angular
momentum, let us choose (8¢, 8¢"™) = (g4, ") = (¢ x q,0) and again assume a motion with zero
external forces. One has 0 = De(q) - (¢ X q) from (4.13), and simplification of Eq. (4.16) into (¢ X q) -
Mv = 0. By using the scalar triple product rule, and the fact that M = mlI, where I is unit matrix, one
gets

M@xv)-c=0=>]=0 (4.19)
which shows conservation of angular momentum. We can conclude that the 4-field formulation yields
equations that conserve the fundamental constants of the spring pendulum motion.

4.2.2.2 Discretization in time
Let the time interval [t,, t,] consists of N + 1 discrete time points, such that 0 =ty < -+ t, < t41 <

-ty = t,. In this way, the time step At = t, ., — t, is defined, which is not necessarily constant over
the time interval [t,,t.]. We will study a generic time interval [t,, t,+1] and denote the algorithmic
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approximation of (-) at t,, and t,, ;1 as (-),, and (+),,41 . Furthermore, introducing parameter 6 € [0,1],
we will denote the combination (+),19 = 0()psq + (6 — 1))y, with (D)pyg -

Let us perform time discretization of Egs. (4.10) in a manner that enables controlled numerical
dissipation of the total energy and that preserves linear and angular momentum. The following (mid-
point) form for the discretization of (4.10), which comes from the ideas presented in [4], [5], [13] and
[132], is adopted

(Vn41 — V) %
M% + DE(Qn+1/2)UHW = fextn+1/2)
HW
€En+1 = Ent1s
Ani1 —q9n (4.20)

v,
At
HW  _ HW
On+1/2 = DVint(6n+1/2)'
Here, v* and 0% are the sum of conserving and dissipating parts

*
V' = Vcons + Vaiss»

W _ (4.21)

HW HW
a Ocons + Odiss»

where the conserving parts correspond to the middle-point approximations, i.e. gfIW; = g/ /25 Veons =
V412 The velocity and spring force terms with subscript diss are left undefined. They will be designed
to generate controllable decay of kinetic and internal energy and to generate conservation of angular

momentum.
4.2.2.3 Constants of motion for time discrete equations

Discrete counterparts of the balance laws, developed in Section 4.2.2.1, are derived below. Let us check
whether the time discrete Eqs. (4.20) and (4.21) conserve the fundamental constants of motion. For this
purpose, we multiply (4.20); and (4.20)4 with variations, make their sum and take (4.21), into account,
to get the discrete version of Eq. (4.12):

(Vns1 — V)
6q : (Mu - fext,n+1/2 + DE(qn+1/2)(O}I;IK/2 + O’é’l?;)

At (4.22)
+8e (DVie (€14 /2) — i /2) = 0.
By using (4.20),, we arrive at the discrete version of the consistency condition (4.13)
. _ 9n+1 —q9n _ .gw _ErI;I-II{Vl_EgW
€n+1/2 = DE(‘In+1/2) T AL €Ent1/2 = — Ar (4.23)

Eq. (4.23) follows from the mid-point rule and equality (4.20), (applied at the beginning and at the end
of the time step):
_ JHW . _ (HW , :HW . _ HW

€nt1 = Ent1 = En T €np1 At = €7 + €n AL = €n41/2 = €542 (4.24)
Egs. (4.22), (4.23), (4.20);3 and (4.21); will be used to prove that the chosen time discretization preserves
the constants of motion.
To check for the energy, we use (8¢, 8¢™) = (qp41 — qn, €Y, — €l
recast (4.22) as

W) for admissible variations that
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Un+1
(ns1— qn) - (MnT fextn+1/2 + Df(‘ln+1/2) ( +1/2 + Gdl?é)) (4.25)
+(€n+1 - EnW) (Dth(En+1/2) n+1/2) =0
Considering the consistency condition (4.23), the expression (4.25) can be simplified as
(Vny1 — V)
Gn+1 — qn) - <M% fextn+12 | + (effh — €f] W)DVint(EgK/z) (4.26)
+Udlss(€n+1 ErI;IW) =0.
By taking into account the remaining two Egs. (4.20); and (4.21);, we finally arrive at
Vnt1/2° M(vn+1 - vn) - (qn+1 qn) fext n+1/2 + (En+1 - EnW) DVint(Erl;T/l/Z)
Knt1—Kn aw Vintn+1—Vintn
*+ Vaiss - M(Vpy1 — V) + O-dlSS (6n+1 —€n “")y=0 (4.27)
4D
> Kpp — K — AW + Vint,n+1 - Vint,n + 4D =0,
where
DVLnt(6n+1/2) (En+1 - EnW) = lnt(6n+1 mt(en ) (4.28)

was applied, which follows from the quadratic form of V., see (4.4). In (4.27), AW represents the
incremental work of external loading, and 4D is energy dissipation. Note that v ;s and o % have to
be such that AD > 0, because the dissipation should not be negative. For AW = 0, the energy at t,;,4
equals E,, 1 = E,, — AD. Thus, the energy is decaying. For AW = AD = 0, one has E,,; = E,,.

To check for the preservation of linear momentum, let us choose (8q, 8¢"™) = (qp11 — qn, €Y, —
efW) = (¢, 0) for Vc € R3, and assume zero external loading (i.e. rigid body translation of the system).
The consistency condition (4.23) for this choice indicates no change in the strain state because

0= Erlli-llivl - EnW De(qn+1/2) (qn+1 qn) (4-29)
and Eq. (4.26) simplifies to
(Vni1 — Vn) 1
c- M% = ¢ e (Lney = L) = 0= Lyyy = Ly, (4.30)
yielding the discrete conservation of linear momentum. In order to check for the conservation of angular

momentum, we use (8q,8¢™) = (qu41 — qu, €V — €f") = (¢ X qp41/2,0) at zero external

loading (i.e. rigid body rotation of the system). Because Eq. (4.29) remains valid, we can now recast
(4.26) as

c $Qn+1/2 XMWp41—v,) =0 (4.31)
where we have already applied the scalar triple product rule. It can be shown that the change of the
angular momentum can be written as

Jn+1 = Jn = Qniryz X MWy — V) = MUy X (Qnis — qn)- (4.32)
By comparing (4.31) and (4.32), we can conclude that the conservation of angular momentum is ensured
if the second term on the right-hand side of (4.32) is zero, which holds for vy, 41,2 | (@n41 — qn). In

view of (4.20); and (4.21)1, Vgiss Il Vpy1/2 18 demanded, which is another constraint on v 4. Thus, any

Vgiss With Vg5 - Uy 1/, = 0 guarantees the proposed scheme to conserve angular momentum.
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4.2.3 3-field Hellinger-Reissner formulation

Let us introduce spring force oR as an independent variable along with position vector q and velocity

v. This allows for the extension of the functional (4.4) as

te 1 1
Gy (4,,0") = | ((q — ) My~ (e(g) 0% — Z0"R (1 g7 - Vext(q)w de. (433)
to

Vint(q,0HR)

Its stationarity has the following form
t

8G v, 0k §q, 6v, §c1R) = eS'-Mv+M8v- g — v
ur (q q ) i (6q (q ) (4.34)

—8e(q)a!"R + 8cMR(C~10"R — €(q)) — 8q - foxs)dt =0

which can be rearranged by following the same steps as in Section 4.2.2 to get

te
8Gyr (q,v,0"R; 8q, v, 80"R) = f (8q - (=MD + f o — De(q)a®)
to (4.35)

+M&v - (q —v) + 60k - (C™1olR — e(q))) dt = 0.
Thus, the following Euler-Lagrange equations of motions can be obtained
Mv + De(q)JHR = fexts
q=v, (4.36)
C~1oHR = e(q).

The first equation in (4.36) represents the equilibrium of inertial, internal and external forces, the second
equation relates velocity to the derivative of position vector, and the third equation is the constitutive
one. Egs. (4.36) are supplemented by the initial conditions for ¥, ¢ and "R, which have to be consistent
with the initial q and v according to (4.36), and (4.36);.

4.2.3.1 Balance laws

In order to check if Egs. (4.36) conserve the total energy, linear momentum and angular momentum, we
multiply (4.36); with variation

8q - (MY — f .t + De(q)a!R) =0, (4.37)
and introduce the consistency condition, which comes from time derivation of (4.36);
C16HR = ¢(q) = De(q) - q. (4.38)

Thus, Egs. (4.37), (4.38) and (4.36), will be used for the check. Note that the time derivative of potential
energy V = Vi + Veyr 18
V=gq- De(q)c""® +e(q) 6"R —cHRC1aHR —f, .- q (4.39)
=e(q) 6HR, see (4.38)
Choosing 6q = q for admissible variation in (4.37), yields
q MV —q- fexe +q-De(q)a"® = 0. (4.40)
Taking into account (4.36); in (4.40) gives

= e(q) "R,
see (4.38), (4.36)3
—— . .
Mv-V+ (—q - fexe) + q-De(qQ o™ =0=>K+V =0. (4.41)
K Vext =Vint, see (4.39)

14
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Eq. (4.41) shows that the power of external forces equals the sum of changes of kinetic and deformation
energy. In order to check for the preservation of linear momentum, we choose §q = ¢ = c, i.e. rigid
translation of the system for which 6#® = 0, assume zero external loading and apply (4.38), which
changes Eq. (4.40) into
c-Mv=c-L=0=>L=0 (4.42)
showing the conservation of linear momentum. To check for the angular momentum, we may choose
0q = q = ¢ X q for admissible variations at zero external loading, i.e. rigid rotation of the system. Eq.
(4.38) still holds and Eq. (4.40) gives
(cxq)-Mv=0 (4.43)
With the triple scalar product rule, the expression in (4.43) can be rewritten as for the Hu-Washizu

formulation, demonstrating the conservation of angular momentum j = 0.
4.2.3.2 Discretization in time

Let us adopt the following (mid-point) approximations for the time discretization of Egs. (4.36)

(vn+1 - vn)

MA—t + Df(qn+1/2)‘7HR* = fextn+1/2,
An+1 — dn - (4.44)
At '

-1, ,HR _
c On+1 = €n+1s

where v* and o#R" are again assumed as the sum of two parts
V" = Veons + Vaiss
4.45
olR* = gHR 4+ Uc?i?s ( )
where the conserving parts correspond to the middle-point approximations, while v4;ss and g% are
left undefined. The motivation behind the discretization in (4.44) and (4.45) is the construction of a
time-stepping scheme that allows for numerical decay of the total energy and preservation of linear and

angular momentum.
4.2.3.3 Constants of motion for time discrete equations

Let us check if the discretized counterparts (4.44) and (4.45) of Eqgs. (4.36) preserve the constants of
motion. To this end, we multiply (4.44); with variation and take into account (4.45) to get

Vpy1 —V
8q - (M. n+1At LS De(qn+1/2) (afllfl/z + aﬁﬁs) — fextn+1/2 ) = 0. (4.46)

The application of (4.44); (at the beginning and at the end of the time step), along with the mid-point
rule, gives an expression, which is the discrete version of the consistency condition (4.38)

(0’7{;1_‘}_?1 — O'.'I,;IR) _ €En+1 — €En _ e _ De( ) . (qn+1 - qn)
AL At n+1/2 qdn+1/2 T At .

In order to check for the energy, let us use 6q = (q,+1 — @) in (4.46) to get

v —
(Gnsr — qn) - M2

-1 -HR — r—-1
C 0n+1/2 =C

(4.47)

1%
At_n + (@1 = @n) - De(qne1/2) (‘711?51/2 + 04iss)
=€n4+1—€n, See (447) (4.48)

_(qn+1 - qn) 'fext,n+1/2 =0.

By noting that
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_ HR _ — _HR ,-1,HR
Vint,n+1 - Vint,n = €n+1 On+1 2 On+1 C On+1

1 (2.44)3 1 1 (4.49)
— ~
~(enot® —5olim CTI0lR) 2 S ofify el
and considering (4.44),, (4.44); and (4.45), in (4.48), we obtain
1 1
Vnt1/2° M(vyq —Vp) +56p4q O-TIZIfl —5€n O#R

2 2

Vint,n+1_Vint,n

- (qn+1 - qn) 'fext,n+1/2 + Vgiss M(vn+1 - vn) + Jtﬁss(en+1 - En) =0
AW AD
> Knp —Kp + Vint,n+1 - Vint,n — AW + AD = 0.

In (4.50), AD is energy dissipation, which has the same structure as in Section 4.2.2, and AW is

Kny1—Kn

(4.50)

incremental work of external loading. The undefined terms v ;s and o 4% should yield 4D > 0.

To check for the linear momentum, let us choose 6q = q,+1 — g, = € at zero external loading, i.e.

rigid translation of the system, for which gIR, — gH'R = 0. In this case, Eq. (4.48) simplifies to
v -V 1
c-M%tnzc-E(LnH—Ln)zo, (4.51)

demonstrating conservation of linear momentum. To check for the angular momentum, let us apply
0q = (qn+1 — qn) = (€ X qn41/2) at zero external loading, i.e. rigid body rotation of the system,
which simplifies Eq. (4.48) into

1
c: Eqn+1/2 XMWpiq —vy) = 0. (4.52)

Following the same line of reasoning as for the Hu-Washizu formulation, we can show that angular

momentum is conserved for the chosen discretization in time if Vg5 I| Vyy1/2-
4.3  Shell formulations

In this section, we derive mixed dynamic formulations for the inextensible-director, large rotation shell
model with Reissner-Mindlin kinematics, the detailed description of which is given in Section 2.2.1., by

using the procedures illustrated in the previous section for the spring pendulum.
4.3.1 Shell model and 2-field formulation

As the detailed description of the considered static shell formulation was given in Section 2.2.1, we will
only highlight here the relations that play a significant role in the development of dynamic formulation.

The position vectors at the initial and deformed configurations are the following functions of convected
curvilinear coordinates (¢1,&2) € M c R?, through-the-thickness coordinate é3 € [—t/2,t/2], and
timety <t <t
X(E18%,8%) =X (§L, 85 + D54, 8%) att,
x(§1,82,8%) = Xo (€18 +u(@, §2) + £3d(§1, ¢ at t > ¢, (4.53)
x0(§1.6%)
Here, M is given parametric domain that is mapped by X, and x, into shell mid-surface, and t is the

initial shell thickness. Furthermore, u is mid-surface displacement vector, D is unit normal vector to the
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initial mid-surface, called shell director, and d is its mapping at deformed configuration, which is
generated by no-drill rotation A(9) as R? 39 +— d = A(9)e; € R3, where 9 are large rotation
parameters and e; = [0,0,1]7. As X, and D are given, shell motion is described through the
configuration and velocity spaces with elements @ = [u”,d"]" : M — R3 xS? and V = [v7, w"]T :
M — R3 x T;S2, where v is mid-surface velocity and  is velocity of shell director. The unit sphere
and its tangent space are defined as S? :== {d € R3 | | d llI= 1} and T4S? := {w € R3 |w - d = 0}.

The “in-plane” covariant components of the Green-Lagrange strain tensor (dependent on @) are
expressed with respect to the contravariant base vectors, see (2.6). They can be further transformed to
the previously defined Cartesian basis {€;, &,, &3 = D}, see (2.9), and collected into three vectors of
Cartesian membrane, bending and transverse shear strains € = [&1, &5, 281217, I = [R11, Rop, 2R15]T

and y = [2£,3,2&,3]7, respectively, where " is used to denote the Cartesian component. Let us adopt
the Saint Venant-Kirchhoff shell material model, which allows us to easily define the energy conjugated
second Piola-Kirchhoff shell stress resultants with respect to the local Cartesian basis at the mid-surface

point under consideration. The constitutive stress resultants are grouped into vectors of membrane
) o~ T T
forces, bending moments, and transverse shear forces as N = [Nll, N5, le] , M= [Mll, M, Mlz]

and Q = [(:213,@23]T, respectively. The following relations apply: N = C™e, M = CP’k, Q = C%y,
where C™, C? and CS are the standard membrane, bending and transverse shear constitutive matrices for
the inextensible-director shell model, respectively, found in Section 2.2.1. The shell strains and the
constitutive stress resultants can be written as
€=e(@) = [k, ¥,

o=o(®) =[N, M, Q"
where the following relation applies @ = W /d€ = C €, where W (€) denotes the strain energy function
of quadratic form W (e) = € - Ce/2 and C = DIAG[C™, C?, C5].

(4.54)

The 2-field functional is given as

te . 1 te
G(d,V) = f f <(cb - EV) M,V — W(e(¢))> dAdt — f Vo (@)dt, (4.55)
to 'M to
where the potential of the external loads Ve, is defined as [lgy¢ in (2.14). M is the mass matrix
Al O
_ [#eo0
MpO - [ 0 IpOI] ) (456)
with A, and I as the middle surface mass density and the inertia of the shell director, respectively, given
as
t/2 t/2
t3
o= [ podg=pt,  dh= [ pa8 = 35 (457)
-t/2 —t/2

and p, is the initial mass density. By imposing the stationarity condition §G = 0 on (4.55), we arrive at

the following Euler-Lagrange equations (see e.g. [132] for details)

f (8D - MoV + 8€ - 0)dA = =V, (8P),

M (4.58)
f §V-(d—-V)dA=0.
M
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where 8@ = [6u”,8d"]", 8V = [6vT,8w’]" and &€ = d/dy[e(P + x8®)],—o. We note that the
constraint 8d € T4S?, thus 8d - d = 0, apply.

4.3.1.1 Discretization in time

For the above described formulation, the balance laws have been derived in e.g. [132], and we refrain
from further detailing. However, for the sake of comparison with the time discrete versions of the Hu-
Washizu and Hellinger-Reissner formulations that will be presented in sections below, let us give the
time discrete counterparts of Egs. (4.58) that are based on the mid-point rule

Vyer =V
f (&p My "+ Se(@pyy1 /2, 5P) - a*) dA = V. (8D),
M

At
D —D (4.59)
f sV - (M—V*)dfl =0,
M At
with external loading in Ve, (8®) evaluated at t,, 1 ,,, and V" and 6" of the following form
V' =Veons + Vaiss, (4.60)

0" = Ocons + Ogiss-
The conserving parts refer to the midpoint approximations used for the energy conserving scheme
Ocons = Ons1/2> Veons = Vg2 The terms with diss in (4.60) are left undefined for the moment,
having in mind that they will be used to ensure the desired dissipation and conservation properties of
the time-stepping algorithm. It is worth noting that the variations 6@ in (4.59) are associated with the
mid-point, thus 6d € Tan+1/2 S2, where &n+1/2 = dn+1/2/||dn+1/2 || is of unit length, which implies the

constraint 8d - dy.1/, =0. As for the variation of strains in (4.59), 86(¢n+1 /2,841) =d/
dx[e(Pni1/2 + )(8¢)]X=0, which leads to the following result (see (2.7)—(2.16))

O€ni12 _O€ny1p
Se=T 5 + z s |, (4.61)
a(Dn+1/2 6( n+1/2) ’
where (the notation x,,, , , /2 = %o and dy, 41/, = d is used here)
[x01 07 ] [07 07 ]
OT OT xglz OT
03x3 0343 x5, OF x5, OF
06n+1/2 _ 03><3 03TX3 66n+1/2 _ d’[;l x'gl afn+1/2 _ OT OT (4 62)
0Pny1/2 0 o1|| 6(¢n+1/2) o o | 6(¢n+1/2) dh  xj;
2x3 |, T 1 T T 2 T T
0.2 d, xo2 d; x0:1
dr oT oT o7
LoT o LdT 0T

07 = [0,0,0] and T performs transformation of the covariant strains to the local Cartesian strains, as was
shown in Sections 0 and 2.4 for different mixed formulations. The proof that the above time
discretization conserves/decays total energy and preserves linear and angular momentum will be omitted
(see e.g. [132] for details).

4.3.2 4-field Hu-Washizu formulation

Following the procedure outlined in Section 4.2.2, the 4-field Hu-Washizu functional for the considered
shell model is
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Gyw (2,V, EHW; O'HW) =

re .1 HW HW HW fe (4.63)
(q> _ EV> MoV — W(E™) — gV . (e(@) — €'W) | dAdt — | Vipo(®)dt,
where we introduced the strain and stress resultant vectors

HW _ [ HW,T .HW.,T yHW,T]T O'HW — [NHW,T MHW,T QHW,T]T (464)

respectively, that are composed of membrane, bending and transverse shear contributions. By using the

€ & K

ideas from Section 4.2.2 and imposing the stationarity condition 8Ggy, = 0 on (4.63), we arrive at the
following Euler-Lagrange equations of motion

f 8@ - MoV + 8€(6@, @) - 6" dA = V., (5@),
M

f ScHY . (e(®) — €"W)dA = 0,

M (4.65)
f §V-(d—-V)dA =0,
M

f SeW . ("W — DW (e"W)dA = 0.
M

The first equation in (4.65) is the weak form of the equilibrium of inertial, internal and external forces,
and the other three equations are the weak enforcements of kinematic, constitutive and velocity
equations. These equations are supplemented by generalized displacements boundary conditions and

initial conditions for V, @, €!V and 6" that have to be consistent with initial V and @ in view of (4.65).
4.3.2.1 Balance laws

Total linear momentum L, total angular momentum J and total energy E are defined as

M
J(@,V) = f (Ap0xo X v + Lpd X @)dA, (4.66)
M

E(®,V,el") = f

1 HW
SMpoV -V + W(E™) | dA + Vero ().
M

By introducing kinetic energy K and deformation energy V;,,; as

1
K(V) = f MoV VA, Vi (™) = f W (e"W)da, (4.67)
M M
the total energy can be given as
E(@,V, ™) = KWV) + Vine (€™) + Voro (@), (4.68)
V(eHW )

where V is the potential energy.

Let us rearrange the Euler-Lagrange equations (4.65) in a manner that proved advantageous for checking
conservation of the constants of the motion in Section 4.2.2. To that end, let us make the sum of (4.65);
and (4.65)4 as

f (8@ MuoV + 6"V - (5e(5®, D) — 5€™) + 5 - DW (€")) dA = Ve (58), (469
M

and take the time derivative of (4.65) to get the consistency condition
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j §aHW . (€ — eMW)dA = 0. (4.70)
M

The rearrangement enables the replacement of the four integral equations in (4.70) with the following
three: (4.69), (4.70) and (4.65);. As shown in Section 4.2.2, this kind of reformulation of the basic

equations of the 4-field Hu-Washizu functional allows to prove the balance laws.

By defining the time derivative of the kinetic and deformation energy as (see (4.67))
K = f M,V -VdA, V= f €M - DW (e"™)dA + Voye (D), (4.71)
M M

where we have taken into account that for the conservative loads Vo, (@) = Vi (¢), the conservation

of the total energy can be proven in the following way. By choosing (8@, 8¢"") = (@, é'") in (4.69),

we arrive at
f (cb MoV + oV - (& — W) 4 etV DW(eHW)) dA = =V, (D), (4.72)
M
where
2 de so=0 . w de | ,
8e = (0e/0D)6D + ——0D; = (d€/0D)D + P =¢ (4.73)
= 6¢,B § = a(b'ﬁ ’

was taken into account. By further applying 86/ = /" in (4.70), and inserting the result in (4.72),

one gets
f (q’b MV + €V DW(eHW)) dA = Ve (D). (4.74)
M

Finally, by choosing 8V = M pOV for the admissible variation in (4.65); and subtracting the result from

(4.74), we obtain an expression for the conservation of the total energy
f M,V - VdA +f €M - DW (e"M)dA + Vo (D) = 0
M M
K Vint (4.75)
v
>K+V=E=0.

Let us choose (8@, 8e") = (d>, éHW) = ((il, d), 0) = ((c, 0), 0) in (4.74), use 0 = &€ = €V (see

(4.70)), and assume no external loading, to get

c- f (Ay0v)dA = 0. (4.76)
M
Because the change of the linear momentum in time is defined as
L= f Ay VdA, (4.77)
M

and c is an arbitrary vector, Eq. (4.76) shows that L = 0. In a similar fashion, the choice (8@, §€"'") =
(@, ") = ((c x x, ¢ X d), 0) for admissible variations in (4.74) at zero external loads yields
c ] (Apoxo X ¥+ Lpd X @)dA = 0. (4.78)
M
As c is an arbitrary vector and

j= f (Apoxo X ¥+ Lod X @)dA, (4.79)
M

it follows from (4.78) that the chosen formulation preserves angular momentum, i.e. J = 0.
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4.3.2.2 Discretization in time

Time discretization of equations of motion (4.65) that preserves linear and angular momentum and

enables user-controlled energy dissipation is based on the mid-point rule

Vper =V \
j (&p : Mpo% + 8e(8®, Dy 1/7) - W )dA = —V,..(5D),
M

f 8 - (€41 — €i¥)dA = 0,
M

(4.80)
()] -
f 8V-(M—V*>d14 =0,
. At
j e - (0n+1/2 DW(Egm/z)dA =0,
where V* and 6" are
V' = Vions + Vaiss:
I cons dl:;/v (4.81)
o - o'cons + Ogiss-

The conserving parts are again defined by the midpoint approximations ¢ . = g% /2> Veons =

V4172, while the expressions with subscript diss will be defined below.

4.3.2.3 Constants of motion for time discrete equations

To prove that (4.80) and (4.81) conserve the constants of the motion, we start by writing the sum of
(4.80); and (4.80)4 and taking into account (4.81), as

|4 4
f 5P - Mpo T Oni1yz (8€(8D, @y y1/7) — 6€™) + 8" - DW (€1} /) | dA
y At (4.82)

+f adlss 86(8¢ ¢n+1/2)d‘4 - _Vext(5¢)-
M

Differentiating (4.80), with respect to time and using the mid-point rule leads to the discrete form of the

consistency condition

1
0= f §gW . (én+1/2 - é71;1-11/-‘/1/2)(11‘1 = —f 8otV . ((€n+1 €,) — (ent) —€f )) dA
M

= (€n+1 ) (€n+1 - en )
To prove the conservation of the constants of motion, we will use (4.82) and (4.83) along with (4.80);
and (4.81);.

(4.83)

In order to check for the energy, let us choose (8@, §'W) = (®,,.1 — P, €1V, — i) for admissible
variations in (4.82) to get
Vo =V
f <(¢n+1 - ‘pn) ’ Mpou + agm/z ' ((En+1 ) (6n+1 - En ))) dA
M

At (4.84)

f ((€n+1 —en")- DW(€n+1/2) +00es - (€ngq — fn)) AA = Vet (Ppyq — D),
where the following relation was applied
8€(¢n+1 - Dy, d)n+1/2) = 6(¢n+1) - €(¢n) = €nt1 — €p, (4.85)
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which can be proved by using (4.61) and (4.62). With the choice 8§V = an +1/2 In (4.83), and by
subtracting the result from (4.84), we get

Ppy1 — P
fM (% ) MPO(Vn+1 V) + (en — eq") - DW(€n+1/2 >dA

(4.86)
+f o'gzws/s ' (€n+1 - En)dA = _Vext(¢n+1 - ¢pn)-
M

Furthermore, with 6V = Mo (V.1 — V) in (4.80); and by using (4.81)1, we arrive at

B, — P )
[ B Mo Wnas = VA = [V MgVs = V)4
M M

(4.87)
= f (Vn+1/2 ' MpO(Vn+1 - Vn) + Vdiss ’ MpO(Vn+1 - Vn)) dA.
M

Finally, by inserting (4.87) in Eq. (4.86), the conservation of the energy follows as

f Visrjz - MooWVnss — Vi)dA
M

Kny1—Kn

f (e, — W) . DW (Y, ) dA + Ve (@1 — By)
AW
Vint,n+1_Vint,n (488)

Vint,n+1_Vint,n_AW

+f (agzvsvs ' (6n+1 - En) + Vaiss - MpO(Vn+1 - Vn)) dA=0
M

AD
> Knpyr —Kp + Vint,n+1 - Vintn — AW +A4D =0

where AD is dissipation defined in terms of V ;s and o/i% that should generate AD > 0, and AW is

incremental work of external loading.

We now turn to check the preservation of linear momentum. Assuming no external loading, and
choosing (8®,8€"") = (@1 — Py €1} — €") = ((un+1 —Up, dyy1 —dy), 0) ((C 0), 0) as
admissible variations for V¢ € R3, implies €,,.; — €, = 0 (see (4.83)) and (see (4.84))

c- Apo(vn+1 —vy) =C (Lpyy — Ly) =0, (4.89)
which gives the balance law for linear momentum. As for the balance law for angular momentum, it can

be shown that its discrete change can be written as

]n+1 _]n = (AP0x0n+1/2 X (vn+1 - ‘Un) + IpOdn+1/2 X ((Dn+1 - wn)) (4 90)

- (Apovn+1/2 X (x0n+1 - xon) + lyoWny1/2 X (dpyq — dn))-
The assumption of no external loading and the choice (8®,8€"") = (@, — P, €W, — €IV =
((x0n+1 X0 A1 — n) ) = ((C X Xopp1/20€ X dn+1/2):0) give €41 — €, = 0 (see (4.83))
and (see (4.84))
¢ f Ap0x0n+1/2 X (vn+1 - vn) + IpOdn+1/2 X (wn+1 - wn)dA = 0. (4.91)
M
Comparing (4.91) and (4.90), we conclude that in order for angular momentum to be conserved, the

second term on the r.h.s. of (4.90) should be 0, which holds for v,/ |l (x0n+1 - xon) and Wy 41/ |l

(dy 41 — dy). From (4.80); we note that Gonsr=¥on) _ v* and Yn=dn) _ w”, which means that the
At At
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conservation of angular momentum is ensured if Vp11/2 | V' = Vpiq/2 + Vyiss and @pyq/7 | @ =

Wni1/2 T Wgiss. Thus, V45 and @ ;55 should take directions of vy, 41/, and @y 4.4/, respectively.
4.3.3 3-field Hellinger-Reissner formulation

Following the developments from Section 4.2.3, the 3-Hellinger-Reissner functional for the considered
shell model can be written as
GHR (¢, V, O'HR) =
te .1 1 te
f f (qb _ —V) M, VdA — j (e(cp) . gHR _ _ gt . c-laHR) dA |dt - f Vodt, 492)
2 2
t M M to

Vint

where we introduced the stress resultant vector /R, Following the procedure from Section 4.2.3 and

imposing the stationarity condition 8Gyr = 0 on (4.92), we arrive at the following Euler-Lagrange

equations of motion
f (8@ - M,V + S5e(5D, D) - 6"'R)dA = —V,,, (5D),
M
f §V-(d—-V)dA =0, (4.93)
M

f 8a*R . (C~1o"R — e(®))dA = 0,

M

which are supplemented by generalized displacements boundary conditions and initial conditions for
V, ® and a''® that have to be consistent with initial V and @ in view of (4.93).

4.3.3.1 Balance laws

In this section, we show that Egs. (4.93) preserve linear momentum L, angular momentum J and total
energy E, given in (4.66)-(4.68). To that end, we write (4.93), as

f (8D - (MyoV) + 8€(6@, D) - 6"R)dA = —V,, (5P), (4.94)
M
and obtain the consistency condition by differentiating (4.93); with respect to time
0= f 8ofR . (€ 16HR — é)dA = €™ 16"k = ¢ (4.95)
M

Note that the time derivative of the potential energy in (4.92) is

V= f (é . 6"R + €(®) - GHR — gHR . C—l(,.HR) dA + Vext(d’)- (4.96)
M =e(®)-dHR, see (4.95)

where we have taken into account that for the conservative loading V. (®) = Vext(tb).

Let us choose 8@ = @ for admissible variations in (4.94) to get

f {«b MV + Se(D,P) -aHR\ dA = =V (P) (4.97)
M — ——

—e=C~1gHR

see (4.73),(4.95)
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Choosing §V = M pOV in (4.93),, 86"R = "R and subtracting the two resulting Eqgs. from (4.97), we

can now recast it as

f M,V - VdA +f (e(®) - ¢"R)dA + Ve (@) = 0
M M

‘ . (4.98)
K Vint
>K+V=E=0,
showing the conservation of total energy in time.
We choose 8@ = @ = (c,0) for Vc € R* and no external loading, which corresponds to rigid body

translation and no change in strain field, see (4.62). (4.95) now gives

0=C1"R =¢ (4.99)
and Eq. (4.97) changes into
c-f (Ay)oD)dA =0 (4.100)
M
L

showing conservation of linear momentum. We may further choose 8@ = @ = (¢ X x,,¢ X d) as
admissible variations at no external virtual work. Eq. (4.99) still holds, and Eq. (4.97) gives

c- f ApoXg X ¥ + Ipod X @dA =0 (4.101)
M

J
which presents the conservation of angular momentum.

4.3.3.2 Discretization in time

Let us adopt the following (mid-point) time discretization of equations of motion (4.93)

Vyer =V )
f (&p : Mpo% + 8€(8®, @11 /,) - 0HR )dA = —V,. (5P),
M

D, —D
f sV - (M - V*) dA =0, (4.102)
” At

f 8a"'R - (CofR; — €n41)dA =0,
M

where
HR* _ HR HR
o = Ocons + Ogiss
*
V= Vcons + Vdiss

and 6835 = 0351/2. Veons = Vina1/2, while the affft; and V 445 are left undefined for now.

(4.103)

4.3.3.3 Constants of motion for time discrete equations

Let us write Eq. (4.102), by using (4.103), as
jM <5¢ : (Mpo V"%t_v’l) + 8€(8®, Ppy1/2) - (aF1R 5 + ag';gs)> dA = —V,,,(8®), (4.104)
and get the discrete version of consistency condition by differentiating (4.102); with respect to time as
0= f o™k - (6_1"7551/2 —ént1/2) = %f 8a"'R - (C1(o5F — ai")

M M

—€n+1 — En)dA = (6n+1 - en) = C_l(agfl - agR)

(4.105)
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Egs. (4.102),3 and (4.104) along with (4.103), and (4.105) will be used to check the algorithmic

preservation of motion.

Let us use 6@ = &, — @, and apply (4.85) in (4.104) to get

Vo =V
f <(‘Dn+1 - D) - MpO% + 0'551/2 *(€ns1 — €n)
M (4.106)

+0-§Ii1§s ’ (€n+1 - Gn)) dA = _Vext(¢n+1 - d)n)-
Choosing 8V = M,o(Vy,4q — Vy) in (4.102),, 8a'R = (afIR, — 6HR) in (4.102); and subtracting the
two resulting equations from (4.104) while taking into account the consistency condition (4.105), we
obtain

[ Varsje MooWass = Vo)
Knes—Kn
+f ((0'55151%1 —o5R€en) —1(0n+1 Cropf — ot C” 10'HR)>
- Vintn+1=Vintn

+ Vext((bn+1 B ¢n) + f (O'Ic-lli}gs ’ (6n+1 - (:‘n) + Vaiss - MpO(Vn+1 - Vn)) dA =
% M

(4.107)

AD
> Kpy1 —Kn + Vint,n+1 ~— Vintn — AW +AD =0

where AD is energy dissipation governed by a7% . and V 4, which should be chosen to provide AD >
0. Eq. (4.107) shows preservation of total energy for AW = 0 and 4D = 0.

We choose 8@ = ®,,,; — @, = (¢, 0) as admissible variations for V¢ € R3 and no external loading,
which corresponds to rigid body translation and no change in strain field, see (4.62). (4.105) now gives
0 = C 1 (clR, — ali®), (4.108)

and (4.104) changes to
¢ Apo(vn+1 - vn) =cC: (Ln+1 - Ln) =0, (4.109)
implying conservation of linear momentum. We may further choose 6@ =@, — P, =

(c X X0p41/20 € X d,iq /2) as admissible variations at no external virtual work. Eq. (4.108) still holds,

and Eq. (4.104) gives
c: f ApoXoy1q/y X (Vn41 = Vn) + Lholdny1/2 X (@pyq — @y)dA = 0. (4.110)
M

Following the reasoning from Section 4.3.2.3, we can again conclude that the conservation of angular

momentum is ensured if v ;55 and @ g;55 have the directions of v;,41/, and wy, 41 /,, respectively.
4.3.4 Dissipation variables

We can now elaborate on dissipation terms Vg5 = {Vgiss, @aiss}> and qigs € {0455, a1, aiR 1.
According to the above derivations, the followings has to be considered:
e The numerical dissipation of the time-stepping scheme from Section 4.3.1 should always be

positive or zero, which is also demanded for the scheme from Section 4.3.2 (for the 4-field Hu-
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Washizu formulation) and for the scheme from Section 4.3.3 (for the 3-field Hellinger-Reissner
formulation). In other words, AD > 0 in (4.88) and (4.107).

e Moreover, according to the discussion after Eq. (4.91) and Eq. (4.109), for the considered
schemes v ;5 should be parallel to v,,,1/, and wg;ss should be parallel to wy, 44/, to generate

the preservation of angular momentum.
4.3.4.1 Defining dissipation terms for the first order scheme

The choice that takes the above constraints into account and yields a first order accurate EDMC1 scheme
is (see also [4] and [132])

_ (vn+1 B Un)z
Vdiss = :BED (vn+1)2 _ (Un)z Vn+1/2)

Gvdiss

8 (Wpe1 — wp)? (4.111)
Wiiss = w )
diss ED (wn+1)2 _ (wn)z n+1/2

Jw,diss
Gaiss = App (Oni1 — 04) /2,
where v = ||v|| and w = ||w||. Dissipation can be controlled by user defined factors [agp, Bgp] = 0,
where choosing the value 0 represents no dissipation and values (0,1] are usually applied. Here, agp
controls the dissipation of potential and Sgp of kinetic energy. In the presented examples, agp = Bep
will always be used. This option was shown in [4] and [105] to result in the dissipation in higher
frequencies.

4.3.4.2 Defining dissipation terms for the second order scheme

Defining a second order accurate scheme EDMC?2 is a more demanding task. We adopt here the idea
presented in [5] and [132], where the dissipative terms are extended to be of order O (At?). To this end,

the quasi-intermediate parameters (marked with (-jn) are introduced as

_ - _ - =T = T =, T
Gaiss = (0, —0,)/2, oy = [Nn M, 'Qn] ) (4.112)
with
anﬁn'i'ﬁm(ﬁrwl_ﬁn): MnZMn'i'ﬁb(MrHl_Mn): (4.113)
Qn=0Qn+ .Bs(Qn+1 - Qn);
and
- (ﬁn - 177‘L)(vn+1 - 17n) v
ass (Vn41)? — (vp)? /2
9v,diss
~ ‘ (4.114)
Do = (wn - wn)(wn+1 - wn) ®
diss (Wn41)? — (wy)? /2
Yw,diss

where S,,, B, Bs are dimensionless parameters (yet to be given), and (Tjn needs to be designed for the

second-order approximations as (Tjn = (+),, + 0(At?). The latter can be achieved by cross-coupling of
the stresses and velocities as
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At At
Bm = XED,mv 7 (Un - vn+1) + Agpmw Trp (wn - wn+1)'
t t -
By = aED,bv?(vn - vn+1) + Qgp bw er(wn - (‘)n+1): (4.115)
At At
Bs = AED,sv 7 (Un - vn+1) + Aepsw Frp (wn - (Un+1),
and
B At — _
Un =V — ﬂ(aED,mv(,Bm - 1)(Nn+1 - Nn) ' (£n+1 - en) + aED,bu(Bb - 1)
0
Moy = M) - (g1 = K0) + @ 50 (Bs = 1) (@nss = @n) - Wvs — ¥))
A (4.116)
B t _ _
Wy = Wy — ﬁro(aED,mw (B — DWNyi1 — Ny - (€41 — &) + XED bw By —1)
0

(Mn+1 - Mn) ' (Kn+1 - 'Cn) +aED,sw (ﬁs - 1)(an+1 - an) ) (Yn+1 - Yn))
where h is a suitable geometric constant with the role to provide dimensionally consistent expressions,

andry = m . Note that we have here six agp parameters to control the dissipation. This allows for
more flexibility on dissipation through different components of shell deformations. Following [132], we
assume hereinafter agpme =0 and agpmy = Agppy = Agp sy = AEp pw = AEDsw = AEp- EQs.
(4.115) and (4.116) form a linear system of equations for s, ¥, and @,, at each integration point, which
can be pre-solved in a closed form that expresses the quasi-intermediate parameters in terms of the basic

variables, @, and V4.
4.4 Numerical examples

Five static finite element shell formulations for four-node quadrilateral were taken as the starting point
for dynamic formulations. The elements that were tested extensively for static problems in Section 2.5.4
and [104], [107] (and several other works) are:
)] MITC4 formulation that employs the assumed natural strain method for transverse shear
strains, see [48].
(i1) MITC4+ formulation that employs the ANS concept for transverse shear and membrane
strains, see [89], [90].
(iii))  Enhanced assumed strain formulation EAS5, where 5 parameters are used to enhance the
membrane part of the strains, see e.g. [22].
(iv) Mixed-hybrid formulation (hereinafter called +HW) that is based on the Hu-Washizhu
functional (with 28 parameters in total for the interpolation of strains and stress resultants).
On top of that it uses the ANS concepts of MITC4+ for the membrane and the transverse
shear strains (it was introduced in [104] as an improvement of the ideas of [159] and [90]).
W) Mixed-hybrid functional (hereinafter called +HR) that is based on the Hellinger-Reissner
functional (with 14 parameters in total for stress resultants). On top of that it uses the ANS
concepts of MITC4+ for the membrane and the transverse shear strains (it was introduced
in [107] as an improvement of the ideas from [90] and [59]).

We refrain here from giving any detailed descriptions of element implementation, and refer the reader
to Chapter 2 or the above-mentioned references. We should only note that the weighting factors used in
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the implementation of membrane ANS in (2.49) are here not configuration dependent, as was the case
for static formulation. They are rather expressed in the initial configuration.

The results for three numerical examples are presented below, where we try to determine whether or not
the features of the used formulations will translate from static to dynamic analysis. Where adaptive time-
stepping was used, function (2.81) was applied with I, = 8 and N = 15 as the desired and maximal
allowed number of incremental iterations, respectively. If convergence was not reached in 15 iterations,

the time-step was re-computed with At/2. The convergence tolerance was set to 108 for all examples.
4.4.1 Flying L-shaped plate

Let us again consider an L-shaped plate from Figure 3.15, which is tossed in space by a set of impulsive
nodal forces producing large bending and membrane deformations. At t = 0, it stays at rest and exhibits
free motion after t > 1. The plate has thickness h = 0.1, material density p = 1, Young’s modulus E =
106 and Poisson’s ratio v = 0.3. The response of the plate is analysed until ty = 20, using constant time
steps At € {21072,1073}. Two damping factors were chosen to enforce minor and major damping
agp = Pep € {0.05,0.4}.

The total energy evolution for different combinations of damping factors and time steps is given in
Figure 4.2. The results show (slight) differences between the elements. Figure 4.2 (a) — (d) display that
for larger dissipation parameters, the differences between the elements are very small, while for the
smaller dissipation parameters, the differences get larger. For the case with no dissipation, there is a
difference in the energy level, see Figure 4.2 (e) — (f). However, all the elements exactly conserve the
energy, which is reflected by the fact that the computed values for energy for ¢ € (1,20] vary in the
range of 10711, All the elements also exactly preserve linear and angular momentum, see Figure 4.3,
with the computed values varying in the range of 10712 for t € (1,20]. It is nevertheless interesting to
note that while the level of linear momentum after t = 1 is the same for all the formulations and for
both schemes, see Figure 4.3 (a), the level of angular momentum can slightly differ from one element
to another and also between the EDMC1 and EDMC2 schemes, see Figure 4.3 (b), where notation L =

[Le Ly, L,] and J = [JxJy0J,] " is used.

An error analysis was performed next, using constant time steps of At € {0.02,1072,1073,1074}.
Figure 4.4 shows an error in generalized displacements, which is calculated on the basis of nodal
differences at t, = 5 as shown in (3.54), with limit values obtained for At = 10~° (for each element).
The slopes of the lines indicate the order of accuracy of the schemes in a solution sense. In Figure 4.4
(b), a relative error in the total energy at t, = 5 is shown with respect to At, as shown in (3.53) where
Etot1im is the total energy computed for At = 107> (for each element). The slopes of the lines are similar
and indicate the order of accuracy of the schemes in an energy sense. EDMC2 results are not shown for
At = 0.02 as only +HR and MITC4 managed to compute the complete solution. Both error indicators
show, that the accuracy of the underlying scheme is independent of the used element formulation.
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Figure 4.2: Flying L: energy evolution for different time steps and dissipation parameters.
Slika 4.2: Leteci L: spreminjanje energije za razlicne ¢asovne korake in disipacijske parametre.
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Figure 4.3: Flying L: energy evolution for different time steps and dissipation parameters.
Slika 4.3: Leteéi L: spreminjanje gibalne in vrtilne koli¢ine za agp = 0.4 in At = 0.02.
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Figure 4.4: Flying L: (a) displacement error, (b) energy error for agzp = 0.4.
Slika 4.4: Leteci L: (a) napaka v pomikih, (b) napaka v energiji za agp = 0.4.

4.4.2 Flying short cylinder

We recompute a classical example for shell dynamics, the flying short cylinder, see Figure 3.22 and e.g.
[23], [26], [146]. The data are: R = 7.5, H = 3, thickness h = 0.02, density p = 1, elastic modulus E =
2 108 and Poisson’s ratio v = 0.3. The cylinder is loaded by impulsive forces and is at rest at t = 0,
while for t > 1, the cylinder exhibits free motion. An adaptive time-stepping scheme (2.81) was used

and dissipation factors agp € {0.05,0.6} were applied. We look here at the long-term response for time
01, 0<t<1
5 1<t

up to ty = 500. For the time-stepping function, Aty = 0.1, Aty = 1073, Aty = {
Table 4.1 shows that EDMC2 scheme requires shorter load increments compared with the EDMCI1,
which results in a longer CPU time. However, for both schemes, +tHW and +HR elements can take larger
time increments, which can considerably shorten the computational time. MITC4, MITC4+ and EASS
elements take approximately the same CPU time to compute the complete response, while the +HW and
+HR elements shorten that CPU time for approximately 90% for EDMC1 and 50% for EDMC?2. This
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kind of time reduction is in agreement with results for statics presented in [104] and [107], where it is
shown that +HW and +HR elements can take very large solution steps in static analyses. Figure 4.5
shows that longer steps taken by +HW and +HR are reflected in larger dissipation of the total energy
for both EDMC1 and EDMC2. For the EDMCI1 scheme, the computed energies gradually converge to
the approximately same level for all elements for a large time, indicating that at large t the higher-order
vibration modes have been (almost) completely damped and that the motion of cylinder is accompanied
(almost) only by low-order vibrations that remain untouched by dissipative procedure. For a short-time
response, however, the difference is considerable, because the schemes are only first order accurate. As
EDMC?2 is second order accurate, the difference in energy levels is not visible in the short-time response,
but gradually increases in time due to large load increments taken by +HW and +HR elements.

Table 4.1: Short cylinder: computational details.
Preglednica 4.1: Kratek cilinder: racunske podrobnosti.

agp = 0.6 agp = 0.05
Formulation Scheme Normalized Numberof V& 1-Of |\ imalized  Numberof ~ AV8:NO-Of
CPU time increments |’Eerat|ons n CPU time increments |t'erat|ons n
increment increment
EDMC1 1 1340 11.0 1 3250 10.6
MITC4 EDMC2 21.07 18435 10.3 8.78 31120 9.5
EDMC1 0.96 1246 111 0.99 3206 10.7
MITCA+ EDMC2 21.95 19286 10.3 10.34 37468 9.5
EDMC1 1.17 1328 11.0 1.12 3347 10.6
EASS EDMC2 21.50 18226 10.3 8.96 31155 9.5
EDMC1 0.13 199 8.9 0.08 350 8.8
*HW EDMC2 10.06 13071 7.5 5.10 20758 7.9
EDMC1 0.12 199 8.9 0.07 342 8.9
+HR EDMC2 9.73 13346 7.5 4.95 21575 7.9

Figure 4.6 shows that for each of the schemes and for constant At all elements give the same energy
curves and that the differences in results in Figure 4.5 is only due to the adaptive time step algorithm
which assigns different time steps to the elements. It further shows that EDMC2 often fails to compute
full response when constant At is used. In Figure 4.7, we present displacement u,, — kt, where u,, = u -
[1,0,0]" and k is a suitable constant, of the mid-surface point initially located at {R, 0,0}. For EDMC1
scheme, the effect of large dissipation (agp = Bgp = 0.6) is seen in lower number of waves, which are
smooth because of the considerable damping. More waves are observed in the same time interval for
lower dissipation (agp = Bgp = 0.05) and their shapes vary more. On the other hand, the EDMC2
scheme yields results that are in very good agreement for all the elements and are not affected by the
choice of damping. The effect of the error for first order accurate EDMC1 scheme for +HW and +HR
elements, which is caused by the larger time steps, can be observed on Figure 4.7. In conclusion, +HW
and +HR elements can take large time steps, but due to the low accuracy of the derived EDMCI1
schemes, this can be fully exploited only when EDMC?2 is used.
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4.4.3 Raasch's hook in dynamics

We look here at the classical static benchmark test from Section 2.5.4.2 and modify it to make it more
demanding in dynamic analysis. The geometry of the hook still consists of two arches with different
radii of curvature, see Figure 4.8, but the boundary conditions are changed. It is pinned at one end and
subjected to uniform line forces F(t) and 2F (t) at the other end. Thickness t = 0.02, width w = 20,
E = 3300 and v = 0.3 data were taken as for the nonlinear static example and material density p =
10~* was used. The shell was analyzed with meshes of (2N + 3N) X N elements, where N € { 4,16}.
Here, N is the number of elements in the width, and 2N and 3N are the numbers of elements for the first
and second arch, respectively. In addition to regular meshes, we also used distorted meshes with pattern
shown in Figure 2.15. The ratio between the longest and the shortest element edge (in the curvilinear
direction) L,y 45/ Lmin Was set to 1.5 and 2 for the first and the second arch, respectively. This has proven
a very demanding test for distorted meshes already for static formulations, as was shown in [104] and
[107]. In the response graphs, we show the displacement of point A, see Figure 4.8.

A dissipation factor agp = Bgp = 0.1 was used for all analyses. Reference results were obtained by
MITC4+ elements (MITC4 gives the same results) for a fine mesh N = 32 by using small time steps
for EDMC1 and EDMC?2 separately.

The other results were obtained with the adaptive time-stepping function (2.81), with time steps of At; =

_ 05 0<t<12
0.5, Atpin = 1074, Aty 0y ={ 10, 12 < ¢
1,
~  F@®
2F(t) ™
= =20
<~ 05 W
=)
0.
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/// 46
60° v \\N
g 3
DX

Figure 4.8: Raasch’s hook in dynamics: loading function, initial geometry and boundary conditions for mesh
N = 4.
Slika 4.8: Raascheva kljuka v dinamiki: obtezna funkcija, zaetna geometrija in robni pogoji za mrezo N = 4.

Figures 4.9 and 4.10 show how mesh distortion effects the results for EDMC1 and EDMC2 schemes,
respectively. For the coarse mesh N = 4, MITC4+, +HW, +HR (that all employ the membrane ANS
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concept) perform much better than MITC4 and EASS, especially for distorted mesh. This is the case for
both EDMCI1 and EDMC2 scheme. The response of EASS is better than that of MITC4, but the
improvement is not very significant. Nonetheless, none of the elements manage to describe the response
very well for the course, distorted mesh. For the mesh N = 16, all elements perform good, except
MITCA4 for distorted mesh. As shown in Figure 4.9, the difference between the MITC4+, +HW and +HR
for EDMCI is in a slight shift of the latter two, which is because larger time steps were taken by +HW
and +HR. This results in shorter computational time and less iterations are needed in each time steps
(see Table 4.2). Time steps taken by +HW and +HR were almost always equal to the maximum allowed
time step and the computational time was reduced for approximately 45% comparing to MITC4. It could
have been reduced even more if bigger At,,,,, would had been used, however, this would cause a bigger
phase shift in the response, see e.g. [105] for an explanation of this phenomena. As for EDMC2 scheme,
all the formulations take shorter time steps and the shift for +HW and +HR is not observed in Figure
4.10. However, see Table 4.3, they still manage to take longer time steps and require less iterations per
step, compared with other formulations. We can conclude that excellent properties of +HW and +HR
regarding low-sensitivity to mesh distortion prolong from statics to dynamics.

N=4, regular mesh
(a) —--MITC4 —- MITC4+ eass | (B)
30
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Figure 4.9: Raasch’s hook in dynamics: response for regular and distorted mesh for EDMCI.
Slika 4.9: Raascheva kljuka v dinamiki: odziv za obicajno in pokvarjeno mrezo za EDMCI1.
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Figure 4.10: Raasch’s hook in dynamics: response for regular and distorted mesh for EDMC2.
Slika 4.10: Raascheva kljuka v dinamiki: odziv za obi¢ajno in pokvarjeno mrezo za EDMC2.

Table 4.2: Raasch’s hook in dynamics: computational details for regular and distorted mesh N = 16 for EDMCI1.

Preglednica 4.2: Raascheva kljuka v dinamiki: racunske podrobnosti za obi¢ajno in pokvarjeno mrezo N = 16 za
EDMCI.

Regular mesh Distorted mesh
. . Avg. no. of . Avg. no. of
Formulation Normalized Number of . . .| Normalized Number of | . .
. . iterations in . . iterations in
CPU time increments . CPU time increments .
increment increment
MITC4 1.00 355 9.1 1.00 316 9.1
MITC4+ 1.01 354 9.1 1.12 354 9.1
EAS5 1.07 348 9.2 1.17 348 9.1
+HW 0.45 224 5.5 0.50 224 5.5
+HR 0.42 224 5.5 0.46 224 5.5
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Table 4.3: Raasch’s hook in dynamics: computational details for regular and distorted mesh N = 16 for EDMC?2.

Preglednica 4.3: Raascheva kljuka v dinamiki: racunske podrobnosti za obi¢ajno in pokvarjeno mrezo N = 16 za
EDMC2.

Regular mesh Distorted mesh
. . Avg. no. of . Avg. no. of
Formulation Normalized Number of . . .| Normalized Number of | . .
. . iterations in . . iterations in
CPU time increments . CPU time increments .
increment increment
MITC4 1 3714 8.9 1 6977 94
MITC4+ 1.04 3937 9.1 0.44 3152 9.3
EAS5 1.33 4669 8.9 0.52 3779 9.3
+HW 0.8 2083 7.5 0.26 2619 7.5
+HR 0.9 2571 7.6 0.09 2485 7.6

4.5 Chapter conclusions

In this chapter we have presented a family of mixed variational formulations for nonlinear structural
dynamics and their time discretization that enables user-controlled dissipation of higher structural
frequencies.

We have confirmed here also for shell dynamics, as was shown in [107] for static regime, that the EAS
formulations offer only a slight improvement of elements’ behavior while being computationally
slightly more demanding. The ANS+ formulation, on the other hand, offers a great improvement of
elements’ response for static and also dynamic regime, while the computational performance is not
affected. Applying the combination of the ANS+ and hybrid formulations, the computational costs are
greatly reduced, while the mesh sensitivity is also reduced.

The EDMC formulations presented in [132] add additional computational cost compared to the classical
G-a schemes, due to introduction of velocities as independent nodal dofs. This additional cost can be
circumvented by implementing the special implementation procedure proposed in [132], but we have
demonstrated here that by using the +HW and +HR formulations, the computational cost is significantly
reduced and surpasses even the cost of displacement-based formulations with 5 dofs. Furthermore, the
element robustness is greatly improved in comparison to the MITC4 formulation that is typically
employed for such simulations.

The first order accuracy of EDMCI1 is a serious deficit, but as was demonstrated above the EDMC2
schemes suffers from other deficiencies, such as requiring much shorter load increments. It also has
troubles computing the complete response when a constant time step is used. By applying adaptive time
stepping algorithms, however, we can overcome some of its flaws.
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5 SIMULATION OF SHELL BUCKLING BY IMPLICIT DYNAMICS

Chapter abstract

In this chapter we study shell buckling process by applying implicit structural dynamic time-stepping
schemes with numerical dissipation. We are interested in the assessment of the ability of these schemes
to handle complex buckling and post-buckling processes of thin shells (even for cases when static path-
following methods fail). The computed numerical examples include some classical shell buckling
problems where we illustrate that (high-frequency) numerical dissipation is absolutely necessary for an
efficient implicit dynamic simulation of complex shell buckling and post-buckling processes. The
dynamic results are compared with the static ones that were computed by the path-following method.
Finally, it should be noted that the content of this chapter is an extract of the article by Lavrenci¢ and
Brank [102].

All nonlinear numerical examples in this chapter are computed using the dynamic extension of
previously analysed 6-parameter, extensible director finite element D-ANS, see Table 2.6 and Sections
2.2.3,2.3.2 and 2.4.1. Dynamic schemes NTR, NMD, BAM, HHT, GAM, EMC, EDI1 are used.

5.1 Chapter introduction

As recognized in the previous chapters, implicit dynamic analysis can be an effective tool to address
some difficult problems. In this chapter we will focus on the difficult problem of shell buckling, using
the time-stepping schemes from Table 3.1 and Table 3.2 (excluding the EDMC and JWH). Other than
EMC and NTR, they all exhibit high-frequency dissipation for linear elastodynamics. Let us recall
however, that the dissipative/conservation properties of the above-mentioned schemes are not preserved
in nonlinear elastodynamics, as was clearly demonstrated in Chapter 3, see also e.g. [4]. We again stress
that for nonlinear elastodynamics, the time-discretization that deviates from the mid-point
approximation introduces error in the solution, e.g. [99], and for this reason, the nonlinear stability
criterion is not satisfied for the generalized-a schemes. In such case, uncontrollable growth of energy
and algorithmic failure can be observed. For numerically stiff problems, which are typical in structural
dynamics, the Energy-momentum conserving scheme may produce highly oscillatory response, thus
adding to the above mentioned error in the high-frequency range, e.g. [20], [26]. Non-damped and by
error polluted higher frequencies may demand ever smaller time steps for Energy-momentum method,
until the steps become prohibitively small and the scheme fails. As an extension of the Energy-
momentum method, the Energy-decaying scheme is designed to numerically dissipate energy (i.e. both
kinematic and potential energies) in a controllable manner, which makes the Energy-decaying scheme
a very attractive choice.

In this chapter, we revisit the modified generalized-a method, the Energy-momentum conserving
method and the first-order accurate Energy-decaying scheme for the shell model under consideration.
We use a 6-parameter, stress-resultant, extensible director shell model, which incorporates the thickness
stretch, described for statics in Section 2.2.3 and denoted as D-ANS in Section 2.5 (the considered model
should not be confused with the 6-parameter finite rotation model, e.g. [72], [75]). We avoid the
transverse locking by enforcing condition M33; = 0 and by implementing the assumed natural strain
(ANS) interpolation for the transverse normal strain [15]. The transverse shear locking is avoided by the
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ANS interpolation of the transverse shear strains, suggested by [48]. For benchmark tests presented in
Section 2.5 (see also e.g. [152]), the derived 6-parameter quadrilateral element yields practically
identical results as the widely adopted 5-parameter MITC4 element presented in Section 2.2.1 (see also
e.g. [28] and [47]) or the 7-parameter element from e.g. [19], [24]. As shown in Section 2.5.2.2, the
conditioning numbers of linear stiffness matrices of the 6-parameter rotation-less and the 5-parameter
element with rotations are of the same order. This indicates that the above mentioned error in the high-
frequency range, which is related to the mechanical model, is of the same order for both elements.

The computed numerical examples range from a snap-through and shell collapse to the buckling of
perfect and imperfect cylinder under axial load. They demonstrate that the chosen implicit schemes with
numerical dissipation are very suitable for the buckling simulation of elastic shell-like structures (which
have in many cases little internal dissipation). Implicit structural dynamics can provide very reasonable
solutions, even when static path-following methods fail. Moreover, in dynamics, one does not need to
deal with the critical (limit and bifurcation) points. Let us finally recall that when considering shell
buckling, one should keep in mind the imperfections, which have for many shells strong influence on
the buckling load and modes and also on the post-buckling response. The influence of geometric
imperfections on cylinder buckling is studied in Section 5.3.6.2. However, a more detailed treatment of
shell imperfections is outside the scope of this work. For recent discussions on geometric imperfections
we refer to [61] and [62].

5.2 Dynamic shell finite element formulation

5.2.1 Shell model

We model a shell with its middle surface and a field of extensible unit directors, as described in Section
2.2.3. We highlight here only the differences from the D-ANS model and derive its extension to
dynamics.

As before, strains and stress resultants are collected in vectors, Saint-Venant-Kirchhoff hyperelastic
model is adopted to define the constitutive relations and the value for shell correction factor is set to 5/6.
The weak form of the equilibrium equations (i.e. the virtual work equation) can be written as

Gayn (w, w; 8u, 6w) = 6I1(u, w; Su, Sw) + Aof

5u-udA+10f Sw - W dA
M

" (5.1)
—f Su-n%’ pdA =0,
M

where 8I1(u, w; Su, 6w) is defined in (2.15). Acceleration of the middle surface point is denoted as it,
acceleration of shell director vector is d = W, and A, and I, are the middle surface mass density and
inertia of the shell director, respectively, defined in (4.64). The deformation-dependent pressure p,
having direction of normal to deformed middle surface nief = (rf X rn) /l re X1y, = n%f (), is
considered in (5.1). For thin shell n®f = t/| t |l= n®/ (w), since the negligible transverse shear
strains in thin shell keep the deformed shell director (almost) perpendicular to the deformed middle
surface. This approximation will be adopted in this work. We further refer to Sections 2.2.3. and 3 for
more detailed explanation of the used notation.
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Functional (5.1) incorporates three sets of equations that define any structural model: (weak) equilibrium
equations, kinematic equations, and constitutive equations. It provides a system of nonlinear equations
after using finite element method for its discretization in space and an implicit dynamics time-stepping
scheme for its discretization in time, which will be only briefly addressed in the next two sections,

respectively.
5.2.2 Discretization in space

Over the element domain 4,, the interpolation of the shell initial and deformed configurations, defined
by middle surface and shell director, is performed following Egs. (3.4)-(3.6) from Section 2.3.2.
Membrane and bending strains, 7, and k%, respectively, are expressed at a Gauss integration point
using local Cartesian basis. The approximation of transverse shear and normal strains on the other hand

rely on the assumed natural strain (ANS) concepts described in Sections 2.4.1.1 and 2.4.1.3.

Taking into account the spatial discretization, relations between the mesh and element degrees-of-
freedom, kinematic admissibility of nodal virtual displacements, and displacement boundary conditions,
functional (5.1) becomes an assembly of finite element contributions with mesh nodal values as the
unknowns
h  _ AT . —
Gdyn - Aeilleiyn (6ua: 6Wa, Ug, Wa) -

AV | (8&h- NP+ Skl - MM + 5y" - QM)dA + AL, | (ApSul - ith + I, swh - W) dA 5.2)
Ae Ae )

—AzZ, f (Su" - b + sut - nfhp) dA — AL ] sul -£ds = 0.
A, 7

e=1
te

5.2.3 Discretization in time

Following the development from 4.3, we partition the time interval of interest [ty, T] into a number of
sub-intervals [ty, T] = UN_o[tn, ths1]- Let (-)q, denote the given value of (-), at t,, and let () g ns1
denote the corresponding value at t,, ;. We choose the Newmark approximations [118] to express nodal

accelerations and velocities at t,, ;¢

g e = = (tanss = tan) ==Lty =2 pe i
an+l — BAt an+1 an B an 28 an»

) 1 1 1-28. (53)
Ugn+1 = ﬁAtz (ua,n+1 - ua,n) - ﬂAt Ugn — Zﬂ Ugn,
, Y Y—0 . y—28 .
Wa,n+1 - ,BAt (Wa,n+1 - Wa,n) - ,3 Wa,n - 2'3 At Wa,n:
) 1 1 1-28. (54
Wan+1 = ﬂAtZ (Wa,n+1 - wa,n) - ﬁAt Wan — 2'3 Wan-

To approximate nodal values within the interval [¢,, t,,+1] we will use linear interpolations, e.g. [38],
so the approximation of nodal acceleration at t,,, and nodal displacement and external loading at

tn+ay 8OCS aS
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1"la,n+ozm =0nm 1"la,n+1 + (1 - a'm)ua,n: Wa,n+am = Qn wa,n+1 + (1 - a'm)wa,n:
ua,n+af =0r Ugn+1 + (1 - af)ua,n' wa,n+af =0arWgni + (1 - af)wa,n: (5.5)
bnia, = af bpys + (1-ay)b,, Enta, = a5 Engg + (1-ap)t,,
where tpiq = Aptner + (1 — ap)ty, theay, = Aptner + (1- af)tn. Research on the conservation

of energy and momentum, e.g. [23], [96], [146], motivates the use of the same linear interpolation to
approximate the internal forces at t,, ;

Niia, = Ny + (1 —ap)Ni = €™ - [ag &ty + (1 - af)el],
Mo, = apMy g+ (1 —ap) M = € - [ap iy + (1 - ap)xel], (5.6)
Qﬁ+af = anﬁH + (1 - af)Qn =C*- [af }’7’;+1 + (1 - a’f)yg]-
Approximation (5.3), (5.4) and interpolations (5.5), (5.6) can be used for time-discretization of
functional (5.2) as
5Ggyn = AgilléSGe(&‘a: Swg; ua,n+1rwa,n+1) =

AL [ (02" Ny, + 0" - M, + 07" Qlhvey ) dA
A

e

+ATE, f (Apsul -itl,, + Ipowh - Wi, )dA G.7)

e
n N def,h n s _
—ATel f (80" B, + 6u -, " Prray) A — AR | SuP Eypq ds =0,
Ae Ff,e
where accelerations are applied at ¢, , and loadings and internal forces are applied at ¢, ;- Note

defh _ _defh
that Mpia, = Mnig, (Wa,n+af)-

Several implicit time-stepping schemes that fall into class of generalized-a method [96] can be obtained
by varying @,,, &, B and y in (5.8). They are summarized in Table 3.1, where parameters a,, af, 8
and y are given as functions of spectral radius at infinity p,, € [0,1], which controls the amount of
numerical dissipation. Listed parameters are optimal for a-methods (in linear elastodynamics) for
minimizing low-frequency and maximizing high-frequency dissipations [38].

Besides the schemes from Table 3.1 (with the exception of JWH) we will also use the first-order accurate
modification of EMC scheme, namely the Energy-decaying scheme (ED1 from Table 3.2) that we
denote here as ED, e.g. [26], [132]. It is important to note that dissipation parameters defined in this
section follow the development from [26], so a slight modification compared to the ED1 scheme from
Section 3.4, is applied. The interval of validity for the dissipation parameters is modified from the
original values agp,Bgp € [0,1] to agp, Brp € [0,0.5]. Namely values agp = Bgp = 0.5 now
correspond to the same level of dissipation that was achieved in Chapter 3 using values agp = Bgp =
1. This change is visible also in the expressions (5.8) and (5.9).

The EMC can be modified to dissipate high frequencies by: (i) replacing (5.6) with
Npiq, = C™ - [ar €n41 + (1 = ar)en + app(€nsr — €],
Mo, = CP - [ap Kpsr + (1 — ap)ren + app (i — K )], (5.8)
Qnia; = C° [ Va1 + (1= @) ¥n + @spWni1 — ¥a)l,
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where agp controls dissipation in potential energy, (ii) replacing Newmark approximations for
velocities in (5.4) with (note that § = 1/4 andy = 1/2)

(ua,n+1 - ua,n) — l

At 2

: 1 .

= Ugnt1 = (At/z + ﬁEDAt) (ua,n+1 - ua,n) - ua,n(At/2 - BEDAt))'

(ua,n + i‘a,n+1) + .BED (ua,n+1 - ua,n)

(w —Wa,) 1 5.9
an+1 an . . . .
At = E (Wa,n + Wa,n+1) + .BED (Wa,n+1 - Wa,n)
. 1 .
= Wa,n+1 = (At/z + ,BEDAt) (Wa,n+1 - Wa,n - Wa,n(At/2 - ,BEDAt)) )

where fp controls dissipation in kinetic energy, and (iii) replacing accelerations in (5.5) with

) Upnes —ton Wonst = W,

Ugn+1/2 = %; Wan+1/2 = %r (5-10)

thus completing the description of ED scheme for the extensible director shell model.
5.3 Numerical examples

We have already shown in Section 2.5.2 that the proposed 6-parameter element passes the basic Patch
test and although it has 13 nonzero eigenvalues, compared to the 9 nonzero eigenvalues of the 5-
parameter elements, they have the conditioning number of the same order. This indicates that 6-
parameter element might produce some more high-frequency modes in dynamics, but the frequency
range of these modes will be the same for both elements.

Static analyses were performed either by the path-following method described in [150] (hereinafter
denoted as AL) or by the displacement-control (hereinafter denoted as DC). The chosen path-following
method is in fact cylindrical arc-length [41]. For AL, the maximal and minimal allowed incremental arc-
lengths were Ay,,q, = 0.5 and Ay, = 1078, respectively.

Table 5.1: Minimal and maximal allowed At.
Preglednica 5.1: Najmanjsi in najvecji dovoljeni At.

Example Atpnin [8] Atmax [s]  Atinitiar [8]

53.2 10~4 1071 1072
53.3.1 1073 2-1073%  2.1073
53.32 1075 1072 2-1073

534 10~ 1072 2-1073

5.3.5 1076 1072 2-1073

53.6 1078 2-1073 ** 1072

* Around buckling initiation, At,,q, = 5+ 107%s.
#% Until t = 0.28's, Aty = 1072 s.

For dynamic analyses, the adaptive time-step-size function (2.81) was used, with the desired and
maximal allowed number of incremental iterations set to I, = 8 and N = 25, respectively. Minimal and
maximal allowed time steps, as well as the initial one, are presented in Table 5.1 for all examples. For
examples 5.3.2 — 5.3.5, spectral radius p,, = 0.9 was chosen. For example 5.3.6, values of p,, are given
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in Section 5.3.6. The chosen parameters for ED scheme were app = 0.02 and Sgp = 0.02. The

convergence tolerance was 1078,
5.3.1 Static benchmark tests

We have already tested extensively the derived element in static settings in Section 2.5, where we
denoted it as D-ANS. Here we present two additional benchmark tests to demonstrate that the derived
6-parameter shell element performs well for standard shell problems. The data is given in Figure 5.1.
The tests were also computed by the 5-parameter large rotation shell element from [28] and [47], denoted
as MITC4 in Section 2.5. The results of both elements match well with each other and also with [152],
who used Abaqus S4R element, see Figure 5.2. This indicates that the performance of the derived 6-
parameter rotation-less element is indeed comparable to the 5-parameter large rotation elements. We
note that example in Figure 5.1 (a) differs from the pinched cylinder example from Figure 2.39.
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Figure 5.1: Data for (a) pinched cylindrical shell with end rigid diaphragms, (b) hinged cylindrical panel.
Slika 5.1: Podatki za (a) pres¢ipljen cilinder s kon¢nimi diafragmami, (b) ¢lenkast cilindri¢ni panel.
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Figure 5.2: Load-deflection curves for (a) pinched cylindrical shell and (b) hinged cylindrical panel.
Slika 5.2: Krivulje odziva za (a) prescipljen cilinder in (b) ¢lenkast cilindri¢ni panel.
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5.3.2 Dynamic benchmark test

In order to illustrate the performance of the dynamic formulation for the D-ANS element with the
implicit time-stepping schemes, a dynamic benchmark test of the flying short cylinder is executed, see
Section 3.6.3 and Figure 3.22 for example details. Let us repeat that the cylinder is loaded by a set of
impulsive nodal forces and for t > 1 exhibits free motion. Adaptive time-stepping is used here, as

opposed to the constant time increments, used in 3.6.3 and the level of introduced dissipation is low.

500
EMC ——NMD ——BAM HHT GAM NTR ED

> 400 |
oo
()
c
(O]
=
(]
= 300

200 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40
t
Figure 5.3: Short cylinder: energy evolution in time.
Slika 5.3: Kratek cilinder: razvoj energije v Casu.
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Figure 5.4: Short cylinder: middle surface node velocity versus time.
Slika 5.4: Kratek cilinder: hitrost vozlis¢a na srednji ploskvi.

Figure 5.3 shows that after t > 1 EMC exactly preserves structural energy, and GAM, BAM and HHT
predict almost constant energy. GAM energy line is only slightly below the EMC line and BAM and
HHT energies are further below. The dissipation of the first-order accurate NMD and ED seems to be
exaggerated. NTR analysis blows up at approximately t = 4 s. Figure 5.4 shows the time oscillation of
velocity in x direction of the middle surface node initially located at {R, 0,0}. The dissipative schemes
introduce phase shifts in velocity, the larger the dissipation the larger the shift. Results in Figure 5.4 are
almost identical for EMC and GAM on one hand and for BAM and HHT on the other hand, with
difference between the two pairs increasing with time. NMD produces shift already from the beginning.
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Also ED shows considerable phase shift. Figure 5.5 illustrates the tumbling of cylinder; configurations

for every 25th step are shown for NMD. Let us note that only EMC ensures exact conservation of linear

and angular momentum, whereas some other schemes show only small deviations, which is in agreement

with the results for the 5-parameter shell model in Section 3.6.3.

Figure 5.5: Short cylinder: sequence of deformed configurations.

Slika 5.5: Kratek cilinder: zaporedje deformiranih konfiguracij.

5.3.3 Snap-through of a conical shell
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Figure 5.6: Conical shell data.
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Slika 5.6: Podatki o stoz¢asti lupini.
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The geometric, material and loading data for this example are shown in Figure 5.6. Two load cases are
considered: (a) imposed displacement, and (b) imposed line force, both acting at the top edge in —z
direction. The displacements of the bottom edge are constrained. The force-displacement curves in
figures below are for the node with initial coordinates {0, —r, H}.

5.3.3.1 Imposed displacement case

In Figure 5.7, the reaction force versus imposed displacement curve is given. Figure 5.8 shows some
deformed configurations, and Figure 5.10 presents energy change with time. The snap-through starts at
t = 0.05s,when u, = —0.1 m. Due to the imposed displacements, the snap-through is controlled and
the fully inversed configuration is reached slowly att = 1s, when u, = —2 m. Figure 5.7 shows that
the matching between the schemes is close until u, = —1.7 m, excluding NTR, which blows up atu, =
—0.7 m. The results start to oscillate at u, = —1.85 m, when the shell is just about to fully inverse.
EMC displays large oscillations, and also the dissipative schemes produce considerable oscillations
between u, =& —1.85 m and u,  —2 m. Figure 5.8 shows that the oscillations relate to the turn-over of
the bottom ring just before the full inverse. Four configurations are presented in Figure 5.8 for BAM,
with (b1) and (b2) showing configurations before the oscillations and (¢) showing configuration after
the oscillations are damped.

Figure 5.7 also contains the results of two static analyses: the one based on the displacement control
(DC), and the other based on the arc-length (AL). Let us note that the results of dynamic and static
analyses do not differ too much until u, =® —1.9 m. However, both static analyses fail to compute the
final part of the force-displacement curve from u, = —1.9 m on. Figure 5.7 shows only the first part of
the AL computed response. More of it is in Figure 5.9 (left), where the red dot marks the point at which
the computation was stopped. Even after several “cycles”, the AL analysis did not take the path towards
the fully inversed configuration computed by all time-stepping schemes except NTR.

Table 5.2: Buckling loads for displacement imposed case.
Preglednica 5.2: Uklonske sile za primer vsiljevanja pomika.

Dynamic analyses Static analyses
Integration scheme | NMD ED BAM HHT GAM EMC NTR DC AL
Buckling load [kN]| 9971 10067 10030 10021 10247 10293 10574 | 9961 9960

Buckling time [s]| 0.047  0.048  0.047 0.047 0.048 0.058 0.062 | 0.050  0.051
load / load (DC) [%] | 100.1 101.1 100.7 100.6 102.9 103.3 106.2 100.0 100.0

For comparison of elastic and elasto-plastic static analyses, Figure 5.9 (right) shows the results of static
elasto-plastic analysis for Ilyushin stress resultant elasto—plasticity [47], with yield strength f, =
355 MPa and stress-resultant isotropic hardening H = 2 MPa. The force, at which the snap-through
starts, is for elasto-plastic cone considerably smaller than for elastic one. Figure 5.9 (right) shows that
for elasto-plastic static analyses, both DC and AL give proper results. Table 5.2 shows the results for
the buckling load. The schemes with dissipation compute almost identical buckling time, while the EMC
buckling time is larger. The results of NTR differ most from the rest.
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25

Figure 5.8 (a) Figure 5.8 (c)

15 +  / Figure 5.8 (b1) and (b2) \

Reaction force [MN]

Displacement u, [m]

Figure 5.7: Conical shell: reaction force vs. imposed displacement.
Slika 5.7: Stozcasta lupina: reakcijska sila v odvisnosti od vsiljenega pomika.

Figure 5.8: Conical shell: deformed shapes for imposed displacement case (BAM).
Slika 5.8: Stozcasta lupina: deformirane konfiguracije za primer vsiljevanja pomika (BAM).

The time-change of total energy is given in Figure 5.10. At the beginning of the snap-through (at t =
0.11 s and u, = —0.22 m), the energy slowly increases until mark / in Figure 5.10 (see configurations
at / in Figure 5.8 (b1l) and (b2)), when it starts decreasing until the shell is fully inversed (at t = 1 s and
u, = —2 m). The schemes damp oscillations in different manners, which is the reason that the curves
differ after t ~ 0.85 s. The large final increase in the energy, marked with // in Figure 5.10, is due to



Lavrencic, M. 2020. Numerical Procedures for Nonlinear Static and Dynamic Analyses of Shell Systems of Various Sizes.
PhD Th. Ljubljana, UL FGG, Third cycle doctoral study Built Environment.

137

cone stretching after snap-through. Let us note that NTR energy blows up at t = 0.3 s and that EMC
fails to produce results for the total time of interest. Figure 5.11 shows how the time step changes

because of (2.81). ED can use At,,,, throughout the entire time of interest. On the other hand, EMC
requires extremely short time steps after t = 0.85 s.
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Figure 5.9: Conical shell: results for elastic (left) and elasto-plastic (right) static analysis.
Slika 5.9: Stozcasta lupina: rezultati za elasti¢no (levo) in elasto-plasticno (desno) stati¢no analizo.
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Figure 5.10: Conical shell: total energy evolution in time.
Slika 5.10: Stoz¢asta lupina: sprememba celotne energije v ¢asu.
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Figure 5.11: Conical shell: time step versus time.
Slika 5.11: Stoz¢asta lupina: dolzina ¢asovnega koraka v odvisnosti od ¢asa.
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5.3.3.2 Imposed force case

A line force is applied on the upper edge of the cone according to the loading function in Figure 5.6 (b),
with the final value f = 1.273 MN/m. In this load case, the dead load is taken into account, in contrast
to the imposed displacement case. The snap-through starts at t = 1 s (except for ED that predicts it
sooner) and it is (almost) instantaneous, contrary to the first load case. Heavy oscillations in
displacements and energy occur during and after the snap-through, see Figures 5.12 — 5.14.

Figure 5.12 shows the time evolution of vertical displacement of the node with initial coordinates
{0, —r, H}, and Figure 5.13 shows the time evolution of the energy. Both figures illustrate how the
schemes handle the oscillations. ED scheme damps the oscillations quickly and efficiently (although the
chosen parameters might produce too much damping). BAM and EMC predict large oscillations (EMC
oscillations are extremely large) and the on-going vibrations of the cone, which eventually leads to
computational failure due to too small At (EMC fails much sooner than BAM). It seems that GAM
damping is the most reasonable. Figure 5.14 shows some deformed configurations. Figure 5.15 presents
the time step changes due to (2.81). ED can use large time steps for most of the time. NMD, GAM and
HHT can also use reasonably large time steps. The imposed force load case is more demanding for
dynamic computations than the imposed displacement one, because only NMD, ED, HHT and GAM
produce results until the final time ¢ = 6 s (the other schemes fail before). For these schemes, the total
energy is almost constant after ¢ = 5 s, when the external loading is constant.
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Figure 5.12: Conical shell, line force: vertical displacement of node {0, —r, H}.
Slika 5.12: Stoz¢asta lupina, linijska sila: vertikalni pomik vozlis¢a {0, —r, H}.
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Figure 5.13: Conical shell, line force: total energy evolution in time.
Slika 5.13: Stozcasta lupina, linijska sila: sprememba celotne energije v Casu.
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Figure 5.14: Conical shell, line force: deformed shapes.
Slika 5.14: Stozcasta lupina, linijska sila: deformirane konfiguracije.
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Figure 5.15: Conical shell, line force: time step versus time.
Slika 5.15: Stoz¢asta lupina, linijska sila: dolZina ¢asovnega koraka v odvisnosti od Casa.

5.3.4 Snap-through of thin cylindrical panel

Very thin cylindrical panel (h/R = 1/4000) is considered, with geometry, material and loading data as
shown in Figure 5.16. Previous examples indicate that the dissipative schemes handle the snap-through
problems much better than EMC. Thus, we chose for this example only BAM and GAM. The static arc-
length (AL) analysis for P = AP,, where 4 is load multiplier, and the static displacement-control analysis
are also done. Let us note that the latter failed soon due to the heavy snap-backs in the static load-
displacement curve, Figure 5.18.
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Mosh:20x20 % | ~ R=4000mm, L =1600 mm,
esh:20x “\AZ p=7810"%kg/mm*,  h=1mm,
Wy, E =210 103 MPa,

| %4 v=0.3, 6=2arcsin[L/(2R)]

Figure 5.16: Thin panel data.
Slika 5.16: Podatki za tanek panel.

Figure 5.17 shows that the beginning of buckling (snap-through), up to u, ® —20 mm, is adequately
captured by all analyses. Both BAM and GAM predict a considerable push-back of the shell before the
snap-through is completed, Figure 5.17. The dissipation smooths oscillations during the snap-through
and in the shell inverse configuration. Two deformed configurations are shown in Figure 5.17. They
relate to the blue dots in the load-displacement curve. The complete results of the static AL analysis are
presented in Figure 5.18. The AL makes many loops, changing considerably the waving pattern of
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deformation, but never reaches the complete inverse configuration shown in Figure 5.17. The red dot in
Figure 5.18 marks the point where the analysis was stopped. We can conclude that for this example the
complete snap-through process can only be computed by dynamic analysis using an energy dissipative
scheme. The static analyses fail to compute the complete buckling process.
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Figure 5.17: Thin panel: vertical displacement versus load.
Slika 5.17: Tanek panel: vertikalni pomik v odvisnosti od obtezbe.
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Figure 5.18: Thin panel: vertical displacement versus load for static arc-length analysis.
Slika 5.18: Tanek panel: vertikalni pomik v odvisnosti od obtezbe za staticno analizo z metodo lo¢ne dolZine.
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5.3.5 Collapse of half-sphere under pressure

Let us consider a half-sphere under external pressure. The geometric, material and loading data are
shown in Figure 5.19. The mesh is obtained by mapping a mesh defined on one half of a cube onto the
half-sphere. The conservative surface pressure p(t) acts on the outer surface. The problem was analyzed
by GAM and BAM and by static AL analysis performed for surface pressure A(t) py.
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N t[s]
E R = 1000 mm, p = 7.8 107° kg/mm?,

h=5mm, E = 210 103 MPa,
Hinged edge v =10.3, pp = 10 N/mm?,
Mesh: 2700 elements
Figure 5.19: Half-sphere data.
Slika 5.19: Podatki za polkroglo.

Figure 5.20 shows pressure versus deflection curves for the upper-most point of the half-sphere. The
buckling of the half-sphere under pressure is practically instantaneous. It starts with the appearance of
dimples (i.e. wrinkling) that break the half-sphere symmetry (see configurations related to time-point 1
in Figure 5.20). The dimples appear around the lines, which are maps of the edges of the half-cube. This
indicates that the location of the dimples relates to small disturbances introduced by spatial
discretization. GAM and BAM predict wrinkling formation almost at the same load levels, which are
very close to the static buckling load, see Table 5.3. After the initial wrinkling formation, the shell
collapses very quickly.

One can observe that the dynamic load-displacement curves are different from the static one. This is
because in the load-imposed dynamics the load decrease is not possible, while it is possible in the static
arc-length analysis. For dynamic computations, the analysis stops just after the start of buckling (point
1 in Figure 5.20), because no solution for a load higher than the buckling load exists. The schemes
compute several deformed configurations just after the start of buckling and then stop (see
configurations at points 2 and 3). Note that the time difference between the buckling start (point 1) and
point 3 is only At = 0.005 s. For static arc-length analysis, the computations can proceed after the
buckling load. The load can be reduced in the arc-length analysis, and therefore a new, stable
configuration can be found for a much lower load than the buckling load (see configuration at point 5).
For this reason, one should not compare configurations 2 and 3 with configurations 4 and 5.
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Figure 5.20: Half-sphere: force — displacement curve with deformed meshes at u, ~ [—2,—100, —190].

Slika 5.20: Polkrogla: krivulja sila-pomik z deformiranimi konfiguracijami pri u, = [—2,—100,—-190].

Table 5.3: Half-sphere: buckling loads.
Preglednica 5.3: Polkrogla: uklonske sile.

Dynamic analyses Static analysis
Integration scheme BAM GAM AL
Buckling load [N] 5.05 5.24 4.95
load / load(AL) [%] 101.9 105.8 100.0

5.3.6 Buckling of axially loaded cylinder

Let us consider the classical shell problem, elastic buckling of cylinder under axial compression. We
refer to [92], who recomputed test specimen Z=500 of Yamaki experiments [175]. The input data (see
Figure 5.21) and the experimental results are taken from [175] (see p. 230/Figure 3.52d (a), and p.
433/Figure 5.24b (i)), who tested cylinders made of polyethylene terephthalate, which were carefully

manufactured in order to remove (as much as possible) geometric imperfections. Theoretical critical
. ) . . . . . E h
stress for elastic axially compressed cylinder (for axisymmetric buckling mode) is o, = HaooR”
%

e.g. [83]. For the considered cylinder g, = 8.31 MPa and the theoretical critical axial force P., =
1290 N.
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Figure 5.21: Cylinder data.
Slika 5.21: Podatki o cilindru.

The experimental buckling mode was a diamond-like mode with both axial and circumferential waves.
The number of waves in the post-buckling changed abruptly several times during the increase of axial
displacement. The experimental results are shown in Figure 5.22 (along with the results of our
computations). They are labelled as “Asymmetric” and “Symmetric”, where the asymmetry and
symmetry relate to the shape of buckling mode (i.e. pattern) with respect to the cross-section at the
middle-height of the cylinder. The asymmetric patterns (and the related load-displacement curve) were
obtained by increasing and decreasing the edge axial displacement, which was imposed during the
experiment. On the other hand, the symmetric patterns (and the related curves) were obtained by
applying small point-wise disturbance forces (in the shell-normal direction) at certain time-points (by
using fingers). One can note that the experimental buckling load in Figure 5.22 is significantly lower

than the theoretical one.

Our computations were performed by imposing axial displacement at the upper edge according to
function in Figure 5.21. Hereinafter, the number of axial half-waves will be denoted as m and the number

of circumferential full waves as n.

5.3.6.1 Cylinder without geometric imperfections

Cylinder without geometric imperfections was computed with BAM (for p,, = 0.6), GAM (for. py, =
0.8), and ED (for agp = Bgp = 0.02). The results are compared with the experiment in Figure 5.22.
BAM results match very well with the experiment, except for the buckling load. BAM computes the
transition of asymmetric buckling mode into the diamond-like mode, as observed in the experiment (see
configurations A-D in Figure 5.22). Moreover, three changes of the wave numbers m and n match
exactly the experimental observations (see configurations E-G in Figure 5.22). ED results match the first
experimental buckling modes (A-D), including asymmetric D mode, whereas further ED results
coincide with symmetric experimental curves rather than with asymmetric ones. The ED changing of
wave numbers is nonetheless in agreement with the experiment. GAM fails to catch the first post-
buckling branch with mode D. The cylinder oscillates when the transition to mode D should happen, but
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then it skips mode D and jumps into mode E. Figure 5.22 shows that all three schemes can accurately
simulate the buckling pattern transition; except GAM, which missed out mode D (n = 12, m = 2), and
ED preferred symmetric modes instead of asymmetric. For videos of complete responses see [101].

The computed response depends on the amount of numerical dissipation, dictated by p,, (the smaller
Poo the larger dissipation). Figure 5.23 shows BAM and GAM responses for different values of p,. For
Poo = 0.6 and p,, = 0.8. The BAM results are in very good agreement with the experiment in the post-
buckling regime. For larger p.,, the BAM results are completely polluted by higher frequencies. Such
pollution is much smaller for GAM results, which, however, always miss out one post-buckling mode.
Let us note that small p,, elongates the buckling-load plateau. Table 5.4 shows that for larger p,, the

required time-step gets shorter and the computational time gets longer.

In order to show the influence of imposed displacement velocity, Figure 5.24 presents results for several
load functions for BAM with p,, = 0.6 . The load function in Figure 5.21, where the final imposed
displacement is reached at t = 2's, is replaced with the load functions where the final imposed
displacement is reached at 0.5, 2, 5 and 10 s. Figure 5.24 shows that short loading times result in a long
plateau in the force-displacement chart. On this plateau, the axisymmetric pattern forms, which is not
observed experimentally. For longer loading time (e.g. t = 5s or t = 10 s), with very small inertial
forces, the plateau is very short or does not appear at all.
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Figure 5.22: Ideal cylinder: force-displacement curves.

Slika 5.22: Idealen cilinder: krivulje sila-pomik.
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Table 5.4: Buckling of ideal cylinder: number of time steps for different values of spectral radius.
Preglednica 5.4: Uklon idealnega cilindra: Stevilo ¢asovnih korakov za razli¢ne vrednosti spektralnega radija.

Time integration scheme

BAM BAM BAM GAM GAM GAM GAM ED
Spectral radius pe, 0.6 0.8 0.9 0.6 0.8 0.9 0.95 /
Number of time steps 1152 1278 4875 1327 1691 2101 3092 1008
—— GAM 0.6
| ——BAMO0.6 |
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Figure 5.23: Ideal cylinder: response curves for different values of spectral radius.
Slika 5.23: Idealen cilinder: krivulje odziva za razli¢ne vrednosti spektralnega radija.
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Slika 5.24: Idealen cilinder: krivulje odziva za razli¢na trajanja nanasanja obtezbe, za BAM in p,, = 0.6.
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Figure 5.24: Ideal cylinder: response curves for different loading time, for BAM and p,, = 0.6.

5.3.6.2 Cylinder with geometric imperfections

Initial geometric imperfections were added to the considered cylinder. Kobayashi [92] performed
linearized buckling analysis to compute cylinder eigenmodes, and then used factorized sum of the first
18 eigenmodes to simulate geometric imperfections. They reported that the first 18 computed
eigenmodes could be described by the following half-wave and wave numbers: m = 13 andn =0, ..., 7,

and m =12 and n = 0, ..., 9. We adopt the approach of [92]. Moreover, we mimic factorized sum of
the first 18 eigenmodes by the following function

AR(8,7) = —

h i ) [mnz] N i in[n] si [13 nz] N i in[n] Si [12 nZ
100 sin [— sin[nf] sin|— sin[n@] Sin
m=12 n=1 n=1

]) (5.11)
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where 1% of the cylinder thickness was chosen for the amplitude, as suggested by [92]. Let us note that
AR was added to the cylinder radius R when the mesh was generated.

Results of the analyses of cylinder with geometric imperfections are given in Figure 5.25. The
imperfections reduce the computed buckling load (with respect to ideal cylinder) and make it
comparable with experimental buckling load. The primary buckling patterns change (with respect to
ideal cylinder), see configurations A-D in Figure 5.25. However, once the first diamond-like post-
buckling mode is reached (configuration E with n = 12, m = 2), further buckling pattern transition is
exactly the same as for the ideal cylinder and experiment. Moreover, GAM does not miss out mode with
n = 12,m = 2, which was the case for ideal cylinder. Let us note that there is a difference between
BAM and GAM results only in the first part of post-buckling curves in Figure 5.25. Comparison of
results for ideal and imperfect cylinder show that a difference is up to the buckling mode with n =

12, m = 2, and that after that load-displacement curves do not differ much.
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Figure 5.25: Imperfect cylinder: force-displacement curves.

Slika 5.25: Cilinder z nepopolnostmi: krivulje sila-pomik.
5.4  Chapter conclusions

In this chapter, we investigated the applicability of five implicit schemes of structural dynamics with
(controllable) numerical dissipation, which belong either to the class of generalized-a methods, or
Energy-decaying method, for simulating complex buckling processes of elastic shells. Beside five
numerically dissipative schemes, the Energy-momentum conserving scheme and the Newmark’s
trapezoidal rule were also investigated. These seven implicit schemes were applied for the computation
of classical shell buckling problems: snap-through, complete collapse and cylinder under axial load. The
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following comparison of computed results was performed: characteristic displacement versus time
curves, energy versus time curves and required time-step length versus time curves. The convergence
abilities of the schemes, i.e. how far they can go before they fail and why they fail, have also been
assessed. In this manner, some empirical knowledge about the suitability of a particular scheme to
handle complex shell buckling problems has been built up.

We can conclude that most of the applied implicit schemes for structural dynamics that possess
(controllable) numerical damping (in the high-frequency range) are suitable for the simulation of shell
buckling. These are the modified Generalized alpha (GAM), Bossak (BAM) and HHT schemes (the
word “modified” is used to reflect different computation of internal forces with respect to the original
versions), as well as the Energy-decaying scheme (ED). They provided favorable results for the
computed examples related to complex buckling processes of shell-like structures and systems,
including the transition of buckling patterns. On the other hand, the following schemes do not seem to
be suitable for the shell buckling analysis: Newmark’s trapezoidal rule (NTR), first-order dissipative
Newmark’s scheme (NMD) and Energy-momentum conserving scheme (EMC). Newmark’s trapezoidal
rule can quickly fail due to sudden increase in energy. Also, the dissipative Newmark’s scheme (NMD)
can fail due to its first-order accuracy and uncontrollable numerical dissipation. The results of energy-
conserving scheme (EMC) may be polluted by artificial higher frequencies or heavy vibrations that can
easily lead to the scheme’s computational failure.

The inadequacy of the path-following static methods for certain structural applications with complex
post-critical equilibrium paths has been recognized before, e.g. [43], and it is confirmed in this work.
Numerical examples show that the proposed dynamic approach to shell buckling analysis can be superior
to the static path-following analysis. In some computed cases, when the static path-following analysis
failed, the implicit numerically dissipative schemes were able to find the solution.

It is sometimes difficult to compare the results of nonlinear static and dynamic analyses. For this reason,
we illustrate the difference between static and dynamic load versus characteristic displacements curves
in Figure 5.26. It illustrates (left) the results of a collapse analysis, with a solid curve representing a
path-following (i.e. arc-length) static solution, and dashed curves representing imposed load and
imposed displacement dynamic solutions (the dynamics solutions may oscillate at some regions, which
is not shown). Figure 5.26 (right) illustrates the results of a snap-through problem.
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Statics (AL) s
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Dynamics (imposed load) s
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Figure 5.26: Dynamic versus static results.
Slika 5.26: Rezultati za dinami¢no ali stati¢no analizo.
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6 WRINKLING OF SHELL-SUBSTRATE SYSTEMS

Chapter abstract

In this chapter we propose three efficient computational models for predicting the surface wrinkling in
compressed shell-substrate composites. To capture the transitions between the wrinkling modes, we use
implicit dynamics in a combination with elastic foundation that represents the substrate. We first focus
on axially compressed bi-layer cylindrical shell-substrate composites. In this context we apply the
generalized-a and energy-decaying time stepping schemes presented in the previous sections. Next, we
focus on the surface wrinkling of core-shell spherical systems under external pressure. In this context
we apply the energy-decaying time stepping scheme. The content of this chapter is adopted from articles
[108] and [157] where cylindrical and spherical examples were addressed.

Numerical examples of axially compressed cylinders are computed using the dynamic extension of
previously analysed 6 — parameter extensible director finite element D-ANS, see Table 2.6 and Sections
2.2.3, 2.3.2 and 2.4.1. On the other hand, examples of pressurized spheres are computed using the
dynamic extension of previously analysed MITC4 finite element, see Table 2.2 and Sections 2.2.1, 2.3.1
and 2.4.1, using rotation algorithm IQ, see Table 2.7 and Section 2.2.2. Dynamic schemes NTR, BAM,
HHT, GAM, EMC, EDI are used.

6.1 Chapter introduction

The common approach in tackling the extremely difficult problem of surface wrinkling is to perform a
numerical nonlinear static stability analysis. For problems where such methods fail, nonlinear structural
dynamics or pseudo-dynamic relaxation methods can be used, [102], [173]. In dynamics, explicit
schemes are preferred to implicit ones, as they make up for the lack of accuracy due to the relatively
easy implementation. Based on our experience in the field of shell dynamics, we propose to use implicit
dynamics schemes in combination with a relatively simple shell model.

Two specific shapes of shell-core composites are addressed. We will focus first on the cylindrical
systems, where the motivation is provided by the works of Zhao et al. [182] and Xu and Potier-Ferry
[173]. In [182] they reported a combined experimental and theoretical investigation of the cylindrical
system that was subjected to axial compression. They showed that, irrespective of the system properties,
the first wrinkling mode is always axisymmetric and periodic along the longitudinal axis of the cylinder.
With some parameter settings they observed the transitions of the wrinkle patterns from axisymmetric
to diamond-like patterns. They also found that the main role in this wrinkling mode transition is played
by the ratio of the elastic moduli E/Er and the geometric ratio R/ty, where R and t; are the cylinder
radius and the cylinder thickness, respectively (here, subscript f refers to the film (shell) and subscript s
to the substrate). Based on the work of Zhao et al. [182] and their own analysis, Xu and Potier-Ferry

[173] proposed a coefficient

¢ =E/ER/t), (6.1)

with the critical value C,,;; = 0.88 and showed that for systems with C > C,,.;; only the axisymmetric
wrinkling mode occurs, whereas for systems with € < C.,;; the transition from the axisymmetric to the
diamond-like wrinkling mode is expected. An experimental and theoretical analysis of a similar problem



150 Lavrenci¢, M. 2020. Numerical Procedures for Nonlinear Static and Dynamic Analyses of Shell Systems of Various Sizes.
PhD Th. Ljubljana, UL FGG, Third cycle doctoral study Built Environment.

was also carried out by Shao et al. [135] to investigate hierarchical wrinkling patterns and to confirm
these results.

Various numerical approaches have been considered in the past to analyze this difficult problem. In
[182] and [78], axially compressed cylinders on substrates were analyzed in Abaqus [1] by a very dense
mesh of 3D solid finite elements and a convenient initial geometric imperfection to trigger the wrinkling
transition. The analyses were carried out in a static framework by pseudo-dynamic regularization. Such
a model is to a certain extent tailored to reproduce the wrinkling transition and is computationally
extremely costly. In [173] they investigated the wrinkling transition numerically by performing a static
analysis using an advanced path-following method and a small perturbation force to trigger the transition
to the secondary branch at the bifurcation points. They used a 3D finite element model consisting of an
8-node nonlinear shell element with 7 parameters, 8-node linear 3D solid elements and kinematic

constraints between solid and shell degrees of freedom.

Other shell-substrate systems that we are interested in are the spherical composites. The motivation for
our work is provided in the recent articles by Veldin et al. [156] and Xu et al. [174]. While the first
authors performed systematic static analyses on spheroidal systems to predict the buckling and post-
buckling behavior, the latter conducted experimental and numerical investigation on micro-scale
spheres, suggesting the validity of parameter (6.1) also for spheres. They observed that for a relatively
soft core (C < 1.3) local dimples can be observed on the sphere. With a larger coefficient (1.3 < C <
15), buckyball patterns can be observed and by increasing the coefficient (C > 15), distorted patterns
involving polygon and labyrinth modes appear. In [156], the analyses were performed by modeling the
substrate as elastic foundation and by using the path-following technique. In [174], numerical
investigation was again performed in Abaqus [1], using eight-node elements for the substrate and thin
shell elements for the surface layer and adopting dynamic relaxation method.

After briefly presenting the numerical models at the beginning of this chapter, we next focus on the
surface wrinkling of axially compressed cylinders adhering to soft substrates and the transitions between
the wrinkling modes. Several popular implicit dynamic time integration schemes that fall into the class
of generalized-a methods [49] are tested to solve the problem, see Table 3.1. In particular, GAM, see
e.g. [38], [96], [97], HHT [65], and BAM, see e.g. [158], [170]. In addition, classical NTR, see e.g.
[118], [21], EMC, see e.g. [146], [23], [26], and ED1 (here denoted as ED), see e.g. [4], [26], [132], are
also considered, see Table 3.2. As for the cylinder, we model the shell by the 6-parameter stress-resultant
extensible director shell model presented in e.g., [144], [102] and in Chapter 4. The substrate is modeled
as an elastic foundation, see e.g. [63], [185] and [100]. Our computational model does not require any
geometric imperfections or perturbation forces to trigger the transitions between wrinkling modes. The
number of finite elements in the mesh is significantly lower compared to the 3D solid models. We
identify which schemes are capable of capturing the complete buckling and post-buckling phenomena
and find that they yield results that are similar to what was observed in experiments [185].

In the next part of this chapter, implicit dynamics is applied to study the surface wrinkling of spheres on
soft substrates subjected to external pressure, where we again try to capture the transitions between the
wrinkling modes. Two computational models are proposed and tested on a set of three spherical

examples. Energy-decaying scheme ED1 (here denoted as ED) was used in combination with the 5 —
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parameter stress-resultant inextensible director shell model representing the shell and elastic foundation
representing the substrate. Static formulation of the used shell model was already presented in Section
2.2 and was extended to a special case of 11 — parameter dynamic formulation in Section 4.3.1. Here,
the straightforward 5 — parameter extension to dynamics will be briefly addressed, which represents the
first of the two used models. The second computational model is obtained by reducing the kinematics
so that only the radial displacements are considered, significantly simplifying the kinematic description
of the shell.

6.2 Dynamic finite element formulations for stiff-shell-soft-core composites
6.2.1 Extensible-director shell on elastic foundation

Let us start the development with the extensible-director shell model presented in Section 2.2.3 for
statics and extended to dynamics in Section 5.2. The weak form of the equilibrium equations, introduced
in (5.1) is here extended, to account for the spring stiffness of the substrate, as

Gayn(u, w; 6u, 6w) = f

(8£-N+6k-M+6y-Q)dA+A0f Su-itdA +
M M

(6.2)

Iof 8w-WdA—f Su-bdA— Sufds—f Su-nf (—Kau-n%") dA = 0.
M M M

T
In Eq. (6.2), Ks is the linear area spring stiffness of the substrate and we refer to Sections 2.2.3 and 5.2
for detailed explanation of the rest of notation.

The contribution of the elastic foundation is introduced in Eq. (6.2) through the area spring stiffness K

acting in the direction of the normal to the deformed middle surface
X0,aX X0,8

10, %0, |

In this work, the substrate is modelled as a Winkler elastic foundation using the expression for stiffness

Ks from [182]

ndel = (6.3)

ko= Llp VPo+ao
S 2 N R Y
where E; = E/(1 — v?) is the plane-strain elastic modulus of the core, and p, and q, are the critical

(6.4)

wrinkling wavelengths in the axial and circumferential directions, respectively. Note that a similar
formula from [100] gives practically the same value of Ks. According to [182], knowing that the initial

wrinkling pattern is always axisymmetric, we assume q, = 0 and obtain p, by solving

tf . 3R E;
e(1—v2Rr2Po e —v2). B, Po
6(1—-v?)R 6(1 —v2)ts Ef

where Ef =E/(1— vf). The authors in [82] and [173] propose a slightly different expression for the

2+ =0, (6.5)

substrate stiffness, but we observed that there is practically no difference in the numerical values of the
coefficient obtained by either of the formulae.

6.2.1.1 Spatial and temporal discretization

Spatial and temporal discretization is accomplished by following the procedure from Sections 5.2.2 and
5.2.3. Space- and time-discrete version of the functional (6.2) can be written as
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h — ANel e . —
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+ATSY f (AoSul -itl, , + 16wl -Wwh,, )dA

Ae

_AZiaj (Suh 'En+rxf + Su 'ni-ei-I;;l (_Ksuﬁmf ’ ndef,h)) dA
Ae

(6.6)

7‘L+Olf

—Al¢, f Su Eniq, ds =0,
Tze

where the notable difference from the functional (5.2) is the introduction of the spring stiffness,

representing the Winkler foundation. Eq. (6.6) yields a system of nonlinear equations for nodal

displacements at t,,,;, which we solve with the Newton-Raphson method.
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Figure 6.1: Properties of used time integration schemes: a) spectral radius, b) damping coefficient and c) period
elongation versus At/T.
Slika 6.1: Lastnosti uporabljenih integracijskih shem: a) spektralni radij, b) koeficient duSenja in ¢) podaljSanje
nihajnega Casa v odvisnosti od At/T.

Several implicit time-stepping schemes from the family of generalized-a methods, presented in Table
3.1, are obtained by varying parameters @, af, f and y in the proposed discretization. For the
cylindrical shell examples, the following were used: NTR, BAM, HHT, GAM and EMC. Furthermore,
the energy-decaying scheme, more specifically the ED1 scheme, was also applied, see Table 3.2.
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Our experience with the buckling analysis of axially compressed cylinders with no core, presented in
Section 5.3.6, see also [102], indicates that considerable algorithmic dissipation is needed to capture the
mode jumps (matching experimental results from [175]) in the post-buckling regime for the GAM, HHT,
BAM and ED schemes. Even though dissipation properties of the adopted schemes are already
extensively analyzed in Chapter 3, we show in Figure 6.1 the spectral radius, damping coefficient and
period elongation for the considered schemes, where dissipation factors used for the analyses of the
cylindrical systems in Section 6.3 are applied. In Figure 6.1 a) GAM 0.6 denotes GAM with p,, = 0.6,
see Table 3.1, ED 0.02 denotes ED1 with agp = Bgp = 0.02, see Table 3.2, etc.

Comparison of ED 0.02 and GAM 0.6 curves in Figure 6.1 a) shows that the latter starts with the
damping at At /T = 0.1 and the former starts even sooner. However, ED 0.02 damping is stronger in the
intermediate-frequency range (up to At/T =~ 0.35), and significantly weaker in the high-frequency
range. GAM 0.8 and GAM 0.9 do not dissipate the intermediate frequencies, but rather only the higher
ones (after At/T =~ 0.3 and At/T =~ 0.9, respectively). The algorithmic damping is also illustrated in
Figure 6.1 b) where a measure of numerical dissipation is damping coefficient &. Figure 6.1 b) clearly
shows that ED 0.02 exhibits damping for all frequencies and is stronger than the one of GAM 0.6 up to
At/T = 0.35. Damping coefficient for GAM 0.8 or GAM 0.9 is considerably smaller than for GAM 0.6
or ED 0.02. Figure 6.1 c) shows the elongation of the time periods due to the applied algorithm and
dissipation, where T is the algorithmic time period. ED 0.02 error is the same as for NTR and EMC
schemes, but smaller than the one of GAM 0.6. The conclusions that were outlined here for the GAM
scheme can be very straightforwardly applied also to the BAM and HHT schemes.

It should be noted that the generalized-a schemes do not fulfill the energy criterion for the unconditional
stability in nonlinear dynamics. Furthermore, according to [49] and our test in Section 5.3, GAM, HHT
and BAM may exhibit strong energy oscillations in the intermediate-frequency range, which was also
observed in numerical simulations presented in the next section. These oscillations were not observed
to the same extent for the ED1 scheme, which was shown in Section 3.6 to be unconditionally stable in
nonlinear dynamics. Finally, note that the validity interval for the dissipation parameters of the ED
scheme is agp, Bgp € [0,0.5], as was presented in Chapter 5 for the extensible director shell model.

6.2.2 Inextensible-director shell on elastic foundation

The inextensible-director shell model presented in Chapter 2 for statics (denoted therein as MITC4) is
extended here to account for the inertial and substrate effects. The weak form (2.13) is thus expanded
as

Gayn(u, d; 5u, 8d) = 811 — j du-n(—Ksu-n)dA
" (67)
+A0f 8u-i1dA+10f 6d-ddA =0.
M M

Here, K5 is again the linear area spring stiftness of the substrate, but unlike the extensible director model,
we presume here that it is acting in the direction of the normal to the undeformed middle surface. The
rest of the notations are explained in detail in Sections 2.2.1 and 4.3. The expression for stiffness Ks is
again taken from [182], see Eq. (6.4).
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Let us note that the complexities of implementation of implicit schemes are of the same order for the 5
— parameter element with rotational degrees of freedom and for the 6 — parameter element with only
displacement degrees of freedom, presented in Section 5.2. This is due to the fact that here, the time-
interpolation of the shell director, rather than of the rotations, is adopted. Thus, the time update of the
shell director has in this case exactly the same form as the time update of the displacements. This is not
the case in some rare situations when the time update of rotations is performed, e.g. [27].

6.2.2.1 Spatial and temporal discretization

Spatial discretization follows the procedure from Sections 2.3.1 and 5.2.2. Membrane and bending
strains, sfl‘b and Kgb, respectively, are expressed at a Gauss integration point using local Cartesian basis.
The approximation of transverse shear strains, on the other hand, relies on the assumed natural strain
(ANS) concepts described in Section 2.4.1.1. Temporal discretization follows the lines presented in
Sections 4.3 and 5.2.3, where the discretization for the energy-decaying scheme is presented. Note that
the validity interval for the dissipation parameters for the ED scheme is agp, f5p € [0,1], as was

presented in Chapter 3. Space- and time-discretization of the functional (6.7) can be written as

h — pNlel e . —
Gdyn - Ae:1 dyn(sua' Sda: ua,n+1: da,n+1) -

Agillf (Ssh ’ N?Haf + Skh ' Mﬁﬂxf + Syh ’ Q?Haf) dA
Ae

+AZ | (Apdul-ith,, +1,6d"-dl,, )dA
Ae (6.8)

_AZil1L <8uh 'En+af + &u” 'ng+af (_Ksuz+af ' n7}‘t+af)> dA

e

—Ale, f Su Tniq, ds = 0.
Ff,e

We will here denote the derived formulation as RM-5 (Reissner-Mindlin shell with 5 dof per node). In
Section 6.4, we also use a second computational model, a dynamic finite element formulation called
QKQ-3 (as quasi-Kirchhof quadrilateral element with 3 dof per node), which is based on a reduced-
order version of the above described shell theory. It applies a simplification that neglects the tangential
displacements and thus assumes

U = Unormard, Unormat = U - d. (6.9)
This considerably simplifies the kinematics of the geometrically exact shell model. Since this
assumption does not fit well with the shear deformable model, we further apply a quasi-Kirchhoff-Love
simplification by using a large value for €S (of the order ~ 10°) in Eq. (2.11), which plays the role of
the penalty number in the computations and allows only negligible transverse shear strains. The spatial
and temporal discretization of QKQ-3 is the same as for RM-5. The difference between QKQ-3 and
RM-5 is that the former formulation uses kinematic constraint (6.9) and mimics the Kirchhoff-Love
solution, whereas the latter does not use any simplifications or modifications, see also Table 6.1.
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Table 6.1: Finite elements used for the analysis of spheres.
Preglednica 6.1: Konéna elementa, uporabljena za analizo sfer.

Reduction of tangential Large shear modulus (as

Element Kinematics i

displacements penalty parameter)
RM-5 Reissner-Mindlin No No
QKQ-3 Reissner-Mindlin Yes Yes

6.3 Cylindrical shell examples

We considered four cylinders, CS1-CS4, with geometric and material properties adopted from reference
[173] (we collect them in Table 6.2 for convenience). The first three examples CS1-CS3 have C < C_pi4,
and the CS4 has C > C,;;. The restraints u, = u, = w, = w, = 0 were applied on both ends of the
cylinder, along with the prescribed axial displacement (see Figure 6.2). The cylinder was at rest at t =
0. No geometrical imperfections or perturbation forces were imposed.

The aforementioned time-stepping schemes were used with an adaptive time-step function (2.81), where
the desired and maximal allowed numbers of incremental iterations are set to I, = 8 and N = 25,
respectively. Minimal and maximal allowed time steps were set to At,,;, = 1078 sand At,,,,, = 0.01 s.
If convergence was not achieved within 25 iterations, the increment was re-computed with At/2. The
initial time step was At = 0.01s and the convergence tolerance for the norm of the iterative

displacement vector was set to 10712,

In the following figures, u, denotes the imposed axial displacement and “reaction force” the sum of

nodal axial reactions at one end. The colors on the deformed configurations relate to the radial
displacements, which are magnified two times to show greater contrast between the wrinkling patterns

(the same scaling applies for all configurations).

Table 6.2: Geometric and material data for cylinders CS1-CS4. Symbols E, v, K, R, L and p denote the elastic
modulus, Poisson ratio, spring coefficient, radius, length and density of the cylinder, respectively.

Preglednica 6.2: Geometrijski in materialni podatki za cilindre CS1-CS4. Simboli E,v, K, R, L in p oznacujejo
elasti¢ni modul, Poissonov koli¢nih, koeficient togosti vzmeti, radij, dolzino in gostoto cilindra, v tem vrstnem
redu.

<

System Ey [MPa] E; [MPa] K, [ N ] ¢ Vg tr [mm] R [mm] L [mm] pf [i] c

mm?3 mm?3
cs1 2.16-10* 1.8 127.6 04 048 1073 0.3 0.3 1073 0.43
Ccs2 2.16-10* 1.8 198.8 04 048 1073 0.113 0.15 1073 0.10
CS3 2.16-10° 1.8 196.3 0.4 048 1073 0.113 0.3 1073 0.01

cs4  1.3-108 1.8 211.6 0.4 048 1073 0.2 0.2 1073 3.92
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Figure 6.2: a) Finite element model (the springs are distributed across the entire inner surface). b) Loading
function.

Slika 6.2: a) Model kon¢nih elementov (vzmeti so razporejene po celotni notranji povr$ini). b) Obtezna funkcija.

6.3.1 System CS1

We analyzed system CS1 (C = 0.43) using a 240 X 120 element mesh, the loading time t, = 10 s and
the damping factors (where applicable) p,, = 0.6 and agp, = Bgp = 0.02. The results of the analyses
depicting the reaction force as a function of the axial displacement and all identified patterns (A-I)

according to different dynamic schemes are shown in Figure 6.3.

Figure 6.3 a) shows that ED and GAM predicted multiple pattern transitions in the post-buckling regime.
ED predicted 5 pattern transitions and GAM predicted 3. The first pattern transition identified by ED
corresponds to the transition from a smooth (shown in configuration O in Figure 6.3 c), to an
axisymmetric pattern (shown in configuration A) with 6 waves (12 half-waves) along the length of the
cylinder. Next, the transition from the axisymmetric pattern in configuration A to the (symmetric)
diamond-like dimple pattern in configuration B is found, with 5 bands of dimples along the length of
the cylinder and 17 dimples along the circumference (comprising each band) of the cylinder. Both mode
jumps are known from the experiments of Zhao et al. [185] and numerical analysis of Zhao et al. [185]
and Xu and Potier-Ferry [173] on axially compressed shell-core cylinders. In addition to the two studies,
our computational model based on ED reveals new mode jumps when the load is further increased. First,
the dimple pattern in configuration B transforms into another diamond-like dimple pattern shown in
configuration C, with a slightly different number of dimples. In this configuration, we count 5 bands of
dimples along the length and 15 dimples along the circumference of the cylinder. Similar to this mode
jump, another one is observed at approximately u,, = 0.002 mm. At this load, the pattern jumps into a
different (also symmetric) diamond-like dimple pattern, shown in configuration D, which has 3 bands
of fully developed dimples at the mid-length of the cylinder and two bands of partially developed
dimples near the boundary. Each band is comprised of 9 dimples along the circumference of the cylinder,
which is a drastic decrease in the characteristic wavelength of the pattern. Interestingly, the mode jumps
we find in this example are similar to those observed on cylindrical shells without substrate support (see
Section 5.3.6 or e.g. Yamaki [175] for experimental and Lavrenc¢i¢ and Brank [102] for numerical
analysis). As far as we know, these results have not yet been recorded in the known literature on axially
compressed shell-core cylinders.
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The final (fifth) mode jump that occurred after u,, = 0.003 mm was due to excessive vibrations that ED
could not damp out (due to the very small At required by the adaptive time stepping scheme in this
region), which eventually caused the analysis to fail because the time step became prohibitively small.

The transition from a smooth to an axisymmetric pattern was also found by GAM (the obtained
configuration is similar to A, not shown here). The next pattern GAM predicted is shown in
configuration E. It was similar to the one found in configuration D by ED. We found that the pattern in
configuration E has 4 bands of dimples along the length and 10 dimples along the circumference of the
cylinder (recall, configuration D has 3 fully and 2 half-developed bands with 9 dimples). We attribute
the difference between the results of both schemes to different dissipative properties, as shown in Figure
6.1 a)-c). Similar to ED, also GAM was unable to damp out the excessive vibrations and failed around

Uy = 0.003 mm.
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Figure 6.3: System CS1: a) force-displacement response for ED and GAM, b) force-displacement response for
EMC, BAM, HHT and NTR, c¢) deformed shell configurations at various points on the above diagrams. Patterns
in configurations F-I are oscillating due to the un-damped vibrations.

Slika 6.3: Sistem CS1: a) odziv sila-pomik za ED in GAM, b) odziv sila-pomik za EMC, BAM, HHT in NTR, c)
deformirane konfiguracije iz razli¢nih tock na zgornjih diagramih. Vzorci na konfiguracijah F-I nihajo zaradi

nepodusenih vibracij.
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EMC, BAM and HHT first found the axisymmetric wrinkling mode (as in configuration A) and then, at
u, ~ 0.0035 mm (see Figure 6.3 b)), implied that the wrinkling mode should jump to the diamond-like
pattern, as shown in configurations F, G and H in Figure 6.3 ¢). However, none of them could “freeze”
the pattern due to strong vibrations that the schemes were unable to damp. Nevertheless, as
configurations F, G and H confirm, the precursors of the diamond-like wrinkling mode were found.
NTR, on the other hand, predicted a jump, but the pattern remained axisymmetric (and oscillating), as
shown in configuration I.
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Figure 6.4: Total energy versus time for the CS1 system.
Slika 6.4: Celotna energija v odvisnosti od ¢asa za sistem CS1.

Next, we show in Figure 6.4 the total energy (the sum of kinetic and potential energies) versus time. At
mode jumps, the total energy drops due to the redistribution of the membrane part of the potential energy
to the bending part. This is not the case at the uncompleted final mode jump, where the kinetic energy
increases considerably due to the un-damped vibrations. It is interesting to note that despite the
difference in configurations D and E, after GAM transitions the total energy for ED and GAM is very
similar to the diamond-like mode.

6.3.2 System CS2

We analyzed system CS2 (C = 0.1), using a mesh of 220 X 100 elements, the loading time t; = 10 s
and the damping factors (where applicable) p, = 0.6 and agp = Sgp = 0.02. The results, which are
qualitatively similar to those of the CS1 case, are presented in Figures 6.5 and 6.6.

Figure 6.5 a) shows that ED and GAM predicted multiple pattern transitions in the post-buckling regime,
5 and 3, respectively, as before. All distinct patterns (configurations A-D) obtained by ED at different
levels of imposed displacements are given in Figure 6.5 c). The characteristic findings are the same as
in the CS1 case: i.e. pattern transition from smooth (configuration O) to axial wrinkling (configuration
A); pattern transition from axial to diamond-like dimples (configuration B); jumps between different
diamond-like dimple patterns to obtain fewer and larger dimples (configurations C and D);
configurations D (for ED) and F (for GAM) are almost identical but not the same (due to different

algorithmic properties, as shown in Figure 6.1 a) — ¢); after a certain displacement, in this case u, ~

0.007 mm, both ED and GAM failed because of excessive undamped vibrations.
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Furthermore, the results for BAM, HHT and NTR (configurations H, I and J in Figure 6.5 ¢)) show that
these schemes did not find any transitions from the axisymmetric to the diamond-like pattern (see also
Figure 6.5 b). It is also interesting to note that non-dissipative EMC started with the transition to the
diamond-like pattern (configuration G), but the process was not completed because of the high
vibrations that led to an analysis failure due to At < At,,;,, in adaptive algorithm (2.81). The high-
frequency contamination is seen in the deformed configuration G.

Figure 6.6 shows the total energy versus time. An increase in total energy at the last uncompleted jump
reflects an increase in kinetic energy due to strong vibrations. Note that ED and GAM have virtually the
same total energy in the branches with configurations D and F, but there is a difference in the levels of
the membrane and bending parts of the potential energy (not shown). ED (configuration D) has higher
membrane energy and GAM (configuration F) has higher bending energy, similar to what we observe
in the CS1 case.

a) o.14 b) 0.14
AC‘ -—e-- Bl
0.12f /I ! 0.12}
T | | £
E01}!]| 4 £ 01}
Z | Z
8008 | e i i % 0.08}
‘§ | P 1 é
c 0.06} P c 0.06}
) i )
5 , 5 — EMC --- BAM
$ 0.04} ® 0.04 — “HHT — - NTR
o [ ---ED --- GAM o
0.02¢ o E 0.02
0. - - - - 0. - - - -
0. 0.002 0.004 0.006 0.008 0.01 0. 0.002 0.004 0.006 0.008 0.01
Displacement u, [mm] Displacement v, [mm]

Figure 6.5: System CS2: a) force-displacement response for ED and GAM, b) force-displacement response for
EMC, BAM, HHT and NTR, c¢) deformed shell configurations at various points on the above diagrams. Pattern
in configuration G is oscillating due to the un-damped vibrations.

Slika 6.5: Sistem CS2: a) odziv sila-pomik za ED in GAM, b) odziv sila-pomik za EMC, BAM, HHT in NTR, c)
deformirane konfiguracije iz razli¢nih tock na zgornjih diagramih. Vzorec na konfiguraciji G niha zaradi
nepodusenih vibracij.
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Figure 6.6: Total energy versus time for the CS2 system.
Slika 6.6: Celotna energija v odvisnosti od ¢asa za sistem CS2.

6.3.3 System CS3

We analyzed system CS3 (C = 0.01) using a mesh of 160 X 200 elements, the loading time t, = 10 s
and the damping factors (where applicable) p,, = 0.6 and agp = Brp = 0.02. The results are presented
in Figures 6.7 and 6.8.

Figure 6.7 a) shows multiple post-buckling pattern transitions predicted by ED (more than in the CS1
and CS2 cases). All the patterns detected by ED are shown as configurations O-G in Figure 6.7 c¢). Note
that the value of parameter C is less than critical, the same as in the first two cases, but much smaller.
We first detect the transition from a smooth (configuration O) to an axisymmetric wrinkling pattern
(configuration A), followed by the transition to the dimple mode wrinkling (from B to C), as predicted
by the theory of Xu and Potier-Ferry [173] for sub-critical C. However, in this case, we observe a two-
step transition to the diamond-like dimple pattern across the entire surface. We observe that the dimple
pattern localizes first at the mid-length of the cylinder (see configuration B), where the stiffness of the
shell is slightly lower than at both edges, and spreads across the whole surface only at the next jump
(see configuration C). Also note that the diamond-like mode presented in configuration C is symmetric
with respect to the mid-length cross-section of the cylinder, with 3 fully developed bands of dimples
and 2 bands (one at each edge) of onsetting dimples, each comprised of 6 dimples in the circumferential
direction. Multiple localized bucklings are then observed, with pattern D showing one of these stages.
The cylinder reaches configuration E, in which 3 fully developed bands of dimples and 2 bands (one at
each edge) of onsetting dimples are observed in the axial direction, each comprised of 5 dimples in the
circumferential direction. Localized buckling is again observed in configuration F, and finally, mode G
with an antisymmetric diamond-like pattern with 4 dimples in the axial and 4 in the circumferential
direction is found.
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Figure 6.7: System CS3: a) force-displacement response for ED and GAM, b) force-displacement response for

EMC, BAM, HHT and NTR, c) deformed shell configurations at various points on the above diagrams.
Slika 6.7: Sistem CS3: a) odziv sila-pomik za ED in GAM, b) odziv sila-pomik za EMC, BAM, HHT in NTR, c)
deformirane konfiguracije iz razli¢nih tock na zgornjih diagramih.

Figure 6.7 a) also shows that a transition for GAM began to form at u,, = 0.005 mm (see configuration
H), but was never completed due to strong vibrations and the resulting failure of the analysis. For this
reason, the obtained deformed configuration is not similar to either E or F. According to [49], GAM
exhibits strong energy oscillations in the intermediate-frequency range, which may also have occurred
in this example. Recall also that ED dissipates in the intermediate-frequency range, see Figure 6.1 a)

and b) for comparison.

In Figure 6.7 b) we present the results of other schemes, BAM, HHT and NTR, which did not detect the
pattern transition (as in the CS2 example), while non-dissipative EMC did, but only to start the transition
to another axisymmetric mode (see configuration I), which was not completed due to undamped

vibrations.
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Figure 6.8: Energy evolution in time for CS3 system.
Slika 6.8: Spreminjanje energije v ¢asu za sistem CS3.

In Figure 6.8 we show the diagrams of the total and kinetic energies, as well as the membrane and
bending parts of the potential energy as a function of time (the transverse shear part of the potential
energy is negligible). The kinetic energy makes up a very small part of the total energy. However, it
increases suddenly at the time of the pattern transition until the vibrations associated with the transition
are damped out. GAM and EMC show a large increase in kinetic energy at their failures when attempting
to complete the mode jump, which was associated with strong vibrations (note also the oscillations of
the membrane and the bending parts of potential energy at the same time). The membrane part of the
potential energy is large in the initial axisymmetric buckling mode. It is interesting that for ED, the
membrane part of the potential energy drops significantly at the first mode jump and remains almost
constant, and that subsequent jumps are mainly related to the change of the bending part of the potential
energy, which is consistent with the observations in [82].

6.3.4 System CS4

We analyzed system CS4 (C = 3.92) using a mesh of 100 X 200 elements, the loading time t; = 10°s
and the damping factors (where applicable) p,, = 0.6 and agp = Brp = 0.02. The results are presented
in Figure 6.9.
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Figure 6.9: System CS4: a) force-displacement response, b) deformed shell configurations at various points on

the above diagrams.
Slika 6.9: Sistem CS4: a) odziv sila-pomik, b) deformirane konfiguracije iz razli¢nih tock na zgornjih diagramih.

In contrast to the CS1-CS3 systems, system CS4 buckles only in axisymmetric patterns, as predicted by
the theory, because the value of parameter C is supercritical, cf. Eq. (6.1). In this case, all schemes
(except EMC) predicted practically identical responses. In Figure 6.9, we show 5 configurations (O-D)
of the cylinder found at different imposed displacements u,.. Only one transition of the pattern was
found, as the initially smooth surface (configuration O) buckled into axisymmetric wrinkles. The
buckling was gradual; first the axisymmetric wrinkling occurred at the edges of the system (see
configuration A) and then gradually, with the increase of compression, emanated towards the mid-length
of the cylinder (configuration B) and fully developed in configuration C. The same response of the shell
was also reported in [173]. Moreover, at u,, ~ 0.002 mm, the next jump was predicted by all tested
dynamic schemes (except EMC), but only towards a new axisymmetric pattern (see configuration D).
This transition was never completed due to strong oscillations.

6.3.5 Ciritical axial force

The critical axial force at the onset of the axisymmetric wrinkling f,. 4, for each configuration of the

cylindrical shell can be found from the diagrams in Figures 6.3, 6.5, 6.7 and 6.9. We list the values we

find in Table 6.3 and compare them with the analytical critical axial force f.,. = 0,-tf, Where o, is the
critical stress, calculated from the following expression

1 t7p§ 3RE,

Oer = Ef |5z * st Zczth;pO '

see e.g. [182] for the derivation. Here ¢ = \/3(1——1/2) According to [182], knowing that the initial

wrinkling pattern is always axisymmetric, one can assume q, = 0 and obtain p, by solving Eq. (6.5).

(6.10)

In addition to the analytical and our numerical values of the critical buckling force, Table 6.3 also

contains the results obtained by Xu and Potier-Ferry [173] by their numerical analysis (denoted as
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fer,xu)- It can be seen that the results for fer, ferqy and fer xy are in good agreement and that our

prediction is on average slightly better than that of [173].

Table 6.3: Critical load for axisymmetric buckling.
Preglednica 6.3: Kriti¢na sila za osnosimetri¢ni uklon.

Case CS1 Cs2 CS3 CS4
fur [N/mm] 0,060 0,134 1,27 0,0130
Fordy IN/MO] (foray/ for %) 0,056 (93%) 0,129 (96 %) 1,23 (97 %) 0,0115 (88 %)

Forxu IN/MM] (Fop ) for %) 0,065 (108 %) 0,112 (84%) 0,91 (72%) 0,013 (100 %)

6.4 Spherical shell examples

Three specific spherical shell-core systems are selected in order to evaluate the two used computational
models and compare the computer response with the experimental results, obtained by [174]. The
characteristics of the spheres were chosen following the results from Xu et al. [174], in an attempt to
see different wrinkling patterns emerging in the loading process. Their material and geometric properties
are listed in Table 6.4.

No restraints were applied on the spheres, which were at rest at t = 0. Pressure was applied using a load
speed of 0.01 MPa/s which helped to ensure that the complex wrinkling patterns could form. No
geometrical imperfections or perturbation forces were imposed. During the analysis we monitored the
pressure level p versus radial displacement u,,y,-mq; Of @ particular node of the mesh. The colors on the
displayed deformed configurations relate to the radial displacements, which are magnified two times to
show greater contrast between the wrinkling patterns.

Table 6.4: Geometric and material data for spheres S1-S3. Symbols E, v, K, R and p denote the elastic modulus,
Poisson ratio, spring coefficient, radius and density of the sphere, respectively.

Preglednica 6.4: Geometrijski in materialni podatki za sfere S1-S3. Simboli E, v, K, R in p oznacujejo elasti¢ni
modul, Poissonov koli¢nih, koeficient togosti vzmeti, radij in gostoto sfere, v tem vrstnem redu.

System Er [MPa] E[MPa] K [ml;lng] Vg Vg tr [mm]  R[mm] pf [%] c
S1 250 2.5 13525 03 049 0.4 20 0.965 3.5
S2 2.1 0.23 0.17378 0.49 0.49 0.6 20 0.965 21.2
S3 2.1 0.23  0.52223 049 049 0.2 20 0.965 109.5

Of the aforementioned time-stepping schemes, only the first order accurate energy-decaying scheme
(ED1) was used and the adaptive time-step function (2.81) was applied, where the desired and maximal
allowed numbers of incremental iterations were set to I, = 8 and N = 25, respectively. Minimal and
maximal allowed time steps were set to At,,;, = 51077 s and At,,,, = 0.5 s. If convergence was not
achieved within 25 iterations, the increment was re-computed with At/2. The initial time step was At =
0.5 s and the convergence tolerance for the norm of the iterative displacement vector was set to 1078,
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User defined parameters that control the numerical dissipation were set to agp = Sgp = 0.5, which
introduced a high-level of numerical dissipation into the algorithm. This level of dissipation allowed a
smoother development of wrinkles throughout the sphere and a smoother continuation of the analysis
after the initial wrinkling pattern was formed.

We used highly non-structured meshes with n,; = (52431; 89855; 148512) elements, which give the
characteristic length of the quadrilateral element [y, = (0.32;0.24;0.16) mm for each C =
(3.5; 21.2; 109.5). The number of elements was chosen based on the convergence analysis performed
in [156] and our preliminary prediction of wrinkling patterns using the values of factor C. Namely,
dimples with shorter wavelengths, which demand the use of finer mesh, were expected to form in spheres
with larger C.

The results of the analyses are shown in Figures 6.10 — 6.13 where pressure p versus displacement
Unormar 18 displayed. In all cases, the panels show the transition from an initially uniform spherical
deformation (smooth surface) to a deformation with dimples. In two cases (C = 21.2 and € = 109.5),
RM-5 predicts a further (secondary) transition to a deformation pattern with channels (labyrinthine
pattern). From Figure 6.13 it can also be seen that with increasing C the number of dimples increases
(and the characteristic wavelength decreases).

0.

-05}

p [MPa]

-15+ B

-2. ¢

-1.2

Unormal [mm] Unormal [mm]

Figure 6.10: System S1: pressure-displacement response QKQ-3 (left) and RM-5 (right). Deformed shell
configurations are displayed at various points. Marks A and B correspond to the final configurations, shown in
Figure 6.13.

Slika 6.10: Sistem S1: odziv pritisk-pomik za QKQ-3 (levo) in RM-5 (desno). Deformirane konfiguracije so
prikazane na razli¢nih toCkah. Oznaki A in B se nanaSata na konéni konfiguraciji, prikazani tudi na sliki 6.13.

For systems S2 and S3, we observe that a transition from dimple-like to labyrinthine pattern occurs.
While the RM-5 formulation is capable of fully describing this transformation, the QKQ-3 formulation
struggles to transition to the second pattern. At one point, the pattern seems to resemble the one from
RM-5, but the kinematic simplification seems to restrict the elements from fully describing the
labyrinthine pattern. Nonetheless, both models successfully predict a significant difference between the
forming processes of systems S1 — S3. While large dimples can be observed for system S1 already at
the beginning of the wrinkling process, the initial creases of the shell for the S3 system are significantly
smaller.
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Figure 6.11: System S2: pressure-displacement response QKQ-3 (left) and RM-5 (right). Deformed shell
configurations are displayed at various points. Marks C and D correspond to the final configurations, shown in
Figure 6.13.

Slika 6.11: Sistem S2: odziv pritisk-pomik za QKQ-3 (levo) in RM-5 (desno). Deformirane konfiguracije so
prikazane na razli¢nih tockah. Oznaki C in D se nanaSata na kon¢ni konfiguraciji, prikazani tudi na sliki 6.13.
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Figure 6.12: System S3: pressure-displacement response QKQ-3 (left) and RM-5 (right). Deformed shell
configurations are displayed at various points. Marks E and F correspond to the final configurations, shown in
Figure 6.13.

Slika 6.12: Sistem S3: odziv pritisk-pomik za QKQ-3 (levo) in RM-5 (desno). Deformirane konfiguracije so
prikazane na razli¢nih tockah. Oznaki E in F se nanaSata na kon¢ni konfiguraciji, prikazani tudi na sliki 6.13.

Figure 6.13 a) — ¢) compare the load-displacement curves and the final wrinkling patterns for each
system S. A complete agreement between the load-displacement curves for both models is obtained
before buckling, but there is a noticeable difference in the initial buckling load. Furthermore, it can be
observed that the post-buckling paths do not match. The reason for this stems from the fact that the
wrinkling pattern predicted by a certain formulation is slightly distorted compared to the wrinkling
pattern predicted by another formulation. Namely, a dimple can occur at a different location.
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Figure 6.13: A comparison of load-displacement curves for all three shell-core systems and both computational
models (left). Comparison of fully developed wrinkling patterns (right).
Slika 6.13: Primerjava med krivuljami pritisk-pomik za vse tri sisteme lupina-jedro in oba racunska modela
(levo). Primerjava polno razvitih vzorcev gubanja (desno).

A more detailed comparison between the fully developed patterns is shown in Figure 6.13 (right). Good
agreement between the number of dimples was observed for system S1, while for systems S2 and S3
the QKQ-3 is unable to describe to labyrinthine pattern that the RM-5 model finds. The results obtained



168 Lavrenci¢, M. 2020. Numerical Procedures for Nonlinear Static and Dynamic Analyses of Shell Systems of Various Sizes.
PhD Th. Ljubljana, UL FGG, Third cycle doctoral study Built Environment.

by the latter are in good agreement with the experimental and numerical results found by Xu et al. [174],
proving that the simple dynamic models presented here can also be applied for spherical systems.

6.5 Chapter conclusions

We have shown that the geometrically exact, nonlinear shell finite elements on an elastic foundation and
the implicit structural dynamics can be successfully applied to investigate primary buckling and

secondary mode transitions in the post-buckling regime of curved shell/substrate composites.

In the study of cylindrical systems, six time stepping schemes (GAM, BAM, HHT, NTR, EMC, ED1)
were applied. We have shown that a combination of the ED1 scheme and an adaptive time-stepping
algorithm comprises an efficient solution procedure for this remarkably difficult problem. However,
other schemes (except GAM in some cases) cannot make a definite prediction of the pattern due to
insufficient damping of strong high-modes-vibrations at buckling mode jumps. The classical implicit
schemes, HHT, BAM and NTR, which are default schemes in commercial finite element codes, have
not been successful in solving the problems considered in this work (the same applies to the non-
dissipative EMC scheme).

Our numerical experiments on four shell composites (named as CS1-CS4) showed that our
computational model can reproduce the experimentally observed phenomena from [182] and the
numerical predictions from [173]. A good agreement between the theoretical [185], numerical [173] and
the results of our computations was found for both the primary buckling load and the pattern prediction.
We confirmed that, as predicted in the two studies, the system with the supercritical value of the critical
parameter C (in our case CS4) has only one axisymmetric wrinkling mode, whereas for the subcritical
C (in our case CS1-CS3) a system should show first the transition from the initially smooth to the
axisymmetric wrinkling mode and, when the load is further increased, the secondary transition to the
diamond-like wrinkling mode.

In addition to these known results, our numerical model shows the existence of multiple mode jumps in
the post-buckling regime. In the CS3 configuration, for example, we observe that the secondary
transition is gradual. First, the dimple diamond-like wrinkling pattern is localized at the mid-length of
the shell and then gradually spreads towards the edges of the cylindrical system. For the CS1 and CS2
configurations, our computational model based on the ED scheme reveals new mode jumps when the
load is further increased. We discover that the first observed diamond-like dimple pattern jumps with
each jump into diamond-like dimple patterns with a smaller number of dimples. The difference between
the first and last dimple mode can be significant (see CS1 in Figure 6.3 ¢). It is interesting that the mode
jumps we found are similar to those found on cylindrical shells without substrate support, see e.g. [175]
for experimental and [102], [92] for numerical analyses. To our best knowledge, these results have not
yet been recorded in the known literature on axially compressed cylindrical shell/substrate composites,

neither experimentally nor numerically.

For the analysis of spherical systems, we applied only the ED1 scheme, which proved to be the most
effective in the case of cylinders. In combination with adaptive time-stepping algorithm it again provides
a good solution procedure for this difficult (and highly sensitive) problem. Our numerical experiments
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on three shell composites (named S1-S3) showed that the used computational models can reproduce
experimentally and numerically observed phenomena from [174].

We compared two computational models, of which one has simplified kinematics. The reduced-order
formulation has proven effective for small and medium values of the characteristic parameter C, but is
less effective for larger values, where the transition to the second pattern was observed by the RM-5
formulation and also in the results by Xu et al. [174]. The predicted initial buckling load differs for both
used formulations, but the results are still similar and are also in good agreement with those obtained
from static analysis, see [156] and [157].

Let us finally note that in the qualitative prediction of wrinkle patterns we obtain a good agreement
between our results and those of Xu et al. [174], where experimental results and numerical results based
on one-eight symmetry were reported. In our case, we used external pressure to stimulate the system
and the reference results are obtained by thermal shrinkage, which, in turn, shows that the wrinkle

mechanism is universal and independent of the external stimulus.
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7 CONCLUSIONS

The thesis addresses a variety of topics related to shell structures and nonlinear shell analysis. In the
field of mixed formulations for shell quadrilaterals, we first identified five criteria that an “optimal”
shell element should fulfill. These helped us to choose appropriate numerical tests, with which a
comparison of some existing finite elements and a group of new formulations was conducted. All of the
established formulations seemed to lack in one or more of the performance areas, which motivated us
to combine the Hu-Washizu element from [159] (and the Hellinger-Reissner element from [59]) with
the ANS interpolations for the membrane strains from [90]. This resulted in a group of novel elements,
which are low-sensitive to mesh distortion and allow for large solution steps. Although the difference
between our elements and the original formulations may seem very small, the effects in numerical results
are far from small and very beneficial, as has been clearly demonstrated by a set of representative
numerical examples.

In our opinion, the development of classical theory-based “optimal” nonlinear shell finite element is of
great practical interest and thus worth investigating. The presented work can definitely be seen as a step
towards the optimal low order (4-node) shell nonlinear finite element (that is based on classical shell
theory with transverse shear effects). We speculate, however, that with continuous development of
different mixed and hybrid shell elements, a new formulation that is even more effective and robust will
emerge in the future.

In Chapter 3 we studied structural dynamics, focusing on implicit dynamic time integration schemes
from the groups of generalized-a and energy-decaying schemes, which are suitable to be implemented
with shell finite elements. We assessed the selected schemes first in the linear dynamics setting, where
we compared their stability, dispersion and accuracy properties. Furthermore, following the
development from [80], we looked into the overshoot behavior and we showed that none of the
considered schemes overshoots in the displacement, while an overshoot in velocity is observed for
NMD, GAM, BAM and HHT. For NTR, EMC, JWH, ED1 and ED2 no overshot is observed. Local and
global errors were computed in Section 3.5.5, following the example of [182]. Next, we illustrate all of
the finding on a SDOF problem in Section 3.5.6. All but one of the considered schemes are well known
and adopted in many research or commercial software programs, so their details and the findings from
Section 3.5 can be confirmed in e.g. [5], [38], [65], [170]. We must note, however, that the majority of
the listed references deal only with a few of the selected schemes, while our aim was to create a
condensed but still comprehensive review of a much wider group of schemes. Furthermore, the JWH
scheme [80] has, to the best of our knowledge, not yet been extensively analyzed, and we hope to have
contributed here to its understanding.

Next, we implemented these schemes for a nonlinear shell finite element and compared their properties
also in the case of nonlinear analysis. We demonstrated that although some characteristics do transfer
from linear to nonlinear regime, the generalized-a schemes, which are unconditionally stable in linear
dynamics, do not fulfill the stability criterion for nonlinear dynamics. While the energy-decaying
schemes manage to fulfill this criterion, there emerge other unfavorable traits, concerning the first order-
accuracy of ED(MC)I or a difficult implementation process for EDMC2. While JWH exhibits the best
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characteristics in linear dynamics, it is considerably outperformed by energy-decaying schemes in

nonlinear dynamics.

In Chapter 4 we aimed to merge the favorable characteristics of some mixed-hybrid formulations that
were shown to be near optimal in Chapter 2, with the energy-decaying momentum-conserving time
integration schemes EDMC1 and EDMC2 that proved to be stable in nonlinear dynamic analysis in
Chapter 3. We first derived the extended Hu-Washizu and Hellinger-Reissner functionals on a simple
spring pendulum example and later extended it to shell dynamics. Time discretization and discrete
balance laws were derived for both novel formulations. In the numerical examples section, we
considered the classical MITC4 formulation, as well as the MITC4+, EAS5 and the novel +HW and
+HR formulations, all adapted for shell dynamics. We performed 3 tests, where it was shown that the
favorable properties of these formulations extend nicely from static to the dynamic regime. We argue

that these developments are the most important contribution of our work.

The term structural buckling is usually associated with the first critical point (i.e. with the first limit or
bifurcation point) on the structural equilibrium path obtained by nonlinear static analysis. For many
practical engineering shell structures, the buckling load (i.e. the load at the first critical point) is the only
needed outcome of the stability analysis. Only in recent years the mechanical instabilities of shell
structures have been exploited as platforms for advanced functionality and superior physical properties.
For such advanced use of shell-like structures and systems, a systematic knowledge of the buckling
process including development and evolution of the buckling pattern is mandatory. As illustrated in
Chapter 5, the implicit time-integration schemes for structural dynamics, with controllable numerical
dissipation of high-frequency modes and at the same time little numerical dissipation in the low-
frequency range, are suitable for such task. They can be used to analyze the buckling process of shell-
like structures and systems, including the transition of the buckling patterns during the buckling process.

Numerical tests show that the schemes that numerically dissipate high-frequency modes are the most
appropriate for the shell buckling analysis. Newmark trapezoidal rule (NTR) is very inaccurate and fails
quickly. The results of energy-conserving scheme (EMC) may be polluted by artificial higher
frequencies that can lead to computational failure. The best results were obtained by schemes with
controllable algorithmic dissipation of higher frequencies, such as energy-decaying scheme (ED), and
the generalized-a method with high frequency dissipation (GAM). It turns out that the implicit dynamic
analysis with (high-frequency) numerical dissipation is considerably more robust and efficient than the
arc-length static analysis for several computed examples, including snap trough problems and buckling
of cylinder under axial load.

The wrinkling (i.e. buckling) of curved systems composed of thin hard film and thick soft substrate has
recently attracted a considerably attention, since it may be related to diverse phenomena in nature and
technology. The analysis of wrinkling pattern transition of such systems has been of particular interest.
It turned out that the numerical stability analysis of curved film-substrate systems, along with analysis
of wrinkling transition, is far from the trivial task. In Chapter 6, we showed that the implicit structural
dynamics can be used to study the transition of the wrinkling pattern in curved film-substrate systems.

It was shown that a good qualitative analysis of wrinkling patterns of curved film-substrate systems,
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including the transition of the wrinkling patterns, can be obtained by some implicit time stepping
schemes.

In Chapter 6 we showed that 3D (static) computational models of [182], [78], [173] and [174] can be
complemented by a relatively simple and fast procedure that provides practically the same results in
pattern prediction. We proposed three efficient computational models that are based on the shell models
presented in Chapters 4 and 5. We first focused on axially compressed bi-layer cylindrical shell-substrate
composites. Of the previously considered time stepping schemes, we applied some of the generalized-a
and energy-decaying time stepping schemes presented in Chapter 3. Next, we focused on the surface
wrinkling of core-shell sphere systems under external pressure. In this context we applied only the
energy-decaying time stepping scheme.

As far as the cylindrical composites are concerned, our numerical model can also predict mode jumps
in the far post-buckling regime, which the authors of the previously mentioned studies did not observe.
Of course, only experiments can confirm our numerical prediction of mode jumps. To the best of our
knowledge, no (very) precise experiments have been designed yet to test the post-critical mode
transitions for axially loaded cylinders on soft substrates. The experimental research in [185] was
pioneering, but it mainly focused on relating different wrinkling patterns with geometrical and material
properties. Due to fabrication limitations that cause imperfections, it would be quite a challenge to
design an experiment to observe all the transitions. However, from the similarity between our results
and several sharp jumps associated with mode transitions reported in classical texts on experiments on
axially loaded cylinders without an inner core, see e.g. [175], we speculate that the mode transitions
found with our computational model are real.

A full and a reduced shell model are used for the analysis of wrinkling on spheres. We find good
agreement between the reported experimental results and the emerging wrinkling patterns obtained for
the full model. The reduced model is blind to the transformation from the dimple-like to the labyrinthine

pattern, but the overall results still match well with the experimental and numerical results obtained by
[174].
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8 RAZSIRJENI POVZETEK

Lupinaste konstrukcije in sistemi se uporabljajo na mnogih tehniskih podro¢jih, tudi v gradbenistvu.
Omogocajo optimalno konstrukcijsko zasnovo z vidika razmerja med tezo in nosilnostjo. Zaradi skoraj
neomejenih moznosti oblikovanja ukrivljenih oblik in sposobnosti, da precno obtezbo prenasajo z
ravninskimi mehanizmi, so zelo pogosto uporabljeni konstrukeijski elementi v tehniki.

Za numericno reSevanje nelinearnih problemov v tehniki se je uveljavila metoda kon¢nih elementov.
Stati¢ni inZenirski problem prevede na sistem nelinearnih enacb (kjer so neznanke diskretne prostorske
vrednosti spremenljivk problema), ki se resuje z Newtonovo iteracijsko metodo (npr. [42]). Ce se
obravnava dinamicni problem, postane sistem nelinearnih enacb tudi ¢asovno odvisen, zato sta, poleg
prostorske, potrebna Se Casovna diskretizacija in algoritem za Casovno korakanje (t.i. Casovne
integracijske sheme). Moderne ¢asovne integracijske sheme za nelinearno dinamiko konstrukcij so
zasnovane na zahtevah, da morajo znati algoritmi¢no ohranjati fizikalne koli¢ine, ki se ohranjajo pri
gibanju dolo¢enih dinami¢nih sistemov. To so npr. energija sistema, gibalna in vrtilna koli¢ina,

neelasticna materialna disipacija in podobno.

Zahteve, ki se pojavljajo pri numericnem modeliranju nelinearnega odziva lupin, so med drugim
povezane s tocnim opisom kinematike, posebej velikih rotacij, tocnim opisom pre¢nih striznih napetosti
ter preprecevanjem pojavljanja razli¢nih parazitnih napetosti (tj. blokiranja), npr. [164]. Kon¢ni elementi
za lupine so raznovrstni, saj so mnogi lupinasti kon¢ni elementi namenjeni simulaciji specifi¢nih
problemov. V zadnjem casu se pojavljajo razlicne nove numeri¢ne formulacije za analizo lupin, med
katerimi so za nas najzanimivej$i geometrijsko preprosti, hibridni kon¢ni elementi, ki kljub preprosti
geometriji kazejo veliko robustnost in dobro natanc¢nost pri reSevanju specificnih nelinearnih lupinastih
problemov. Izraz hibridni elementi je v tem delu uporabljen po definiciji, ki jo je predstavil Crisfield
[42]. Elemente, ki imajo vse prostostne stopnje (pomike, rotacije in dodatne prostostne stopnje)
definirane v vozlis¢ih, je poimenoval kot meSane. Nadalje je elemente, ki kondenzirajo dodatne
prostostne stopnje na nivoju elementa, klasificiral kot hibridne oziroma meSane—hibridne. Opomnimo

le, da taka terminologija ni splosno uveljavljena.

Z lupinastimi kon¢nimi elementi se simulira cela vrsta pojavov, ki segajo od mega velikosti (npr. uklon
tankih jeklenih silosov [76] ali obnaSanje armiranobetonskih hladilnih stolpov) prek mikro velikosti
(npr. gubanja trdih filmov na mehkih jedrih [31]), pa vse do nano velikosti (npr. deformiranje in uklon
nano struktur).

V disertaciji smo z namenom napredka znanja in razpolozljivih orodij na podrocju analize lupinastih
konstrukcij z uporabo metode koncnih elementov obravnavali spekter razlicnih tem. Najprej smo
pozornost namenili meSanim in hibridnim elementom za statiko, pri cemer smo izdelali obsezen
povzetek obstojeCih formulacij in predlagali nekaj novih, zelo u¢inkovitih kon¢nih elementov. Nadalje
smo analizirali implicitne sheme za ¢asovno korakanje v dinamiki, ki jih je mogoce aplicirati na kon¢ne
elemente za lupine. V nadaljevanju smo formulirali posebno shemo, ki omogoca zdruzitev visoko
ucinkovitih hibridnih elementov in sposobnosti disipiranja energije, ter izpeljali vse pripadajoce
ravnotezne zakone. Razlicne modele lupin smo v kombinaciji z implicitno dinamiko nato uporabili za

racun kompleksnih stabilnostnih problemov, ki vkljucujejo uklon in gubanje.
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8.1 Mesani hibridni kon¢ni elementi za lupine

»Skoraj optimalen« 4-vozlis¢ni, nelinearni kon¢ni element za lupine mora: (i) prestati vse osnovne teste,
(i1) izkazati skoraj optimalno konvergenco, (iii) biti neobcutljiv na popacenje mreze, (iv) omogociti
dolge obtezne korake, (v) biti racunsko hiter. Poleg tega mora biti opremljen z u¢inkovitim opisom
velikih rotacij. Osnovna formulacija, ki temelji na posploSenih pomikih (pomikih in morebitnih
rotacijah), ne izpolnjuje vseh zgoraj navedenih meril, zato smo pozornost usmerili na mesane in hibridne
formulacije iz skupin ANS (Assumed Natural Strain), EAS (Enhanced Assumed Strain), hibridnih HW
(Hu-Washizu) in hibridnih HR (Hellinger-Reissner) formulacij. V poglavju 2 smo opisali postopek
implementacije za 15 meSanih ali meSanih—hibridnih formulacij, ki omogoc¢ajo neodvisno interpolacijo
deformacij in/ali napetosti, in primerjali njihovo numeri¢no uc¢inkovitost. Dva modela lupine sta pri tem
uporabljena kot osnova; 5 — parametricni model z velikimi rotacijami in neraztegljivim smernikom, npr.
[139], [24]; in 6 — parametri¢ni model brez rotacij in z raztegljivim smernikom, npr. [17].

8.1.1 Model z neraztegljivim smernikom in opis rotacij

Lupina je modelirana kot povr§ina, opremljena z neraztegljivim smernikom, ki se nahaja v trirazseznem
prostoru s fiksno, ortonormirano bazo e;, i = 1,2,3. Pozicijski vektor do zacetne konfiguracije lupine je
podan kot
X(EL8%0 = XL 8D +¢D(EY 8%, Cel-t/2,t/2], (L§*) €A, IIDII=1,
kjer sta &1, &2 krivodrtni koordinati, { pa je koordinata po visini. X,(&1,£2) dolo¢a polozaj srednje
ploskve, D(&%,£2) je polje normal na srednjo ploskev, imenovanih smerniki, t je debelina lupine in A
je obmocje parametrizacije. Naj bo
D(§',¢%) = Ag(h,¢)es,
kjer je Ao (&1, &%) tenzor, ki ga poimenujemo zacetna rotacija. V deformirani legi je pozicija materialne
tocke podana kot
x(§,6%,0) = [Xo (€1, §%) + u(@, §D] + ¢d(€',¢?), lldll =1,
x0(§1,6%)
kjer je d smernik, ki ni nujno pravokoten na deformirano srednjo ploskev, in u pomik srednje ploskve.

Smernik v deformirani legi je definiran kot

d = Aes,
kjer je A rotacija, ki zavrti e; v d brez upoStevanja rotacije okrog lastne osi in je parametrizirana z
rotacijskim parametrom . Kovariantni krivo¢rtni bazni vektorji v zacetni in deformirani legi so tako

definirani kot
0X X,
Ga:@, Ra:_ a=1,2
ox 0xg

Z zgornjimi koli¢inami lahko zapiSemo Green-Lagrangeeve deformacije kot

1 . . . . . .
E= 5(gi-g,- -6, G)6'®G =E;6G'QG ~E;RQR.
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Ko upostevamo nekaj poenostavitev, glej izraz (2.6), lahko zgornje deformacije zapiSemo v treh

vektorjih, kjer so zbrane membranske, strizne in upogibne deformacije
1
Eap =§(ra-rﬂ—Ra-Rﬁ), 2643 =Yg =Ty -d—Ry,-D,
1
Kap =5(Ta dp+7p-dg— Ry Dg—Rg-Dyg),

kjer velja (o) , = d(°)/0&*. Green-Lagrangeevim deformacijam so energijsko konjugirane druge

Piola-Kirchhoffove rezultante napetosti n, m in q. Nadalje uvedemo ortonormirano bazo &;, kjer velja

é;=D,e; Leég |lé;]l =1in &, = &3 x &;. Tako lahko deformacije in njim pripadajoce rezultante
napetosti zapiSemo v navedeni bazi kot
R A A~ 1T N n A 1T _ e o 1T
€ = [é11,655,285]", K = [R11, R0, 2R12]", Y = [71. 721",
n_[/\ A~ A~ ]T m_[/\ A~ A~ ]T _[/\ /\]T
= IN11, N2, Ny2] = \Mmq1,Myy, My, q =191, 921" -

Za opis obnaSanja materiala smo privzeli Saint-Venant-Kirchhoffov izotropicni hiperelasti¢ni materialni
model, ki uposteva predpostavko o ni¢elnih napetostih izven ravnine (fiz3 = iz = 0). To pripelje do
naslednjih izrazov za konstitutivne zakone

n=C", m=Ck q=C% C"=tC, C’=1t3/12C,

kjer je C standardna konstitutivna matrika za ravninsko napetostno stanje.

Energijski potencial lupine, ki je obremenjena z zunanjim pritiskom b in silami , lahko zapisemo kot
M(u, d) = Mjpe(u, d) — My (u, d) =

1 — _
f—(s-Cm£+lc-CbK+y-Csy)dA—<fu-bdA+fu-tds),
M2 M I';

t

kjer je M zacetna srednja ploskev in [} predstavlja tisti del lupine, ki je obremenjen s predpisano silo.
Lupina je v ravnotezju, ko je energijski potencial v minimumu, kar zapiSemo z izrazom za virtualno
delo

8I(u, d; Su, 8d) = f (8€- C™e + 8K - CPK + 8y - C5y) dA — 811y (5u, 8d) = 0,
M

kjer S8II predstavlja variacijo potencialne energije, Su in 8d sta kinemati¢no sprejemljivi variaciji
pomika u in smernika d, 6l je variacija potenciala zunanje obtezbe, d€, 6k in Oy pa so variacije

membranskih, upogibnih in striznih deformacij.

V obravnavanem modelu za opis rotacij uporabimo rotacijsko matriko A iz izraza (2.4). To rotacijo
lahko razdelimo na dva dela, tako da izrazimo smernik d kot

d = AgA(97)e; = A(87)Age; = A(07)D,
kjer 94 in @1 predstavljata totalni materialni oziroma prostorski parameter rotacije. V nasem delu se

odlo¢imo za materialno parametrizacijo, ki sledi Rodriguezovi formuli
- sind; . 1 — cos?

A7) = cosIrl + —TﬁT + —ZT

Ip I7

kjer je I matrika identitete, 97 = ||97|, 97b = 97 X b za Vb in za posevno simetri¢no matriko 97, ®

9797,

pa predstavlja tenzorski produkt. Ker 9 zavrti e5 v d brez rotacije okrog lastne osi, ima le dve nenicelni

komponenti, kar posledicno poenostavi izraz na
sindy

d = AOK(19T)63 = AO (COSﬁTe?, + 19’1' X 63).

T
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V zgornjem izrazu pride do singularnosti v primeru, ko je Y5 = m, zato je smiselno rotacijo Ay, ki je
povezana z zacetno konfiguracijo, nadomestiti z rotacijo, ki je povezana s konfiguracijo med zaéetno in
trenutno. To lahko storimo z rotacijo A, ki je povezana z zadnjo konvergirano konfiguracijo, ali pa z
rotacijo AX™1, povezano s konfiguracijo v zadnji iteraciji. Ti dve rotaciji sta parametrizirani z
rotacijskima vektorjema 9; oziroma 9% ;, ki ju lahko namesto rotacijskega vektorja 97 uporabimo v
zgornjih izrazih, glej sliko 2.1.

Alternativo opisu zasuka z rotacijsko matriko predstavljajo rotacijski kvaternioni §, dobljeni iz zasukov

kot
T

1= [oos(3) on )]
q=|cos\5).,gsin{7]] -
Prednost takega zapisa v primerjavi z rotacijsko matriko je to, da je med racunom treba shraniti 4

skalarne vrednosti, medtem ko jih je pri rotacijski matriki treba shraniti 9. Smernik v deformirani legi
lahko dobimo z uporabo izrazov (2.23)—(2.27).

8.1.2 Model z raztegljivim smernikom

V modelu z raztegljivim smernikom se izognemo uporabi rotacij, pri Cemer pozicijski vektor
nedeformirane materialne tocke zapiSemo enako kot v primeru modela z neraztegljivim smernikom.
Pozicijski vektor materialne tocke v deformirani legi pa zapiSemo kot

x=[Xo+ul+0d, d=D+w,

Xo

kjer d ni ve¢ nujno enotske dolzine in w oznacuje vektor pomika smernika. Za opis deformacij
uporabimo komponente Green-Lagrangeevega tenzorja, za rezultante napetosti pa drugi Piola-
Kirchhoffov tenzor. Poleg komponent, opisanih v prejSnjem poglavju, se v obravnavanem modelu
dodatno pojavijo Se deformacije v smeri debeline, definirane kot

1 1
533 =_(X3'x3_X3'X3) - = d'd—D'D )
2 ’ ’ ’ ’ 2 T’
kjer je (o) 3 = d(o)/0{. Deformacije in napetosti lahko spet zapiSemo v vektorski obliki in izrazene v

ortonormirani bazi
= _Ia A A A~ 1T _ T [ o
E=[611,82,833, 26151, K =lKi1,K00, 260517, ¥ =707
= _ Ia ~ ~ ~ T N N ~ ~ T _Ta 21T
n = [, gy, Ags, Ara]”, m = [y, Myy, My5]", q=14:3.]"

Za materialni model je uporabljen specializirani Saint-Venant-Kirchhoffov hiperelasti¢ni konstitutivni

]T

)

zakon, kjer veljam = C™g, = C’k in q = Cy. Tu je C™ = tC, pri ¢emer C predstavlja standardno 3d
konstitutivno matriko.
Funkcional potencialne energije lahko zdaj zapiSemo kot
M(u,w) = IM%(ETZ"”E + KT CP ke + yTC5y) dA — Ty (u, W),
njegovo Sibko obliko pa
S (u, w; Su, sw) = f (6g™n + 8k"m + 8yTq) dA — 8114 (Su, Sw) = 0.
M
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8.1.3 Implementacija za Stirivozlis¢ni kon¢ni element

Zacetno srednjo ploskev M diskretiziramo z n,; izoparametri¢nimi §tirivozliS¢nimi kon¢nimi elementi,

. n, Ve v . . v . . . .
tako da velja M ~ U, A,. Na povrsini 4, so zadetne koordinate in zagetni smernik opisani kot

4 Ny
XBED = ) NaEDXoa, D= D Na€mDy, Dl =1,
a=1 a=1

kjer podpis (-), oznacuje vrednosti v vozlis¢ih, nadpis h oznaCuje aproksimacijo funkcije (ali
funkcionala), &,n pa sta izoparametri¢ni koordinati, ki parametrizirata srednjo ploskev elementa.
N,(&¢,7n) so bilinearne Lagrangeeve interpolacijske funkcije, definirane na povrsini kvadrata A, =
[—1,1] X [—1, 1]. Deformirana konfiguracija je za 5 — parametri¢ni model aproksimirana kot

Nen Nen

A=Xirut, W@ = ) NeEmitg,  dh = ) Na(Emdy.
a=1 a=1

Za 6 — parametri¢ni model je interpolacija srednje ploskve enaka kot zgoraj, medtem ko je smernik
interpoliran kot

Nen

dh = Dh + Wh, Wh(f! 7]) = Z Na(f, n)wa
a=1

Funkcional potencialne energije lahko v diskretni obliki zdaj napiSemo kot
mh = AL TIeR (ul, ) = AT, (Tgn (uh, d) — Mk (uh, d7)),

e=1 int ext

kjer A oznacuje operator zdruZzevanja konénih elementov.

Da postopek implementacije opiSemo v celoti, je treba definirati $e transformacije, ki preslikajo koli¢ine
iz krivocértnega koordinatnega sistema v lokalni kartezi¢ni koordinatni sistem, ki je definiran v Gaussovi
tocki ali v srediscu elementa. Osnovne transformacijske matrike so definirane v izrazih (2.40)—(2.41).
Pri opisu meSanih formulacij se v tem povzetku izognemo prikazu posameznih transformacij, so pa te
podrobno opisane v poglavjih 2.4.1 —2.4.4.

8.1.4 MesSani kon¢ni elementi

V disertaciji smo predstavili nekaj najpogosteje uporabljenih meSanih formulacij za Stirivozlis¢ne
konéne elemente za lupine. Razdelimo jih lahko v ve¢ druzin, ki so na kratko opisane v naslednjih
poglavjih.

8.1.4.1 ANS elementi

ANS koncept temelji na neodvisni interpolaciji deformacij po elementu. V izbranih tockah, glej sliko
2.3, so deformacije izvrednotene z uporabo standardnih izrazov, te vrednosti pa so nato interpolirane po
elementu z ustreznimi interpolacijskimi funkcijami. Z uporabo ANS formulacij se lahko zelo uc¢inkovito
izognemo striznemu, debelinskemu ali membranskemu blokiranju, ki je pogosto razlog za slabse

obnasanje elementa.

Striznemu blokiranju se lahko izognemo z uporabo striznega ANS koncepta iz [48]
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[?1] _1 [(1 -y + @+t

vl 21 -9y + A+ Oy2l

kjer so oznake A, B, C in D povezane s tockami na sliki 2.3. Te deformacije nato transformiramo v
lokalni kartezic¢ni koordinatni sistem in jih uporabimo v funkcionalu potencialne energije, da pridemo
do formulacije, poimenovane kot MITC4.

Membranskemu blokiranju se lahko izognemo z uporabo interpolacijskih funkcij, ki so bile definirane
za element, poimenovan MITC4+, glej [89] in [90]. Membranske deformacije so dane z izrazi

&, =(-1+ Uz)(anﬁ +apepy + angz) +
1 oA L 24.C
5(1 —2ap —n +2a,0%)epy + 5(1 —2ac +n+ 2acner,
&y = (—1+&H)(aned, + aces, + agely) +

1 B 4 L 2v.D
5(1 —2ag + & + 2agét)ey; + 5(1 —2ap — & + 2apé)ez,,
1 1
&2 = 1 (=€ + 4axémefy + ZG + 4acéned; +

1 1
Z(TI + 4agénes, + Z(—U + 4apén)edy + (1 + agén)er,,

pri ¢emer so tocke A, B, C, D in E prikazane na sliki 2.3, deformacije pa so v teh to¢kah izvrednotene z
uporabo standardnega izraza (2.7). V zgornjih izrazih nastopajo tudi utezni faktorji, ki so povezani z
zadnjo konvergirano lego in so razlozeni v izrazih (2.49)—(2.51). Deformacije so spet transformirane v
lokalni karteziéni koordinatni sistem in skupaj s striznimi ANS deformacijami uporabljene v
funkcionalu potencialne energije, da prispemo do MITC4+ elementa.

Blokiranju v smeri debeline, ki lahko nastane pri 6 — parametri¢nem modelu z raztegljivim smernikom,
se lahko izognemo, ¢e uporabimo ANS koncept iz [15], tako da so vrednosti deformacije &35
izvrednotene v vozlis¢ih in interpolirane po elementu z uporabo standardnih interpolacijskih funkcij,
kot

Nen

&33 = Z Ny (&,1m) €334
a=1

8.1.4.2 EAS formulacije

EAS formulacije izvirajo iz Hu-Washizujevega funkcionala, kjer je polje deformacij reparametrizirano
kot
€P4S = el + &,

pri Gemer je € polje deformacij, povezanih s pomiki, € pa so dodatne deformacije, ki obogatijo osnovno
polje. Tak pristop lahko uporabimo za izboljSavo membranskih, upogibnih in striznih deformacijah, a
je bilo v [22] pokazano, da je racunsko upravicena le izboljSava membranskega dela, ki smo jo zato
obravnavali v tej disertaciji. Pomembna predpostavka, ki je veljavna ob izpeljavi EAS formulacij, je
ortogonalnost med poljem rezultant napetosti in poljem dodatnih deformacij €. 1z tega sledi, da lahko
osnovni Hu-Washizujev funkcional poenostavimo v

. 1
Mg (u, d"€) = L <§ R (4 eEAS)) dA — gL (uh, dh),
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kjer je € = DIAG[C™, C?, C¥].

Polje membranskih deformacij lahko izboljSamo z uporabo 4, 5 ali 7 neodvisnih parametrov, ki jih
interpoliramo po elementu z uporabo izraza

¢=ra,
pri ¢emer so interpolacijske funkcije za elemente s 4, 5 ali 7 neodvisnimi parametri & definirane kot

§ 00 0 §000 O §000¢En 0 0
], re ] re

r=0 n 00 0n 00 O 0n 00 0 ¢én O
0 0 ¢ n 00 & n én 0 0&n 0 0 ¢n

Te deformacije so nato transformirane v lokalni koordinatni sistem z uporabo izraza (2.63), s ¢imer

pridemo do kon¢ne izpeljave kon¢nih elementov EAS4, EASS in EAS7.

8.1.4.3 Hibridne Hellinger-Reissner formulacije

Hellinger-Reissnerjev (HR) funkcional ima naslednjo obliko

1
Min(uh, d", 6t'R) = f [eh . glR — EO'HR . C‘laHR] dA — gL (uh, d),
4,
kjer smo v formulacijo uvedli polje neodvisnih rezultant napetosti oR = [nf!RT mtRT gHRT]T
Interpolacijske funkcije za neodvisne napetosti so zapisane kot
a1l F_l + (- 77)?9 mit ﬁ} + - ﬁ)ﬁ:ll
nfif = [ﬁzzl =B+ (5 —$)Bo|, mF= [Tﬁn] =|Bs + (§ = )bz
1_112 ﬁ_ le B_6
3

q'R = 5_113] _ .[?7 + - 77),3:13]

g* Bg + (f - 5).314 '
kjer je B = [,[?1, T ,[?14]Tvektor neodvisnih parametrov, € in 7 pa sta konstanti, ki dolo¢ata koordinate
teziS¢a elementa. Zgoraj dolo¢ene rezultante napetosti in deformacije je treba transformirati v lokalni
koordinatni sistem v sredi§¢u elementa, kot je opisano v izrazih (2.70)~2.71), s ¢imer zagotovimo, da
element izpolni osnovni »patch test«. Pri implementaciji HR elementov lahko poleg zgoraj zapisanega
funkcionala uporabimo tudi delni oz. nepopolni HR funkcional, kot je npr. zapisan v (2.67), kjer so
uvedene neodvisne interpolacije za membranski, upogibni ali strizni del posebej (ali v izbrani
medsebojni kombinaciji). S tem zmanjSamo Stevilo neodvisnih parametrov na ravni elementa in
posledi¢no skrajsamo racunski cas.

8.1.4.4 Hibridne Hu-Washizu formulacije

Poleg neodvisnih rezultant napetosti 6", ki so interpolirane enako kot zgoraj opisane 6%, se v Hu-
Washizujevem (HW) funkcionalu pojavijo tudi neodvisne deformacije €

1
nee (ul, dt, €W, et = L [E € - CetW + oW - (e — eHW)] dA — gk (u, dh).

Deformacije €% se po elementu interpolirajo z uporabo enakih funkcij, kot so zgoraj uporabljene za
rezultante napetosti, pri ¢emer so neodvisni parametri zapisani v vektorju a. Ta lahko ima v nasem
primeru 14 ali 20 ¢lenov. Druga opcija je uporabljena v primeru, ko v Hu-Washizujevo formulacijo

vklju¢imo e dodatnih 6 EAS parametrov (ki so pravokotni na neodvisne rezultante napetosti /).
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Neodvisne napetosti in deformacije ter deformacije, izpeljane iz pomikov, je, enako kot za HR elemente,
treba transformirati v lokalni koordinatni sistem v srediScu elementa.

8.1.4.5 Nove hibridne formulacije

V disertaciji smo predstavili tudi nove hibridne formulacije, ki uspesno zdruzijo pozitivne lastnosti
zgoraj opisanih hibridnih HR ali HW formulacij in ANS formulacije za membranske deformacije. Izkaze
se, da se lahko take formulacije izpeljejo tako, da v Hu-Washizujevem ali Hellinger-Reissnerjevem

h 7z ANS deformacijami €4MS, ki jih je treba ustrezno

funkcionalu zamenjamo deformacije €
transformirati. Taka implementacija je relativno preprosta, razlika, ki se pojavi v numeric¢nih rezultatih,

pa je zelo velika in govori novi formulaciji v prid.
8.1.5 Numeri¢ni primeri

V poglavju z numeri¢nimi primeri smo najprej primerjali obnasanje vseh uporabljenih algoritmov za
racun velikih rotacij v elementu s 5 parametri, glej preglednico 2.7, tem pa smo dodali $e odziv elementa
s 6 parametri, glej sliki 2.5 in 2.6. Ugotovili smo, da obe osnovni formulaciji izracunata enake odzive,
razlike pa se pojavijo med razli¢nimi algoritmi za rotacije v 5 — parametricnem elementu. Te so
najvidnejSe v odzivu za primer s prostorskimi rotacijami, kjer so spremljani pomiki razli¢ni za vsakega
izmed algoritmov, medtem ko so pomiki za primere z ravninskimi rotacijami enaki za vse algoritme.
Izkazalo se je, da uporaba rotacijskih kvaternionov izbolj$a numeri¢ne lastnosti elementa, saj se pri
algoritmih I in M med racunom »izgubi« ortogonalnost rotacijskih matrik, medtem ko se to pri

kvaternionih ne zgodi. Glede na racunsko hitrost sta najugodnejsa algoritma T in 1Q.

Nadalje smo z linearnimi razli¢icami elementov izvedli dve verziji »patch testa«, glej sliko 2.7, ki so ju
uspesno prestali vsi obravnavani elementi, naSteti v preglednicah 2.2-2.6. Izvedli smo test lastnih
vrednosti in izracunali koeficient pogojenosti, glej slike 2.8-2.10, kjer vsi elementi dajo primerljive
rezultate. ManjSe razlike, ki se pojavijo, so posledica uporabe prej opisanih izboljSav v posamezni
formulaciji. Izvedli smo Se dva dodatna linearna testa, kjer pa razlike v odzivu med elementi niso tako

ocitne kot pri nelinearnih testih, ki smo jih izracunali v nadaljevanju.

V seriji 10 numeri¢nih primerov, glej poglavje 2.5.4, smo pokazali obnasanje obravnavanih elementov
v nelinearni analizi. Elementi MITC4, EAS4 in D-ANS izracunajo primerljive odzive, ki pa so natan¢ni
le, ¢e je uporabljena relativno gosta in nepopacena mreza. MITC4+ element se je izkazal kot izredno
neobcutljiv na popacenje mreze, hibridni HW in HR pa kot racunsko hitri elementi, ki so sposobni
izraunati zelo dolge obtezne inkremente. Elementi +HW in +HR, ki smo jih predstavili v tem delu, so
uspesno zdruzili vse nastete pozitivne lastnosti, brez da bi ohranili katero izmed negativnih. Lahko
zaklju€imo, da edini izmed uporabljenih elementov izpolnijo vseh pet zahtev, ki jih Zelimo od
»optimalnega« Stirivozlis¢nega elementa.

8.2 Implicitne sheme za ¢asovno integracijo

V nadaljevanju disertacije smo obravnavali implicitne sheme za Casovno korakanje v dinamiki

konstrukcij. Osredotocili smo se na sheme iz skupin posplosenih a (G-a) metod in metod, ki omogocajo
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kontrolirano sipanje energije (ED). Iz skupine prvih smo uporabili klasi¢ne sheme, kot so HHT [65],
BAM [170] in GAM [38], pa tudi novejSo JWH shemo [77]. Razen zadnje za radun vse uporabijo
Newmarkove predpostavke, ki so uporabljene tudi v NMD in NTR shemah, glej npr. [27], [97], [96]. V
linearni dinamiki so nastete sheme brezpogojno stabilne in (razen NTR) omogocajo disipacijo visjih
frekvenc. Opozoriti pa je treba, da se njihove dobre lastnosti ne nujno vedno prenesejo iz linearne v
nelinearno dinamiko.

V nelinearni dinamiki je pogoj za stabilnost sheme definiran v smislu energije. Shema je brezpogojno
stabilna, e za prosto gibanje znotraj poljubnega ¢asovnega koraka [t,,t,.1] velja (V41 —Vp) +
(Kny1 — K) < 0, kjer sta V in K potencialna in kineti¢na energija. G-a metode tega pogoja v splosnem
ne izpolnjujejo, hkrati pa tudi ne omogocajo ohranjanja gibalne in vrtilne koli¢ine. Pri analizi v
nelinearni dinamiki se lahko izkaze, da pride pri G-a shemah do nenadzorovanega nihanja energije in
posledi¢no tudi odpovedi ra¢una. V disertaciji, poleg Ze omenjenih G-a metod, obravnavamo tudi
shemo EMC, glej [146] in [145], ki je zasnovana tako, da ohranja energijo ter gibalno in vrtilno koli¢ino.
Ohranjanje fizikalnih lastnosti, kot sta gibalna in vrtilna koli€ina, je zazelena lastnost, obstaja pa kopica
problemov, pri katerih je za uspeSen izracun odziva potrebna disipacija energije. Take lastnosti
izkazujejo ED(MC) sheme, kjer z razsiritvijo EMC sheme omogoc¢imo kontrolirano disipacijo energije,
pri Cemer je izpolnjen pogoj za brezpogojno stabilnost in je, ob upostevanju dolo¢enih pogojev,
zagotovljeno tudi ohranjanje gibalne in vrtilne kolicine.

Enacbo dinamicnega ravnotezja lahko za nelinearno telo, ki je v prostoru diskretizirano s kon¢nimi
elementi, zapiSemo v obliki diferencialne enacbe drugega reda s pripadajocimi robnimi pogoji
Gayn(U(®)) = Fine(u(®),it(t)) + Ci(t) + Fint(u(®)) = Fexe(t) = 0,
u(0) = u,, u(0) = u,.
Tu u predstavlja posplosene pomike (pomike in rotacije), t € [0, tf] oznacuje ¢as znotraj izbranega
intervala, nadpisane pike pa oznacujejo odvod te koli¢ine po Casu. Fi,e je vektor vozlisénih inercijskih
sil, € je matrika dusenja, F;,; in Foy: pa vozliSéne notranje in zunanje sile. Do drugacne oblike zapisa

pridemo, ¢e zgornji izraz zapiSemo v obliki diferencialne enacbe prvega reda
Gayn(u(®), V(1)) = Fine(u(®), 9(t)) + Cv(t) + Fine(u(t)) — Fexe(©) = 0,

Sibka enakost

v(t) = u(t) ali v(t) ~ u(t),
u(0) = u,, v(0) = v,.

Ce kot izto&nico vzamemo diferencialno ena¢bo drugega reda, lahko izpeljemo mnogo shem za ¢asovno
integracijo iz skupine G-a. Te so zasnovane tako, da se ravnotezje izvrednoti v pomoznih ¢asovnih
tockah ty, 4, Oziroma ty, £ kjer izvrednotimo inercijske oziroma notranje sile, tako da ravnotezna
enacba postane

Fine(un+(xm:ﬂn+cxm) + Fint,n+af - Fext(tn+(xf) = 0.
Pri tem sta @, in @y parametra, ki ju dolo¢i uporabnik. Notranje sile so v vseh implementiranih shemah

izrazene z uporabo izraza

— ANlel e e _ e,T e
Fint,n+af - Ae=1Fint,n+afJ Fint,n+af - J.e Bn+af alng'
74
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kjer A predstavlja operator, ki sestavi mrezo konénih elementov, n,; je Stevilo elementov, V¢ pa zacetni
volumen elementa. Ff; ., ; je vektor notranjih vozlis¢nih sil v elementu, By, = Be(ufl+af) je
matrika, ki poveze variacije deformacij v ¢asu t,,, o I variacijami vozlis¢nih pomikov, in g, ; je vektor
algoritmi¢nih napetosti

Sag = aSn+1 + (1 — Sy, = aS®(ug,) + (1 — ap)$®(up).
Zaradi upostevanja zgornjih izrazov poimenujemo obravnavane sheme tudi modificirane G-a sheme,

saj notranje sile niso izra¢unane neposredno iz pomikov v ¢asu ¢, o £ G-a sheme pri ra¢unu privzamejo

Newmarkove predpostavke za hitrosti in pospeske

y-8. v—-2B .
5 u, — 28 At uy,,
. 1 . 1-2B
Unt1 = pa gac ™ T T 2B

kjer sta y in f Newmarkova parametra. Te predpostavke so uporabljene tudi v Newmarkovih shemah

. Y
Upy = M (un+1 - un) -

u,,

(un+1 - un) -

brez disipacije (NTR) in z disipacijo (NMD). Posebno mesto med shemami zaseda EMC, ki zagotavlja
ohranjanje energije ter gibalne in vrtilne koli¢ine. Izpeljemo jo lahko tudi kot poseben primer GAM
sheme, kjer je p, = 1.

Diferencialna enacba prvega reda je iztocnica za formiranje sheme JWH, kjer je enakost med hitrostmi

v in odvodi pomikov 2t strogo zagotovljena. Newmarkove predpostavke so tu zamenjane s spodnjimi

1zrazi
. y—1.
Upi1 = VAt (upyq —uy) + " Uy,
O Yy —an . ar—1
v =—wu —-u,) + u, + Vo,
n+1 afyAt ( n+1 n) yaf n af n
1 y—1 y—a
. m . m .
v =—F——7(Uu —-Uu,) — v, + Uy, +——u,.
n+1 afyZAtz( n+1 n) afyAt n % n )/ZafAt n

V preglednici 3.1 smo podali izraze za parametre, ki omogocajo, da zgoraj nastete a sheme izkazujejo
optimalno disipacijo in so brezpogojno stabilne. Ob upostevanju teh izrazov postanejo parametri @y,

as, B in y medsebojno odvisni ter doloceni z izbiro spektralnega radija v neskon¢nosti, p,.

Shemo EMC lahko modificiramo, da omogoc¢a kontrolirano disipacijo energije, in tako pridemo do
skupine shem, ki sipajo energijo (ED). To storimo z modificiranjem izrazov za hitrosti in notranje sile,
kjer ¢lenom EMC sheme dodamo disipativne ¢lene, v katerih koli¢ino disipacije nadziramo s
parametroma agp in Bgp. Implementacija za shemo prvega reda natan¢nosti ED1 je relativno preprosta
in izhaja iz osnovne diferencialne enaCbe ravnotezja drugega reda. Implementacija shem, ki omogocajo
ohranjanje gibalne in vrtilne koli¢ine, pa zahteva za izhodis¢e diferencialno enacbo prvega reda, kjer je
enakost med hitrostmi v in odvodi pomikov ©t zagotovljena v §ibki obliki. Shema EDMCI, ki je prvega
reda natancnosti, je kljub temu po obliki enaka shemi EDI1, pri ¢emer ohranjanje vrtilne koli¢ine
zagotovimo tako, da disipativnemu Clenu pripiSemo smer hitrosti v;,4,,,. Implementacija sheme
EDMC?2 je nekoliko zahtevnejsa, saj so disipativne koli¢ine medsebojno povezane z namenom, da se
doseze drugi red natan¢nosti, kot je prikazano v izrazih (3.24)—(3.27), pri ¢emer je disipacija odvisna le

od parametra agp.
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8.2.1 Primerjava v linearnem okolju

Sheme smo v linearnem okolju primerjali na osnovi odziva neduSenega sistema z 1 prostostno stopnjo
z maso m in togostjo k, katerega gibanje opise izraz
i+w’u=0 © v+w’u=0, u=v,

kjer je u pomik, v hitrost in w = \/k/_m naravna frekvenca z nihajnim ¢asom T = 2m/w. Za opis
lastnosti shem je najveckrat uporabljeno razmerje med Casovnim korakom v analizi in nihajnim casom
At/T. Naj omenimo, da so tu obravnavane lastnosti neodvisne od sposobnosti sheme, da ohranjanja
gibalno in vrtilno koli¢ino, zato smo za ED(MC) sheme v tem poglavju poenostavljeno uporabili le
oznaki ED1 in ED2.

Numeric¢no reSitev zgoraj navedenega izraza lahko za vsako izmed shem zapiSemo v obliki
X,+1 =AX,,Vne[0,1,..,N—1],
kjer je N Stevilo diskretnih ¢asovnih to¢k, A amplifikacijska matrika in X;, i € [0,1, ..., N — 1] vektor,
ki je definiran za skupine shem NG-a = {NTR, NMD, BAM, HHT, GAM, EMC}, JWH in ED = {EDI,
ED2} kot
XiNG-a = (w37, Xijwn = (g, vi, w;, 337, Xipp = {w;, vi}".
Z uporabo izrazov (3.4)—(3.10), (3.11)—~(3.14) in (3.19)—(3.27) lahko zapiSemo amplifikacijsko matriko

za vsako izmed obravnavanih shem. Eksplicitno smo jih podali v izrazih (3.36)—(3.41).

Z analizo amplifikacijske matrike lahko dolo¢imo nekatere lastnosti shem v linearni dinamiki. Najprej
smo izvedli spektralno analizo posameznih shem, kjer smo spektralni radij izra¢unali z izrazom
p = max(|4;]),

pri Gemer je A; i-ta lastna vrednost modificirane amplifikacijske matrike A, glej izraz (3.34). Shema je
v linearni dinamiki brezpogojno stabilna, ¢e velja p < 1 za vse 2 = 2mAt/T € [0, ). Naj omenimo,
da od tod izhaja oznaka za spektralni radij v neskon¢nosti p,, = limy_,.p, ki je za skupino G-a shem
parameter, ki ga poda uporabnik in z njim definira koli¢ino disipacije. Dobro zasnovana shema bo
ohranila nizje, osnovne frekvence, medtem ko bo visje frekvence podusila. Tako zelimo, daveljap = 1
zaAt/T —- 0in p < 1za At/T — oo. Nassliki 3.1 so prikazani poteki spektralnega radija za vse izbrane
sheme pri dolocenih vrednostih parametrov disipacije. Od G-a shem izkazujeta GAM in JWH najboljse
spektralne lastnosti, saj je spektralni radij p = 1 tudi za frekvence v srednjem obmocju, medtem ko
druge sheme pri enakem predpisanem p,, podusijo tudi srednje frekvence, kar je Se posebej opazno pri
shemah ED1 in NMD. ED2 shema izkazuje druga¢no obnasanje, saj pri njej velja p, = 0 ne glede na
izbran parameter dusenja, ki doloci le, kdaj se bo zgodil padec s p = 1.

S pomogjo lastnih vrednosti amplifikacijske matrike lahko analiziramo tudi algoritmi¢no dusenje & in
algoritmi¢no podalj$anje nihajnega ¢asa (T — T)/T za posamezno shemo. Rezultati so prikazani na
slikah 3.2 in 3.3, kjer je vidno, da se s daljSanjem casovnega koraka At poveca tudi napaka v
izraunanem nihajnem ¢asu. Najugodnejsi potek (T — T)/T je viden za ED2 shemo, medtem ko so si
rezultati za ostale sheme medsebojno zelo podobni. Razvidno je tudi, da imata NMD in ED1 zelo mo¢no
dusenje, natanénost prvega reda teh dveh shem pa se izraza v strmem naklonu funkcije & Ze na samem
zacCetku grafa.
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Primerjali smo tudi nagnjenost shem k mocni prekoracitvi analiticne resitve. Ta lastnost je bila prvi¢
raziskana v [55], pozneje pa so avtorji v [153] klasificirali algoritme glede na njihovo nagnjenost k
mocni prekoracitvi reSitve za pomike, hitrosti ali pospeske. Za linearni sistemzm = 1,T = L,uy =1
in 1y = 0 smo preverili to nagnjenost tako, da smo primerjali algoritmi¢no izraCunane pomike, hitrosti
in pospeske z analiticnimi vrednostmi teh koli¢in. Izkazalo se je, da so sheme NMD, GAM, BAM in
HHT nagnjene k mocni prekoracitvi resitve za hitrosti. Druge sheme pa ne izkazujejo te nezelene
lastnosti pri nobeni koli¢ini. S slik 3.4-3.6 je razvidno tudi, da je, vsaj v obmocju At/T < 1, napaka v
resitvi vecja, e je izbrano vecje dusenje.

V nadaljevanju smo analizirali lokalno in globalno napako, s katero smo ocenili red natan¢nosti
posameznih shem. Napako smo dobili s primerjavo analiticne in algoritmicne reSitve, pri ¢emer smo
obravnavali sistem z w = 21, T = 1,uy = 115 = 1 in primerjali reSitev pri ¢asu t = 0.4 + At. Uporabili
smo razli¢ne dolzine ¢asovnih korakov in dva razli¢na nivoja numeri¢ne disipacije; enega z veliko
disipacijo agp = Bgp = 0.35 in p,, = 0.5, enega za pa z majhno disipacijo agp = Bgp = 0.02 in py, =
0.9. Iz rezultatov na slikah 3.7-3.8 in v preglednici 3.3 je razvidno, da je napaka neodvisna od nivoja
disipacije. Vse G-a sheme izkazujejo globalno napako prvega reda za pospeske ter napako drugega reda
v pomikih in hitrostih. Shemi ED1 oziroma ED2 pa medtem izkazujeta globalno napako prvega oziroma
drugega reda za pomike in hitrosti.

Kon¢no smo primerjali e linearni odziv shem za preprost sistem z eno prostostno stopnjo. Tu smo
prikazali, kako so vse prej obravnavane lastnosti vidne v odzivu preprostega sistema. Jasno je razvidna
razlika med ED1 in NMD, ki sta prvega reda natan¢nosti, in vsemi ostalimi shemami, ki so drugega reda
natancnosti.

8.2.2 Primerjava v nelinearnem okolju

Prej predstavljene sheme smo implementirali v 5 — parametri¢ni kon¢ni element za lupine z velikimi
rotacijami, poimenovan kot MITC4 v poglavju 2. Samega postopka implementacije nismo podrobno
opisovali. Omeniti je treba le, da shemi EDMC1 in EDMC2, ki omogocata kontrolirano disipacijo
energije ter hkrati ohranjanje gibalne in vrtilne koli¢ine, zahtevata uporabo konc¢nega elementa z 11
prostostnimi stopnjami (3 pomiki srednje ploskve, 2 zasuka smernika, 3 hitrosti srednje ploskve in 3
kotne hitrosti smernika), medtem ko je za ostale sheme uporabljen osnovni element s 5 prostostnimi
stopnjami (3 pomiki srednje ploskve, 2 zasuka smernika).

V prvem obravnavanem primeru smo racunali vibriranje S plosce, glej sliko 3.11, pri ¢emer smo z
uporabo energijskega kriterija (3.53) in kriterija posploSenih pomikov (3.54) ocenjevali napako
uporabljenih shem v nelinearni dinamiki. Zakljucili smo, da je napaka za shemi EMC in EDMC2 tudi v
nelinearni dinamiki drugega reda, medtem ko je napaka za G-a sheme med prvim in drugim redom.
Sheme NMD, ED1 in EDMCI, ki so v linearni dinamiki prvega reda natan¢nosti, ohranijo prvi red
natan¢nosti tudi v nelinearni dinamiki.

Nadalje smo obravnavali primer letece L plosce, glej sliko 3.15. Med prostim letom se plo§¢a mo¢no
deformira, pojavi pa se kombinacija membranskih in upogibnih deformacij. Med odzivom smo
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spremljali celotno energijo sistema in vpliv izbranega ¢asovnega koraka At na njeno spreminjanje. Kot
je zaradi izkazanih lastnosti v linearni dinamiki pricakovano, se tudi v nelinearni dinamiki koli¢ina
disipirane energije pri vseh shemah poveca, ¢e je uporabljen daljsi ¢asovni korak. Tezave so se med
analizo pojavile pri shemah NTR, kjer je racun odpovedal za vse uporabljene At, in EDMC2 ter EMC,
kjer je racun odpovedal le za daljSe At. Vse analizirane sheme vsaj priblizno ohranjajo gibalno koli¢ino,
ohranjanje vrtilne koli¢ine pa je opazno le pri shemah EMC, EDMC1 in EDMC2. Preverili smo tudi
vpliv gostote mreze elementov na rezultate, pri ¢emer se je izkazalo, da so razlike za shemi EDI in
EDMCI1 manjs$e v primerjavi z rezultati za HHT in JWH, glej sliko 3.21.

Zadnji obravnavani primer je bil lete¢i kratek cilinder, glej sliko 3.22. Tu nas je Se posebej zanimalo
relativno spreminjanje energije med posameznimi casovnimi koraki, kar smo prikazali na sliki 3.24.
Izkazalo se je, da nobena izmed G-a metod ne izpolnjuje pogoja za stabilnost v nelinearni dinamiki.
Izpolnijo pa ga sheme NMD, EMC, ED1, EDMCI1 in EDMC2. Nadalje smo na osnovi energijskega

kriterija ocenili napako posameznih shem, zakljucki pa se dobro ujemajo s tistimi za primer S plosce.
8.3 Aplikacija modernih shem za ¢asovno integracijo na hibridnih konénih elementih

Zaradi velike togosti diskretnih enacb za lupinaste kon¢ne elemente, pa tudi zaradi Zelje po ohranjanju
fizikalnih lastnosti, kot so celotna energija, gibalna in vrtilna koli¢ina, je dolgotrajna dinami¢na analiza
lupinastih konstrukcij zelo tezavna. V poglavju 3 smo pokazali, da je za uporabo v nelinearni dinami¢ni
analizi smiselno izbrati sheme za Casovno integracijo, ki omogocajo disipacijo energije, hkrati pa
zagotavljajo ohranjanje drugih fizikalnih koli¢in. Tem merilom ustrezata shemi EDMC1 in EDMC2, ki
izpolnjujeta tudi pogoj stabilnosti v nelinearni dinamiki., zato smo se v poglavju 4 osredotocili le nanju.

V poglavju 2 smo nasteli lastnosti, ki jih mora izpolniti skoraj optimalen konc¢ni element za lupine.
Elementi, ki so izpeljani le s pomiki in rotacijami, teh pogojev ne izpolnijo, lahko pa jih izboljSamo z
uporabo razli¢nih tehnik. Med mesane elemente, spadajo med drugim tudi ANS, EAS, hibridne HW in
HR formulacije, ki smo jih obravnavali v naSem delu. Od nastetih so se za najucinkovitejSe izkazali
hibridni HW ali HR elementi, ki isto¢asno upostevajo tudi ANS metodo za pre¢ne strizne in membranske
deformacije, poimenovani +HW in +HR.

V poglavju 4 smo predstavili razvoj hibridne formulacije, pri cemer smo optimalne elemente iz poglavja
2 raz8irili v dinamiko. Medtem ko uporaba ANS in EAS tehnik ne vpliva na izpeljavo dinami¢ne
formulacije kon¢nega elementa, zahtevajo HW in HR formulacije precej spremenjen pristop. V naSem
delu smo zato Zeleli sistemati¢no izpeljati dve hibridni formulaciji, ki delujeta znotraj okvirov shem
EDMCI in EDMC2. Razvoj smo zaceli na preprostem primeru vzmetnega nihala in izraze nato razsirili

za lupinaste koncne elemente.
8.3.1 Formulacija vzmetnega nihala

Pri izpeljavi hibridnih formulacij za preprosto vzmetno nihalo, glej sliko 4.1, lahko izhajamo iz
osnovnega funkcionala

te 1
G(q; 1)) = j (q - Ev> -Mv — (Vint(f(q)) + Vext)dt'

to
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kjer so (q,v) € R? x R3 prostostne stopnje, ki dolo¢ajo pozicijo delca z maso m oziroma njegovo
hitrost. M predstavlja masno matriko, V;,; in Ve, pa notranjo in zunanjo potencialno energijo.

W in e s katerima

Hibridne Hu-Washizu formulacije vpeljejo neodvisno napetost in deformacijo o#
lahko osnovni funkcional razsirimo v novo obliko, njegovo Sibko obliko pa zapiSemo v obliki Euler-
Lagrangeevih izrazov
Mv + De(q)a"" = f oy,
e(q) =€,
q="v,
o™ = DVipe (™).

V poglavju 4.2.2.1 smo nato s pametno izbiro kinemati¢no dopustnih variacij dokazali ohranjanje
energije, gibalne in vrtilne koli¢ine za tako formulacijo. Zgornje izraze smo nato zapisali v diskretni
obliki

(vn+1 - vn) *
MT + DE(qn+1/2)0'HW = fext,n+1/2'
En+1 = Erll{-llivlJ
dn+1 — qn = p*

At '
HW _ HW
O-n+1/2 = DVint(6n+1/2)’

HW™ vsebujeta Clene, ki povzrocajo disipacijo energije. V poglavju 4.2.2.3 so nato

kjer koli¢ini v* in o
izpeljani Se diskretni zakoni ohranjanja gibalne in vrtilne koliine ter disipacije energije.

Nadalje smo zapisali $e razsirjeni Hellinger-Reissnerjev funkcional, pri katerem uvedemo neodvisno
napetost o'k Njegovo Sibko obliko lahko zapiSemo v obliki naslednjih Euler-Lagrangeevih izrazov
Mv + De(q)UHR = fexts
q="v,
CofR = e(q),

kjer je C posplosen materialni parameter. Ohranjanje energije, gibalne in vrtilne koli¢ine je za tako
formulacijo dokazano v poglavju 4.2.3.1. Temu sledi Casovna diskretizacija zgornjih enacb, ki jih
zapiSemo v obliki

(Vny1 — ) *
M= n + DE(qn+1/2)0'HR = fext,n+1/2'

At
dn+1 — qn =
At '
C™oflfy = €nsr-
Disipacija je v tem primeru prisotna prek koli¢in v* in o/ R*, Izpeljava diskretnih ravnoteznih zakonov
ohranjanja gibalne, vrtilne koliCine in disipacije energije sledi korakom, predstavljenim v poglavju

4.2.3.3.
8.3.2 Formulacija za lupine
Pri izpeljavi hibridnih formulacij za lupine smo najprej izhajali iz funkcionala za formulacijo s

posplosenimi pomiki in hitrostmi, ki ga lahko v §ibki obliki zapiSemo v obliki Euler-Lagrangeevega

izraza
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f 8D - MoV + 8€(8D, D) - 6dA = —Vp (5P),
M

f §V-(d—-V)dA =0,

Tu sta @ in V vektorja posploSenih pomikov in hitrosti, M, pa masna matrika za lupino, kjer so zajeti

tudi vplivi smernika.
Razsirjeno hibridno Hu-Washizu formulacijo lahko po zgledu primera vzmetnega nihala zapiSemo v

Euler-Lagrangeevi obliki kot
f oD - MpoV + 8€(8®, @) - 6WdA = -V, (6P),
M

f 86V . (e(®@) — €")dA = 0,
M

f §V-(@-V)dA=0,

M

f SefW . ("W — DW (e"W)dA = 0.
M

Ravnotezni zakoni so, ob pametni izbiri kinemati¢éno dopustnih variacij in druga¢nem zapisu nekaterih
spremenljivk, izpeljani v poglavju 4.3.2.1, ki mu sledi diskretizacija zgornjih izrazov, ki jih lahko
zapisemo kot

Voer =V )
f 5P - Mpo% +8€(8D, B i1 /7)) - 6V dA = —V,p (5D),
M

f 8 - (€41 — €¥)dA =0,
M

b — D
[ vyaco
M

f s . (6", , — DW (e, ,)dA = 0.
M
Kot dokazemo v poglavju 4.3.2.3, tak zapis omogoca kontrolirano disipacijo energije ter hkratno

ohranjanje gibalne in vrtilne koli¢ine.

Podoben postopek smo ponovili tudi za razSirjeni Hellinger-Reissnerjev funkcional, ki ga lahko v Euler-
Lagrangeevi obliki zapiSemo kot

f 8D - M,V + 8e(8D, D) - 6"RdA = —V,, (8P),
M

f §V-(d—-V)dA=0,

M

f 8a'R . (C~1o"R — e(®))dA = 0.
M

Po izpeljavi ravnoteznih zakonov v poglavju 4.3.3.1 zapiSemo Casovno diskretizirano razli¢ico zgornjih
izrazov
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A \
f 5P - Mpo%+ S€(8®, @py1/7) - MR dA = —V,, (89),
M

b —D
f 8V~(M—V*)dA =0,
M At

f Saf'R . (C1ofR, — €,,1)dA =0,
M

za katere v poglavju 4.3.3.3 dokazemo, da zagotavljajo kontrolirano disipacijo energije ter ohranjanje
gibalne in vrtilne koliine.

Izognemo se podrobnemu opisu implementacije teh formulacij za Stirivozlis¢ne kon¢ne elemente, saj ta
sledi enakim korakom, kot so bili predstavljeni Ze v poglavju 2. Poleg +HW in +HR kon¢nih elementov,
v poglavju 4.4, kjer so predstavljeni trije numericni testi, uporabimo tudi MITC4, MITC4+ in EASS

formulacije.

Najprej smo ponovili test letee L plosce iz poglavja 3.6.2. Tu pokazemo, da vse formulacije zagotovijo
ohranjanje vrtilne in gibalne koli¢ine, glej sliko 4.3. Med njimi se sicer pojavijo razlike v poteku celotne
energije, ki pa za EDMCI1 shemo v vseh primerih s ¢asom konvergira k enaki vrednosti. Za EDMC2
shemo ta konvergenca ni opazna. Prikazali smo, da so razlike v celotni energiji med formulacijami vecje,

¢e je uporabljena manjsa disipacija, medtem ko so pri vecji disipaciji te razlike manjse, glej sliko 4.2.

Na primeru letecega kratkega cilindra smo pokazali, da so hibridne formulacije +HW in +HR v
primerjavi z ostalimi sposobne izraCunati obcutno daljSe obtezne korake, za posamezen korak pa
potrebujejo manj iteracij, glej preglednico 4.1. Njihov racunski cas je tako nekajkrat krajsi, kar smo pri
hibridnih formulacijah opazili Ze v staticni analizi. Za EDMCI1 shemo se daljsi koraki posledi¢no
izrazajo tudi v ve¢ji disipaciji in zamiku v odzivu, ki je viden na sliki 4.7, kjer spremljamo pomik izbrane

tocke. Za EDMC2 shemo pa ta zamik ni viden.

Nazadnje smo izra¢unali $e modificiran primer Raascheve kljuke, pri ¢emer smo uporabili tudi
pokvarjeno mrezo. S tem smo pokazali, da se z uporabo membranskega ANS odpravi obcutljivost na
pokvarjeno mrezo. Enako kot smo zakljucili za stati¢no analizo, lahko tudi tu ugotovimo, da sta se, od

uporabljenih kon¢nih elementov, +HW in +HR izkazala za najrobustnej$a in najhitrejsa.
8.4  Stabilnostna analiza lupin z uporabo dinamike

V poglavju 5 smo dinami¢no analizo uporabili za simuliranje razli¢nih stabilnostnih problemov
lupinastih konstrukeij. Z izraunanimi primeri smo potrdili nekatere rezultate iz prej$njih poglavij, med
drugim pa smo ugotovili, da je disipacija energije nujna, ¢e Zelimo uspesno analizirati tezke stabilnostne
probleme. Za racun smo uporabili sheme BAM, HHT in GAM iz druzine posplosenih @ metod, ED1 iz
druzine shem, ki sipajo energijo, EMC, ki ohranja energijo, in NTR ter NMD iz druzine Newmarkovih
shem. Ker EMC in NTR ne disipirata energije, sta se izkazali za najslabso izbiro, medtem ko so G-« in

ED1 sheme izrac¢unale zelo zadovoljive rezultate.
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Omenjene sheme smo implementirali za 6 — parametri¢ni model lupine z raztegljivim smernikom, ki je
za staticno formulacijo podrobno opisan v poglavju 2.2.3, v poglavju 5.2 pa smo ga razsirili za
dinamiéno analizo.

Izra¢unani numericni primeri so pokazali, da so izbrane implicitne sheme z numeri¢no disipacijo zelo
primerne za simulacijo uklona elasti¢nih lupinastih konstrukeij. Implicitna dinamika konstrukcij lahko
izracuna zelo uporabne resitve, tudi kadar staticnim metodam tega ne uspe. Prednost takega nacina
racuna je tudi v tem, da se ni treba ukvarjati s kriticnimi (limitnimi in bifurkacijskimi) tockami.
Omenimo naj, da je pri analizi lupinastih konstrukcij treba imeti v mislih tudi nepopolnosti, ki pa smo
jim namenili le krajsi del poglavja o uklonu cilindra.

Z izpeljanim elementom smo najprej izracunali dva osnovna stati¢na in dodaten osnovni dinamicni test.
Tu smo pokazali, da je obnaSanje uporabljenega 6 — parametricnega elementa tako pri stati¢ni kot
dinami¢ni analizi primerljivo z obnasanjem 5 — parametricnega elementa. Od stabilnostnih problemov
smo najprej analizirali preskok stozcaste lupine, glej sliko 5.7, ki ji na zgornjem robu vsiljujemo silo ali
pomik. V primeru vsiljevanja pomikov je preskok bolj kontroliran, kljub temu pa se takoj po preskoku
pojavijo vibracije, ki jih nekatere sheme uspesno podusijo, medtem ko drugim tega ne uspe. NTR
odpove, Ze preden se pojavi konéni preskok, EMC pa sicer izra¢una odziv tudi po kon¢nem preskoku, a
odpove kmalu zatem, saj se v cilindru pojavijo nenaravne vibracije, ki jih shema ne podusi. Rezultate
smo primerjali tudi s stati¢no analizo, s katero pa nam ni uspelo izracunati celotnega odziva. Ujemanje
med rezultati je sicer do trenutka preskoka zelo dobro, glej sliko 5.7, razlike med izracunanimi

uklonskimi silami pa so za razlicne dinami¢ne sheme minimalne.

Enak primer smo nato poracunali Se z vsiljevanjem sile, kar se je izkazalo za zahtevnejSo nalogo, saj so
tudi nekatere G-a sheme odpovedale pred koncem analize. Enako kot za primer vsiljevanja pomika sta
najprej odpovedali NTR in EMC shemi, pozneje pa S¢ BAM. V primerjavi z vsiljevanjem pomikov se
tu pojavijo obcutnejse vibracije, ki so vidne na sliki 5.12, kar je v primeru vecine algoritmov zahtevalo
uporabo zelo kratkih ¢asovnih korakov. Najmanj tezav pa sta s takim nac¢inom obremenitve izkazali
shemi ED1 in NMD.

Nadalje smo obravnavali primer preskoka tankega cilindri¢nega panela, glej sliko 5.16. Rezultate smo
ponovno primerjali s staticno analizo, pri Cemer smo za reSevanje uporabili metodo locne dolzine, s
katero pa nam ni uspelo izracunati odziva po preskoku. Obe uporabljeni shemi za ¢asovno korakanje v
dinamiki (BAM in GAM) sta medtem brez tezav izracunali celoten odziv in podusili vibracije, ki so se
pojavile v trenutku preskoka. Temu je sledil ratun primera zmeckanja polkrogle, obremenjene z
zunanjim pritiskom, kjer smo za racun z dinamiko ponovno uporabili shemi BAM in GAM, stati¢ni
racun pa smo izvedli z metodo lo¢ne dolzine. Do trenutka, ko se zaéne meckanje, je odziv za vse tri
analize enak, razlike, ki nastanejo po tej tocki, pa so prikazane na sliki 5.20.

Nazadnje smo obravnavali primer osno obremenjenega cilindra, glej sliko 5.21, kjer smo opazovali
spreminjanje uklonskih oblik in jih primerjali z eksperimentalnimi rezultati iz [175]. Cilinder smo
obremenili z vsiljenim pomikom, za analizo pa smo uporabili sheme BAM, GAM in ED1. Za primer
cilindra brez dodanih nepopolnosti vse sheme predvidijo uklonsko silo, ki je obcutno vecja od

eksperimentalno izmerjene. Ujemanje med eksperimentalnimi in numeri¢nimi rezultati po prvem uklonu
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je kljub temu zelo dobro, saj nam je z izbranimi shemami uspelo opisati enake uklonske oblike, kot so
se pojavile tudi v eksperimentu. Pri tem smo preverili tudi vpliv hitrosti obremenjevanja in uporabljene
disipacije na rezultate, kar smo prikazali na slikah 5.23 in 5.24.

Obravnavali smo tudi nepopoln cilinder, pri ¢emer smo geometrijske nepopolnosti opisali s skalirano
vsoto prvih 18 lastnih oblik. Tak pristop je povzrocil, da se je izracunana zaCetna uklonska sila zelo
priblizala eksperimentalno doloceni sili, na sam potek uklonskih oblik v poznejSem obmocju pa ni zelo
vplival.

8.5 Analiza gubanja

Obicajen nacin analize gubanja ukrivljenih tankih povrsin je uporaba staticnih metod, kot je metoda
lo¢ne dolzine, pristopov, kot je dinami¢na relaksacija, ali pa uporaba eksplicitne dinami¢ne analize. V
poglavju 6 tega dela smo predlagali tri ucinkovite racunske modele za napovedovanje povrSinskega
gubanja v stisnjenih kompozitnih lupinah, ki uporabijo implicitno dinamiko za izra¢un prehodov med
razli¢nimi oblikami gubanja, ki se lahko pojavijo. Za osnovo smo uporabili 5 — oziroma 6 — parametri¢ni
model lupine, vpliv substrata pa smo opisali kot delovanje elastine podlage. Analizirali smo ve¢
kompozitnih sistemov cilindrov in sfer, pri ¢emer smo za analizo prvih uporabili integracijske sheme,
ki so bile uporabljene tudi za stabilnostno analizo lupin v poglavju 5, medtem ko smo za analizo sfer
uporabili le ED1 shemo, ki se je izkazala kot najrobustnejsa.

Avtorji v drugih delih so, da so dosegli preskok sistema v smiselno uklonsko obliko, navadno aplicirali
neko manjSo perturbacijsko silo ali geometrijsko nepopolnost. Mehko jedro kompozita so obicajno
modelirali s 3d kon¢nimi elementi, kar v kombinaciji z gosto mrezo zahteva veliko ra¢unsko mo¢. Nasi
racunski modeli so v primerjavi z nastetimi preprostejsi, saj ne zahtevajo aplikacije kakrSnih koli
nepopolnosti ali perturbacijske sile. Hkrati je tudi Stevilo kon¢nih elementov v modelu ob¢utno manjse.

Izhajali smo iz del [173] in [174], kjer so avtorji predlagali koeficient

C = Es/Ef(R/tf)3/2,

ki uspesno napove, katera vrsta gubanja se bo pojavila v cilindri¢nih ali sferi¢nih kompozitih. Tu podpis
s predstavlja substrat, f pa film oziroma lupino. Pri cilindrih so avtorji opazili kriticno vrednost
koeficienta C,,.;; = 0.88, pri Cemer za sisteme s C < C,,;; velja, da se pojavijo le osnosimetri¢ne oblike
gub, pri ostalih sistemih pa pride do preskoka med osnosimetri¢nimi in diamantno oblikovanimi gubami.
Pri sferi¢nih sistemih je faktor C povezan z gubanjem tako, da pri manjSih vrednostih napove pojav
vecjih vdolbin, pri vedjih vrednostih faktorja pa so te vdolbine vedno manjse in na neki tocki preskocijo
v vzorec v obliki labirinta.

Najprej smo analizirali §tiri primere cilindri¢nih kompozitov CS1-CS4 z vrednostmi faktorja C =
(0.43;0.1;0.01; 3.92), podatke za katere smo privzeli iz [173].

Pri analizi cilindra CS1 so vse uporabljene sheme izracunale, da je prva uklonska oblika osnosimetri¢na.
Razen NTR so vse ostale uporabljene sheme tudi napovedale prehod iz osnosimetri¢nega v diamantni
vzorec, a le shemama ED in GAM je uspelo podusiti vibracije, ki se zgodijo ob tem prehodu, kar je

vidno na sliki 6.3. ED shemi je uspelo opisati ve¢ prehodov med razli¢nimi oblikami gubanja, cesar
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nobeni drugi shemi ni uspelo. Oblike, ki jih opiSejo vse sheme (razen NTR), so si podobne v tem, da je

Stevilo valov, ki se pojavijo v osni smeri in v smeri obsega, priblizno enako.

Pri cilindru CS2 lahko na sliki 6.5 opazimo podobne rezultate kot prej, saj je spet le ED shema zaznala
ve¢ prehodov med uklonskimi oblikami. GAM in EMC sta edini od ostalih shem, ki sta zaznali prehod
iz osnosimetri¢nega vzorca v diamantni vzorec, a le GAM je uspesno podusila vibracije, ki so se pojavile
ob tem prehodu.

Za cilinder CS3 tudi GAM ne uspe podusiti vibracij, ED pa tudi v tem primeru zazna ve¢ prehodov med
uklonskimi oblikami. Za ta in za prej$nje primere smo prikazali tudi graf energije, glej sliko 6.8, kjer je
vidno, da se ob vsakem preskoku uklonske oblike potencialna energija zmanjsa, kineti¢na pa hipoma
naraste.

Cilinder CS4 ima vrednost faktorja C = 3.92 > C,,j;, zato tu ne pride do spremembe osnosimetri¢ne
oblike vzorca, ki vedno nastopi najprej. Preverili smo tudi izracunane uklonske sile in ugotovili dobro
ujemanje tako z numeri¢nimi rezultati avtorjev iz [173] kot z analiti¢no reSitvijo, glej preglednico 6.3.

V nadaljevanju smo analizirali 3 sfericne kompozite, pri ¢emer smo z ustrezno izbiro geometrije in
materiala vnaprej zeleli zagotoviti, da se bodo pojavili razli¢ni tipi gubanja. Za analizo smo uporabili
dva modela lupine, pri Cemer je prvi, poimenovan RM-5, osnovni 5 — parametri¢ni, pri drugem pa
privzamemo kinemati¢no poenostavitev, ki omogoca premik le v smeri radialno glede na lupino. Ta
model ima tako le 3 prostostne stopnje, poimenujemo pa ga QKQ-3. Hkrati smo v drugem modelu s
povecanjem striznega modula zagotovili, da so strizne deformacije zanemarljive. Pri raCunu smo
uporabili vecje dusenje kot prej za cilindre, saj smo le tako lahko zagotovili bolj kontroliran prehod med
oblikami gubanja.

Z obema uporabljenima modeloma smo nato analizirali tri sfere, z vrednostmi parametra C =
(3.5; 21.2; 109.5). Rezultati analiz so prikazani na slikah 6.10-6.13, kjer je v vseh primerih razviden
prehod s prvotno gladke povrsine z enakomernimi sferi¢nimi deformacijami na povrsino z vdolbinami.
V dveh primerih (C = 21.2 in € = 109.5) 5-parametri¢ni model izracuna nadaljnjo spremembo v
vzorcu gubanja s kanali (labirintni vzorec). Iz rezultatov je razvidno tudi, da se s povecanjem faktorja C

poveca tudi Stevilo gub.

Medtem ko je 5 — parametri¢ni model izracunal spremembo vzorca gubanja iz jamic v labirinte, 3 —
parametri¢ni model te spremembe ni bil sposoben opisati. Razlika med modeloma je vidna tudi v nivoju
uklonske obtezbe, saj se prve gube pri 3 — parametricnem modelu pojavijo pozneje, pri vec¢jem pritisku.
Vseeno se rezultati za oba modela do tocke uklona povsem ujemajo, sprememba Stevila jamic pa je
usklajena s spremembo faktorja C.

8.6 Zakljuctek
V disertaciji smo obravnavali najrazlicnej$e teme, povezane z lupinastimi konstrukcijami in nelinearno

analizo lupin. Na podro¢ju meSanih formulacij za Stirivozlis¢ne koncne elemente za lupine smo najpre;j

opredelili pet tock, ki jih mora izpolnjevati »optimalen« lupinasti kon¢ni element. Na osnovi teh meril



192 Lavrenci¢, M. 2020. Numerical Procedures for Nonlinear Static and Dynamic Analyses of Shell Systems of Various Sizes.
PhD Th. Ljubljana, UL FGG, Third cycle doctoral study Built Environment.

smo izbrali ustrezne numericne teste, pri ¢emer smo izvedli obsezno primerjavo nekaterih obstojecih in
tudi novih formulacij. Nobeni od ustaljenih formulacij ne uspe izpolniti vseh meril za »optimalen«
element, zato smo zdruzili tehnike, uporabljene v Hu-Washizu elementih iz [159] (in Hellinger-Reissner
elementu iz [59]), z ANS interpolacijami za membranske napetosti iz [90]. Tako je nastala skupina novih
elementov, ki niso obéutljivi na popacenje mreze in omogocajo izradun dolgih obteznih korakov. Ceprav
se na prvi pogled zdi, da je razlika med nasimi elementi in izvirnimi formulacijami majhna, ucinki, ki
so vidni iz rezultatov Stevilnih numeri¢nih testov, Se zdaleC niso majhni in so zelo ugodni.

Menimo, da ima teznja po razvoju »optimalnega« nelinearnega kon¢nega elementa za lupine, ki temelji
na klasicni teoriji, zelo prakticno ozadje. Predstavljeno delo je take mogoce razumeti kot korak k
optimalnemu (4 — vozlis§¢énemu) nelinearnemu kon¢nemu elementu za lupine (ki temelji na klasi¢ni
lupinski teoriji s pre¢nimi striznimi ucinki). Zaradi nenehnega razvoja novih meSanih formulacij pa

lahko gotovo ugotovimo, da se bo v prihodnosti pojavila Se uCinkovitejsa in robustnej$a formulacija.

V 3. poglavju smo obravnavali podrocje strukturne dinamike s poudarkom na implicitnih integracijskih
shemah za casovno korakanje, ki so primerne za implementacijo v kombinaciji s kon¢nimi elementi za
lupine. Vecina obravnavanih shem izhaja iz druzin posplosenih ¢ metod in metod, ki sipajo energijo.
Izbrane sheme smo najprej primerjali na podrocju linearne dinamike, kjer smo primerjali njihove
lastnosti stabilnosti, disperzije in natan¢nosti. Poleg tega smo po zgledu iz [80] pogledali tudi nagnjenost
k mo¢ni prekoracitvi resitve, kjer smo pokazali, da nobena od obravnavanih shem ne izkazuje takega
obnasanja pri pomikih, medtem ko se za hitrost to opazi pri NMD, GAM, BAM in HHT shemah. Pri
NTR, EMC, JWH, EDI in ED2 ni opaziti prekoracitve. Nadalje smo po vzoru iz [182] izracunali tudi
lokalno in globalno napako obravnavanih shem. Nato smo njihove lastnosti ponazorili na primeru
problema z eno prostostno stopnjo. Vse obravnavane sheme, z izjemo JWH, so dobro znane in v uporabi
v Stevilnih raziskovalnih ali komercialnih programih, zato je mogoce nase ugotovitve potrditi v Stevilnih
referencah, npr. [4], [38], [65], [170]. Vendar moramo pripomniti, da velika ve¢ina referenc obravnava
le posamezne izbrane sheme, zato smo si v disertaciji prizadevali za oblikovanje zgo$cenega, a Se vedno
celovitega pregleda nekaterih najpogosteje uporabljenih.

Poleg tega smo navedene sheme implementirali tudi za nelinearne konéne elemente za lupine in
primerjali njihove lastnosti v nelinearni analizi. Pokazali smo, da se nekatere znacilnosti prenesejo iz
linearnega v nelinearni rezim in da posplosene a sheme ne izpolnjujejo merila stabilnosti za nelinearno
dinamiko. Na drugi strani smo obravnavali tudi sheme, ki sipajo energijo in izpolnjujejo merilo
stabilnosti, a se pri njih pojavijo druge neugodne lastnosti, ki zadevajo natancnost le prvega reda
ED(MC)1 oziroma zahteven postopek implementacije EDMC2. Kolikor nam je znano, shema JWH [80]
Se ni bila Siroko uporabljena in analizirana na podrocju dinamike lupinastih konstrukcij, in upraviceno

upamo, da bo nase delo prispevalo k dodatni razlagi njenih lastnosti.

V 4. poglavju smo zdruZili ugodne lastnosti nekaterih mesanih formulacij, ki so se v 2. poglavju izkazale
za optimalne, s shemami za Casovno integracijo, ki sipajo energijo in ohranjajo gibalno in vrtilno
koli¢ino ter so se v nelinearni dinami¢ni analizi izkazale za stabilne. Najprej smo na primeru preprostega
vzmetnega nihala izpeljali lastnosti razSirjenega Hu-Washizujevega in Hellinger-Reissnerjevega
funkcionala, ki smo jih nato razsirili na dinamiko lupin. Izvedli smo ¢asovno diskretizacijo in za obe

novi formulaciji izpeljali diskretne ravnotezne zakone. V poglavju z numeri¢nimi primeri smo primerjali



Lavrencic, M. 2020. Numerical Procedures for Nonlinear Static and Dynamic Analyses of Shell Systems of Various Sizes. 193
PhD Th. Ljubljana, UL FGG, Third cycle doctoral study Built Environment.

rezultate za MITC4, MITC4+, EASS in nove +HW in +HR formulacije za dinamiko lupin. Izvedli smo
tri teste, pri Cemer se je pokazalo, da se ugodne lastnosti teh formulacij lepo prenesejo iz stati¢nega v

dinamic¢ni rezim. Menimo, da ravno razvoj teh formulacij predstavlja najpomembne;jsi prispevek nasega
dela.

Fenomen uklona je po navadi povezan s prvo kriti¢no to¢ko na ravnotezni poti, dobljeno z nelinearno
stati¢no analizo. Za Stevilne prakti¢ne konstrukcijske lupinaste konstrukcije je uklonska obremenitev
(tj. obremenitev na prvi kriti¢ni to¢ki) edini potrebni rezultat stabilnostne analize. Sele v zadnjih letih
so mehanske nestabilnosti lupinastih konstrukeij zaceli izkori$cati kot platforme za doseganje naprednih
funkcionalnosti ali izboljSanih fizikalnih lastnosti. Za napredno uporabo lupinastih konstrukcij in
sistemov je kljucno sistemati¢no poznavanje celotnega postopka uklona. V 5. poglavju smo pokazali,
da so za tako nalogo primerne tudi implicitne sheme za ¢asovno korakanje v dinamiki, ki omogocajo
nadzorovano sipanje energije, ki izhaja iz vis§jih frekvenc, in hkrati ohranjajo frekvence v nizjem
obmocju. Uporabljajo se lahko za analizo uklonskih procesov lupinastih konstrukcij in sistemov,
vkljuéno s spreminjanjem uklonskega vzorca. Stevilni v tej nalogi prikazani primeri kaZejo, da so lahko
implicitne dinami¢ne analize boljSe od stati¢nih analiz, izvedenih z metodo loéne dolZzine.

Numericni testi kazejo, da so med uporabljenimi shemami za uklonsko analizo najprimernejse tiste, ki
podusijo visje frekvence. Newmarkova trapezna shema (NTR) je zelo neto¢na in hitro odpove. Rezultati
sheme, ki ohranja energijo (EMC), pa so lahko onesnazeni z umetnimi vi§jimi frekvencami, ki lahko
privedejo do odpovedi racuna. NajboljSe rezultate smo dobili z uporabo shem z nadzorovano,
algoritmic¢no disipacijo visjih frekvenc, kot je shema, ki sipa energijo (ED), in posploSena @ metoda z
disipacijo visokih frekvenc (GAM). Za ve¢ racunskih primerov, vklju¢no s preskokom sistema in
uklonom valja pod osno obremenitvijo, se je izkazalo, da je implicitna dinamicna analiza z

(visokofrekvencno) numeri¢no disipacijo bistveno robustnej$a in u¢inkovitejsa kot stati¢na analiza.

Gube (). izbokline) ukrivljenih sistemov, sestavljenih iz tankega trdega filma in debele mehke podlage,
so v zadnjem Casu pritegnile veliko pozornosti, saj so lahko povezane z razli¢nimi naravnimi ali umetno
povzroCenimi pojavi. Izkazalo se je, da je numeri¢na stabilnostna analiza ukrivljenih sistemov film-
substrat, skupaj z analizo spreminjanja vzorca gub, dale¢ od trivialne naloge. V 6. poglavju smo
pokazali, da se lahko implicitna strukturna dinamika uporablja za proucevanje spreminjanja takih
vzorcev. Pokazalo se je, da je mogoce z nekaterimi implicitnimi shemami za ¢asovno korakanje pridobiti
dobro kvalitativno oceno vzorcev gubanja ukrivljenih sistemov film-substrat, vklju¢no s prehodi med

posameznimi vzorci.

Predlagali smo tri u¢inkovite racunske modele, ki temeljijo na modelih lupin, predstavljenih v 4. in 5.
poglavju, mehek substrat pa smo modelirali kot elasti¢no podlago. Najprej smo se osredoto¢ili na osno
obremenjene, dvoslojne cilindricne kompozite, nato pa na povrsinsko gubanje sfer z jedrom,
obremenjenih z zunanjim pritiskom. Pri obeh smo pokazali, da lahko namesto klasi¢nih 3D (stati¢nih)
racunskih modelov [78], [173], [174] in [186] uporabimo razmeroma preprost in hiter postopek, ki
zagotavlja prakticno enake rezultate pri napovedovanju vzorcev. Kar zadeva cilindricne kompozite,
uporabljen numeri¢ni model napoveduje skoke uklonskih oblik globoko v postkriticnem obmocju, ¢esar
avtorji prej omenjenih Studij niso opazili. Seveda lahko te numeri¢ne napovedi potrdijo samo
eksperimenti. Toda iz podobnosti med rezultati za cilindre s polnilom in rezultati za cilindre brez polnila,
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prikazanimi v 5. poglavju, domnevamo, da so prehodi med oblikami, ki jih najdemo z nasim racunskim
modelom, resnicni. Za analizo gubanja krogel lahko za oba uporabljena modela ponovno najdemo dobro
ujemanje med nastalimi vzorci gub in eksperimentalnimi rezultati. Preprostejsi model je sicer slep za
preoblikovanje iz vzorca hribov in dolin v vzorec labirinta, vendar se, globalno gledano, rezultati dobro

ujemajo z eksperimentalnimi in numeri¢nimi rezultati, pridobljenimi v [174].
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APPENDIX A

The constants & and 77 can be analytically integrated taking (2.5) and consider that the area of the shell
mid-surface can be approximated in case of warped elements as, see supplement material of [159]

|Re X R, | =~ det]§, (A.1)
with J¢ defined in (2.41) and the determinant can be decomposed as
detJ¢ = jo + &j1 + N (A.2)
The components of (A.2) are further defined as
jo=|REXRY|, ji=2;-(RgxR'), j,=2 (R'XR)), (A.3)

where

0 _ —
R; = R lp-o, R% = Ryleso,

92X (A.4)
R =RY+nR', R,=R%+¢R', R'=—1
3 ¢ TR, n n T SR, onoE
With A, = 4j, and results (A.2) — (A.4), we can write (2.69) as
-1 1j; 1 1j,
= [ gaa=3t g=r[ naa=Z. a.5)
Ae Jy4, 3Jo Ae Jy4, 3Jo
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APPENDIX B

Bellow we derive the transformation between the contravariant and Cartesian coordinates for the
membrane part of independent stress resultants and elaborate why this transformation must be performed
in the element center. The contravariant components of membrane stress resultants can be written as
71l Bi+ (=B
[ﬁ 2] =B, + (f - 5).3_10 . (B.1)
712 g,

Using the transformation matrix, to express this in the element-center Cartesian coordinate system, gives

us
2 2 _ ~
ay | Uen) V) 2J¢anlEan B+ (P
~ 2 2 — — _
[’Efﬁ Uciz)”  Ucz) L IR Gt I
" Slbie JSaiSar JE11U s +IEo Bs

[ (B + (1 —DPs) (fg,n)z + (B2 + (§ — €)B1o) (]821)2 + B3 2J¢11JC 2 l
(B + (= DPs) (fg,u)z + (B2 + (§ — €)B1o) (]g,zz)z + B3 2J6120C 22
l(.B_l + (= MPs) JE11JE12 + (B2 + (§ = E)Bi0) IE21JC 22 + Bs(UE11JC 22 +]cc,21]g,12)J
[ 3_1(15,11)2 + (M — 1B (15,11)2 + ,3_2(]5,21)2 + (£ =&)Bio (15,21)2 + B3 2JE 11621 }
.51(]5,12)2 + (=B (]812)2 + .3_2(]5,22)2 + (&= &)Buo (]g,zz)z + B3 2JE 1206 22
lﬂ_ﬂg,lﬂg,n + (M —MPo ]811](,@,12 + Bz]g,zﬂg,zz + (f - 55)310 ]g,21]g,22 + B3 ch,n]cc,zz +](,q,21](,q,12)J
We can now introduce three new stress parameters
B = .3_1(]5,11)2 + 32(15,21)2 + .[?3 2](,6‘,11](,C‘,21'
B2 =B (]CC,12)2 + B, (]cc,zz)z + B3 2]5,12]5,22: (B.3)
Bz = BUE11JEz + Balb21J 22 + BsUE11J6 22 + JE21)E12-
Using them, we can now rewrite expression (B.2) as
A1l [ By + (1 —1)Bs (fcc,n)z + (£ =&)Bro (15,21)2
[rzﬂ =| Bo+ (1 =MBs (1z)" + (€~ DBro UE22)"
" l53 + (0 = MPBoJé11JE 1z + (€~ 5)510 ]gzﬂcczz)J
[1 00 (&) 'm-m
[o 10 (8’ @-m (&) €D J

0 0 1 ]c11]c12(77 ) ]c21]cz2(f S;)

N

(B.4)

lﬁloJ

Performing the transformation in the element center enables this formulation to describe a constant stress
state and to pass the patch test. Namely if the transformation was to be different in every Gauss point,
the introduction of § — 8 would not be possible and the value of A% could be different in every Gauss
point, even for a constant value of § parameters. The same straightforward procedure is used to derive
the bending and shear stress resultants.
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