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Abstract. The spin-charge-family theory [1–7,9–12,15–17,19–24] predicts the existence of
the fourth family to the observed three. The 4 × 4 mass matrices — determined by the
nonzero vacuum expectation values and the dynamical parts of the two scalar triplets,
the gauge fields of the two groups of S̃U(2) determining family quantum numbers, as
well as of the three scalar singlets with the family members quantum numbers (τα =

(Q,Q ′, Y ′)), — manifest the symmetry S̃U(2)× S̃U(2)×U(1). All scalars carry the weak and
the hyper charge of the standard model higgs field (± 1

2
,∓ 1

2
, respectively). It is demonstrated,

using the massless spinor basis, that the symmetry of the 4 × 4 mass matrices remains
SU(2)× SU(2)×U(1) in all loop corrections, and it is discussed under which conditions
this symmetry is kept under all corrections, that is with the corrections induced by the
repetition of the nonzero vacuum expectation values included.

Povzetek. Teorija spinov-nabojev-družin [1–7,9–12,15–17,19–24] napove četrto družino k
doslej opaženim trem. Masne matrike 4 × 4 — določajo jih dva skalarna tripleta, ki sta
umeritveni polji dveh grup S̃U(2) (tripleti določajo družinska kvantna števila), ter trije
skalarni singleti s kvantnimi števili družinskih čanov τα = (Q,Q ′, Y ′) vsak s svojimi
neničelnimi vakuumskimi pričakovanimi vrednostmi ter kot dinamična polja — imajo
simetrijo S̃U(2) × S̃U(2) × U(1). Vsi skalarji — oba tripleta in vsi trije singleti — imajo
enake šibke in hipernaboje kot higgsova polja v standardnem modelu (± 1

2
,∓ 1

2
). Avtorja

pokažeta, da ostane simetrija masnih matrik 4 × 4 enaka SU(2) × SU(2) × U(1) v vseh
redih popravkov, ki jih določajo dinamična polja. Obravnavata pa tudi vključitev ponovitve
neničelnih vakuumskih pričakovanih vrednosti v vseh redih in spremembo simetrije, ki jo
te ponovitve povzročijo.

Keywords:Unifying theories, Beyond the standard model, Origin of families, Ori-
gin of mass matrices of leptons and quarks, Properties of scalar fields, The fourth

? This is the part of the talk presented by N.S. Mankoč Borštnik at the 21st Workshop
”What Comes Beyond the Standard Models”, Bled, 23 of June to 1 of July, 2018.
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family, Origin and properties of gauge bosons, Flavour symmetry, Kaluza-Klein-
like theories
PACS:12.15.Ff 12.60.-i 12.90.+b 11.10.Kk 11.30.Hv 12.15.-y 12.10.-g 11.30.-j 14.80.-j

6.1 Introduction

The spin-charge-family theory [1–12,15–17,19–24] predicts before the electroweak
break four - rather than the observed three — coupled massless families of quarks
and leptons.

The 4× 4mass matrices of all the family members demonstrate in this theory
the same symmetry [1,5,4,21,22], determined by the scalar fields originating in
d > (3 + 1): the two triplets — the gauge fields of the two S̃U(2) family groups
with the generators ~̃NL, ~̃τ1, operating among families — and the three singlets —
the gauge fields of the three charges (τα = (Q,Q ′, Y ′))) — distinguishing among
family members. All these scalar fields carry the weak and the hyper charge as
does the scalar higgs of the standard model: (±1

2
and ∓1

2
, respectively) [1,4,24].

The loop corrections alone, as well as corrections including the repetition of the
nonzero vacuum expectation values in all orders, make each matrix element of
mass matrices dependent on the quantum numbers of each of the family members.

Since there is no direct observations of the fourth family quarks with masses
below 1 TeV, while the fourth family quarks with masses above 1 TeV would
contribute according to the standard model (the standard model Yukawa couplings
of the quarks with the scalar higgs is proportional to mα4

v
, wheremα4 is the fourth

family member (α = u, d) mass and v the vacuum expectation value of the scalar
higgs) to either the quark-gluon fusion production of the scalar field (the higgs)
or to the scalar field decay too much in comparison with the observations, the
high energy physicists do not expect the existence of the fourth family members at
all [25,26].

One of the authors (N.S.M.B) discusses in Refs. ([1], Sect. 4.2.) that the standard
model estimation with one higgs scalar might not be the right way to evaluate
whether the fourth family, coupled to the observed three, does exist or not. The
ui-quarks and di-quarks of an ith family, namely, if they couple with the opposite
sign to the scalar fields carrying the family (Ã, i) quantum numbers and have
the same masses, do not contribute to either the quark-gluon fusion production
of the scalar fields with the family quantum numbers or to the decay of these
scalars into two photons. The strong influence of the scalar fields carrying the
family members quantum numbers to the masses of the lower (observed) three
families manifests in the huge differences in the masses of the family members, let
say ui and di, i = (1, 2, 3), and families (i). For the fourth family quarks, which
are more and more decoupled from the observed three families the higher are
their masses [22,21], the influence of the scalar fields carrying the family members
quantum numbers on their masses is in the spin-charge-family theory expected to
be much weaker. Correspondingly the u4 and d4 masses become closer to each
other the higher are their masses and the weaker are their couplings (the mixing
matrix elements) to the lower three families. For u4-quarks and d4-quarks with
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the similar masses the observations might consequently not be in contradiction
with the spin-charge-family theory prediction that there exists the fourth family
coupled to the observed three ([28], which is in preparation).

But three singlet and two treplet scalar fields offer also other explanations.
We demonstrate in the main Sect. 6.2 that the symmetry S̃U(2) × S̃U(2) × U(1),

which the mass matrices demonstrate on the tree level, after the gauge scalar fields of the
two S̃U(2) family groups triplets gain nonzero vacuum expectation values, keeps the same
in all loop corrections. We discuss also the symmetry of mass matrices if all the scalar
fields, contributing to mass matrices, have nonzero vacuum expectation values. We use
the massless basis.

In Sect. 6.4 we present shortly the spin-charge-family theory and its achieve-
ments so far. All the mathematical support appears in appendices.

Let be in this introduction stressed what supports the spin-charge-family theory
to be the right next step beyond the standard model. This theory can not only explain
— while starting from a very simple action in d ≥ (13+ 1), Eqs. (6.35) in App. 6.4,
with massless fermions (with the spin of the two kinds, γa and γ̃a, one kind
taking care of the spin and of all the charges of the family members (Eq. (6.4)), the
second kind taking care of families (Eqs. (6.34, 6.50))) coupled only to the gravity
(through the vielbeins and the two kinds of the spin connections fieldsωabαfαc
and ω̃abαfαc, the gauge fields of Sab and S̃ab (Eqs. (6.35)), respectively — all
the assumptions of the standard model, but also answers several open questions
beyond the standard model. It offers the explanation for [4–6,1,7,9–12,15–17,19–24]:
a. The appearance of all the charges of the left and right handed family members
and for their families and their properties.
b. The appearance of all the corresponding vector and scalar gauge fields and their
properties (explaining the appearance of higgs and the Yukawa couplings).
c. The appearance and properties of the dark matter.
d. The appearance of the matter/antimatter asymmetry in the universe.

This theory predicts for the low energy regime:
i. The existence of the fourth family to the observed three.
ii. The existence of twice two triplets and three singlets of scalars, all with the
properties of the higgs with respect to the weak and hyper charges, what explains
the origin of the Yukawa couplings.
iii. There are several other predictions, not directly connected with the topic of
this paper.

The fact that the fourth family quarks have not yet been observed — directly
or indirectly — pushes the fourth family quarks masses to values higher than 1
TeV.

Since the experimental accuracy of the 3 × 3 submatrix of the 4 × 4 mixing
matrices is not yet high enough [32], it is not yet possible to calculate the mixing
matrix elements among the fourth family and the observed three 1. Correspond-
ingly it is not possible yet to estimate masses of the fourth family members by

1 The 3× 3 submatrix, if accurate, determines the 4× 4 unitary matrix uniquely.
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fitting the experimental data to the free parameters of mass matrices, the num-
ber of which is limited by the symmetry S̃U(2)× S̃U(2)×U(1), predicted by the
spin-charge-family [22,21].

If we assume the masses of the fourth family members, the matrix elements
can be estimated from the measured 3 × 3 submatrix elements of the 4 × 4 ma-
trix [22,21] 2.

The more effort and work is put into the spin-charge-family theory, the more
explanations of the observed phenomena and the more predictions for the future
observations follow out of it. Offering the explanation for so many observed phe-
nomena — keeping in mind that all the explanations for the observed phenomena
originate in a simple starting action — qualifies the spin-charge-family theory as the
candidate for the next step beyond the standard model.

The reader is kindly asked to learn more about the spin-charge-family theory
in Refs. [2–4,1,5,6] and the references therein. We shall point out sections in these
references, which might be of particular help, when needed.

6.2 The symmetry of the family members mass matrices

The mass term
∑
s=7,8 ψ̄γ

sp0s ψ, Eq. (6.3), of the starting action, Eq. (6.35), mani-
fests in the spin-charge-family theory [4,1,5,6] the S̃U(2)× S̃U(2) ×U(1) symmetry.
The infinitesimal generators of the two family groups namely commute among
themselves, { ~̃NL, ~̃τ1̃}− = 0, Eq. (6.8), and with all the infinitesimal generators of
the family members groups, {τ̃Ai, τα}− = 0, (τα = (Q,Q ′, Y ′)), Eq. (6.9). After the
scalar gauge fields, carrying the space index (7, 8), of the generators ~̃NL and ~̃τ1̃ of
the two S̃U(2) groups gain nonzero vacuum expectation values, spinors (quarks
and leptons), which interact with these scalar gauge fields, become massive. There
are the scalar gauge fields, carrying the space index (7, 8), of the group U(1) with
the infinitesimal generators τα (=(Q,Q ′, Y ′)), which are responsible for the dif-
ferences in mass matrices among the family members (ui, νi, di, ei, i(1, 2, 3, 4), i
determines four families). Their couplings to the family members depends strongly
on the quantum numbers (Q,Q ′, Y ′).

It is shown in this main section that the mass matrix elements of any family
member keep the S̃U(2)×S̃U(2)×U(1) symmetry of the tree level in all corrections
(the loops one and the repetition of the nonzero vacuum expectation values),
provided that the scalar gauge fields of the U(1) group have no nonzero vacuum
expectation values. In the case that the scalar gauge fields of the U(1) group have
nonzero vacuum expectation values, the symmetry is changed, unless some of the
scalar fields with the family quantum numbers have nonzero vacuum expectation
values. We comment on all these cases in what follows.

Let us first present the symmetry of the mass term in the starting action,
Eq. (6.35).

2 While the fitting procedure is not influenced considerably by the accuracy of the measured
masses of the lower three families, the accuracy of the measured values of the mixing
matrices do influence, as expected, the fitting results very much.
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We point out that the symmetry S̃U(2)× S̃U(2) belongs to the two S̃O(4)
groups — to S̃O(4)

S̃O(3,1)
and to S̃O(4)

S̃O(4)
. The infinitesimal operators of the

first and the second S̃O(4) groups are, Eqs. (6.40, 6.41),

~̃N+(=
~̃NL) : =

1

2
(S̃23 + iS̃01, S̃31 + iS̃02, S̃12 + iS̃03) ,

~̃τ1 : =
1

2
(S̃58 − S̃67, S̃57 + S̃68, S̃56 − S̃78) , (6.1)

respectively. U(1) contains the subgroup of the subgroup SO(6) as well as the
subgroup of SO(4) (SO(6) and SO(4) are together with SO(3, 1) the subgroups of
the group SO(13, 1)) with the infinitesimal operators equal to, Eq. (6.42),

τ4 = −
1

3
(S9 10 + S11 12 + S13 14) ,

~τ1 =
1

2
(S58 − S67, S57 + S68, S56 − S78) ,

~τ2 =
1

2
(S58 + S67, S57 − S68, S56 + S78) . (6.2)

There are additional subgroups S̃U(2)× S̃U(2), which belong to S̃O(4)
S̃O(3,1)

and

S̃O(4)
S̃O(4)

, Eqs. (6.40, 6.41), the scalar gauge fields of which do not influence the
masses of the four families to which the three observed families belong according
to the predictions of the spin-charge-family theory 3.

All the degrees of freedom and properties of spinors (of quarks and leptons)
and of gauge fields, demonstrated below, follow from the simple starting action,
Eq. (6.35), after breaking the starting symmetry.

Let us rewrite formally the fermion part of the starting action, Eq. (6.35), in the
way that it manifests, Eq. (6.3), the kinetic and the interaction term in d = (3+ 1)

(the first line, m = (0, 1, 2, 3)), the mass term (the second line, s = (7, 8)) and the
rest (the third line, t = (5, 6, 9, 10, · · · , 14)).

Lf = ψ̄γm(pm −
∑
A,i

gAiτAiAAim )ψ+

{
∑
s=7,8

ψ̄γsp0s ψ}+

{
∑

t=5,6,9,...,14

ψ̄γtp0t ψ} , (6.3)

where p0s = ps− 1
2
Ss
′s"ωs ′s"s−

1
2
S̃abω̃abs, p0t = pt− 1

2
St
′t"ωt ′t"t−

1
2
S̃abω̃abt

4,
with m ∈ (0, 1, 2, 3), s ∈ (7, 8), (s ′, s") ∈ (5, 6, 7, 8), (a, b) (appearing in S̃ab)

3 The gauge scalar fields of these additional subgroups S̃U(2)× S̃U(2) influence the masses
of the upper four families, the stable one of which contribute to the dark matter.

4 If there are no fermions present, then either ωabc or ω̃abc are expressible by vielbeins
fαa [[2,5], and the references therein]. We assume that there are spinor fields which
determine spin connection fields – ωabc and ω̃abc. In general one would have [6]:
p0a = fαap0α + 1

2E
{pα, Ef

α
a}−, p0α = pα − 1

2
Ss
′s"ωs ′s"α − 1

2
S̃abω̃abα. Since the term

1
2E

{pα, Ef
α
a}− does not influece the symmetry of mass matrices, we do not treat it in this

paper.
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run within either (0, 1, 2, 3) or (5, 6, 7, 8), t runs ∈ (5, . . . , 14), (t ′, t") run either
∈ (5, 6, 7, 8) or ∈ (9, 10, . . . , 14) 5. The spinor function ψ represents all family mem-
bers, presented on Table 6.3, of all the 2

7+1
2

−1 = 8 families, presented on Table 6.4.
In this paper we pay attention on the lower four families.

The first line of Eq. (6.3) determines in d = (3+1) the kinematics and dynamics
of spinor (fermion) fields, coupled to the vector gauge fields. The generators τAi of
the charge groups are expressible in terms of Sab through the complex coefficients
cAiab (the coefficients cAiab of τAi can be found in Eqs. (6.38, 6.2) 6,

τAi =
∑
a,b

cAiab S
ab , (6.4)

fulfilling the commutation relations

{τAi, τBj}− = iδABfAijkτAk . (6.5)

They represent the colour (τ3i), the weak (τ1i) and the hyper (Y) charges 7. The
corresponding vector gauge fields AAim are expressible with the spin connection
fieldsωstm, Eq. (6.44) 8

AAim =
∑
s,t

cAist ω
st
m . (6.6)

The second line of Eq. (6.3) determines masses of each family member (ui, di, νi, ei).
The scalar gauge fields of the charges — those of the family members, determined
by Sab and those of the families, determined by S̃ab — carry space index (7, 8).
Correspondingly the operators γ0γs, appearing in the mass term, transform the
left handed members of any family into the right handed members of the same
family, what can easily be seen in Table 6.3. Operators Sab transform one family
member of a particular family into the same family member of another family.

Each scalar gauge fields (they are the gauge fields with space index s ≥ 5) are
as well expressible with the spin connections and vielbeins, Eq. (6.45) [2].

The groups SO(3, 1), SU(3), SU(2)I, SU(2)II and U(1)II (all embedded into
SO(13 + 1)) determine spin and charges of spinors, the groups S̃U(2)

S̃O(3,1)
,

5 We use units ~ = 1 = c
6 Before the electroweak break there are the conserved (weak) charges ~τ1 (Eq. (6.38)),
~τ3(Eq. (6.2) and Y := τ4 + τ23 (Eqs. (6.38, 6.2) and the non conserved charge Y ′ :=
−τ4 tan2 ϑ2 + τ23 , where ϑ2 is the angle of the break of SU(2)II from SU(2)I × SU(2)II×
U(1)II to SU(2)I ×U(1)I. After the electroweak break the conserved charges are ~τ3 and
Q := Y + τ13, the non conserved charge is Q ′ := −Y tan2 ϑ1 + τ13, where ϑ1 is the
electroweak angle.

7 There are as well the SU(2)II (τ2i, Eq. (6.38)) and U(1)II (τ4, Eq. (6.2)) charges, the vector
gauge fields of these last two groups gain masses when interacting with the condensate,
Table 6.5 ([1,4,5] and the references therein). The condensate leaves massless, besides the
colour and gravity gauge fields in d = (3 + 1), the weak and the hyper charge vector
gauge fields.

8 Both fields, AAim and ÃÃim , are expressible with only the vielbeins, if there are no spinor
fields present [2].
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Eqs (6.1), S̃U(2)
S̃O(4)

, Eqs. (6.1), (embedded into S̃O(13 + 1)) determine family
quantum numbers 9.

The generators of these latter groups are expressible by S̃ab

τ̃Ai =
∑
a,b

cAiab S̃
ab , (6.7)

fulfilling again the commutation relations

{τ̃Ai, τ̃Bj}− = iδABfAijkτ̃Ak , (6.8)

while

{τAi, τ̃Bj}− = 0 . (6.9)

The scalar gauge fields of the groups S̃U(2)I (= S̃U(2)
S̃O(3,1)

with generators
~̃NL, Eq. (6.40)), S̃U(2)I (= S̃U(2)

S̃O(4)
, with generators ~̃τ1, Eq. (6.41)) and U(1)

(with generators (Q,Q ′, Y ′), Eq. (6.43)) are presented in Eq. (6.45) 10. The appli-
cation of the generators ~̃τ1, Eq. (6.41), ~̃NL, Eq. (6.40), which distinguish among
families and are the same for all the family members, is presented in Eqs. (6.49,
6.51, 6.13).

The application of the family members generators (Q,Q ′, Y ′) on the family
members of any family is presented on Table 6.1. The contribution of the scalar
gauge fields to masses of different family members strongly depends on the
quantum numbersQ,Q ′ and Y ′ as one can read from Table 6.1. In loop corrections
the contribution of the scalar gauge fields of (Q,Q ′, Y ′) is proportional to the even
power of these quantum numbers, while the nonzero vacuum expectation values
of these scalar fields contribute in odd powers.

R QL,R Y τ4
L,R

τ23 Y ′ Q ′ L Y τ13 Y ′ Q ′

ui
R

2
3

2
3

1
6

1
2

1
2

(1− 1
3

tan2 ϑ2) − 2
3

tan2 ϑ1 u
i
L

1
6

1
2

− 1
6

tan2 ϑ2
1
2

(1− 1
3

tan2 ϑ1)

di
R

− 1
3

− 1
3

1
6

− 1
2

− 1
2

(1+ 1
3

tan2 ϑ2)
1
3

tan2 ϑ1 d
i
L

1
6

− 1
2

− 1
6

tan2 ϑ2 − 1
2

(1+ 1
3

tan2 ϑ1)

νi
R

0 0 − 1
2

1
2

1
2

(1+ tan2 ϑ2) 0 νi
L

− 1
2

1
2

1
2

tan2 ϑ2
1
2

(1+ tan2 ϑ1)

eR −1 −1 − 1
2

− 1
2

1
2

(−1+ tan2 ϑ2) tan2 ϑ1 eL − 1
2

− 1
2

1
2

tan2 ϑ2 − 1
2

(1− tan2 ϑ1)

Table 6.1. The quantum numbersQ, Y, τ4, Y ′, Q ′, τ23, τ13, Eq. (6.43), of the family members
uiL,R, ν

i
L,R of one family (any one) [6] are presented. The left and right handed members of

any family have the same Q and τ4, the right handed members have τ13 = 0, and τ23 = 1
2

for (uiR, ν
i
R) and − 1

2
for (diR, e

i
R), while the left handed members have τ23 = 0 and τ13 = 1

2

for (uiL, ν
i
L) and − 1

2
for (diL, e

i
L). ν

i
R couples only to AY

′
s as seen from the table.

9 S̃U(3) do not contribute to the families at low energies. We studied such possibilities in a
toy model, Ref. [18].

10 All the scalar gauge fields, presented in Eq. (6.45), are expressible with the vielbeins and
spin connections with the space index a ≥ 5, Ref. [2].
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There are in the spin-charge-family theory 2
(1+7)
2

−1 = 8 families 11, which split
in two groups of four families, due to the break of the symmetry from S̃O(7, 1) into
S̃O(3, 1) ×S̃O(4). Each of these two groups manifests S̃U(2)

S̃O(3,1)
×S̃U(2)

S̃O(4)

symmetry [6]. These decoupled twice four families are presented in Table 6.4.
The lowest of the upper four families, forming neutral clusters with respect

to the electromagnetic and colour charges, is the candidate to form the dark
matter [20].

We discuss in this paper symmetry properties of the lower four families,
presented in Table 6.4 in the first four lines. We present in Table 6.2 the representa-
tion and the family quantum numbers of the left and right handed members of
the lower four families. Since any of the family members (uiL,R, diL,R, νiL,R, eiL,R)
behave equivalently with respect to all the operators concerning the family groups
S̃U(2)

S̃O(1,3)
× S̃U(2)

S̃O(4)
, the last five columns are the same for all the family

members.
We rewrite the interaction, which is in the spin-charge-family theory responsible

for the appearance of masses of fermions, presented in Eq. (6.3) in the second

line, in a slightly different way, expressing γ7 = (
78

(+) +
78

(−)) and correspondingly

γ8 = −i(
78

(+) −
78

(−)).

Lmass =
1

2

∑
+,−

{ψ†Lγ
0
78

(±) (−
∑
A

ταAα± −
∑
Ãi

τ̃Ai ÃÃi± )ψR}+ h.c. ,

τα = (Q,Q ′, Y ′) , τ̃Ãi = ( ~̃NL, ~̃τ
1̃) ,

γ0
78

(±) = γ0 1
2
(γ7 ± i γ8) ,

Aα± =
∑
st

cαstω
st
± , ωst± = ωst7 ∓ iωst8 ,

~̃AÃ± =
∑
ab

cAab ω̃
ab
± , ω̃ab± = ω̃ab7 ∓ i ω̃ab8 . (6.10)

In Eq. (6.10) the term ps is left out since at low energies its contribution is neg-
ligible, A determines operators, which distinguish among family members —
(Q,Q ′, Y ′) 12, their eigenvalues on basic states are presented on Table 6.1 — (Ã, i)
represent the family operators, determined in Eqs. (6.40, 6.41, 6.42). The detailed
explanation can be found in Refs. [4,5,1].

Operators τAi are Hermitian ((τAi)† = τAi), while (γ0
78

(±))† = γ0
78

(∓). If the
scalar fields AAis are real it follows that (AAi± )† = AAi∓ .

11 In the break from SO(13, 1) to SO(7, 1)×SO(6) only eight families remain massless, those
for which the symmetry S̃O(7, 1) remains. In Ref. [18] such kinds of breaks are discussed
for a toy model.

12 (Q,Q ′, Y ′) are expressible in terms of (τ13, τ23, τ4) as explained in Eq. (6.43). The corre-
sponding superposition ofωss

′
± fields can be found by taking into account Eqs. (6.38,

6.2).
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While the family operators τ̃1i and ÑiL commute with γ0
78

(±), {Sab, S̃cd}− =0
for all (a, b, c, d), the family members operators (τ13, τ23) do not, since S78 does

not (S78γ0
78

(∓) = −γ0
78

(∓) S78). However [ψk†L γ
0
78

(∓) (Q,Q ′, Y ′)A(Q,Q ′,Y ′)
∓ ψlR]

† =

ψl†R (Q,Q ′, Y ′)A
(Q,Q ′,Y ′)†
± γ0

78

(±) ψkL δk,l = ψl†R (QkR, Q
′k
R , Y

′k
R )A

(Q,Q ′,Y ′)
± ψkR δk,l,

where (QkR, Q
′k
R , Y

′k
R ) denote the eigenvalues of the corresponding operators on

the spinor state ψkR. This means that we evaluate in both cases quantum numbers
of the right handed partners.

But, let us evaluate 1√
2
< uiL+u

i
R|Ô

α|uiL+u
i
R >

1√
2

, with Ôα =
∑

+,− γ
0
78

(±)
(τ4A4

78

(±)
+τ23A23

78

(±)
+τ13A13

78

(±)
). One obtains 1√

2
{1
6
(A4−+A

4
+)+A

23
− +A13+ }. Equivalent

evaluations for |diL + d
i
R > would give 1√

2
{1
6
(A4− + A4+) − A

23
− − A13+ }, while for

neutrinos we would obtain 1√
2
{−1
2
(A4− +A4+) +A

23
− +A13+ } and for ei we would

obtain 1√
2
{−1
2
(A4− +A4+)−A

23
− −A13+ }. Let us point out that the fields include also

coupling constants, which change when the symmetry is broken. This means that
we must carefully evaluate expectation values of all the operators on each state of
broken symmetries. We have here much easier work: To see how does the starting
symmetry of the mass matrices behave under all possible corrections up to∞ we
only have to compare how do matrix elements, which are equal on the tree level,
change in any order of corrections.

In Table 6.2 four families of spinors, belonging to the group with the nonzero
values of ~̃NL and ~̃τ1, are presented. These are the lower four families, presented
also in Table 6.4 together with the upper four families 13. There are indeed the four
families of ψiuR and ψiuL presented in this table. All the 2

13+1
2

−1 members of the
first family are represented in Table 6.3.

The three singlet scalar fields (AQ∓ , AQ
′

∓ , AY
′

∓ ) of Eq. (6.10) contribute on the

tree level the ”diagonal” values to the mass term — γ0
78

(∓) QAQ∓ +γ0
78

(∓) Q ′AQ
′

∓

+γ0
78

(∓) Y ′AY ′∓ — transforming a right handed member of one family into the left
handed member of the same family, or a left handed member of one family into
the right handed member of the same family. These terms are different for different
family members but the same for all the families.

Since Q = (τ13 + τ23 + τ4) = (S56 + τ4), Y ′ = (−τ4 tan2 ϑ2 + τ23) and
Q ′ = (−(τ4 + τ23) tan2 ϑ1 + τ13) — ϑ1 is the standard model angle and ϑ2 is the
corresponding angle when the second SU(2) symmetry breaks — we could use

instead of the operators (γ0
78

(∓) QAQ∓ +γ0
78

(∓) Q ′AQ
′

∓ +γ0
78

(∓) Y ′AY ′∓ ) as well

the operators (γ0
78

(±) τ4A4±, γ0
78

(±) τ23A23± , γ0
78

(±) τ13A13± ), if the fact that the
coupling constants of all the fields, also of ωabs and ω̃abs, change with the break
of symmetry is taken into account.

13 The upper four families have the nonzero values of ~̃NR and ~̃τ2. The stable members of
the upper four families offer the explanation for the existence the dark matter [20].
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Let us denote by −aα the nonzero vacuum expectation values of the three
singlets for a family member α = (ui, νi, di, ei), divided by the energy scale (let
say TeV), when (if) these scalars have nonzero vacuum expectation values and we
use the basis 1

2
|ψiαL +ψiαR >:

aα = −{
1

2
< ψiαL +ψiαR |∑

+,−

γ0
78

(±) [Q < AQ± > +Q ′ < AQ
′

± > +Y ′ < AY
′

± >]|ψjαL +ψjαR >
1

2
}δij + h.c.,

(6.11)

Each family member has a different value for aα. All the scalar gauge fields
AQ
78

(±)
, AQ

′

78

(±)
, AY

′

78

(±)
have the weak and the hypercharge as higgs scalars: (±1

2
,∓1

2
,

respectively).

τ̃13 τ̃23 Ñ3L Ñ
3
R τ̃4

ψ1
uci
R

03

(+i)
12

[+] |
56

[+]
78

(+) || · · · ψ1
uci
L

03

[−i]
12

[+] |
56

[+]
78

[−] || · · · − 1
2

0 − 1
2

0 − 1
2

ψ2
uci
R

03

[+i]
12

(+) |
56

[+]
78

(+) || . . . ψ2
uci
L

03

(−i)
12

(+) |
56

[+]
78

[−] || · · · − 1
2

0 1
2

0 − 1
2

ψ3
uci
R

03

(+i)
12

[+] |
56

(+)
78

[+] || · · · ψ3
uci
L

03

[−i]
12

[+] |
56

(+)
78

(−) || · · · 1
2

0 − 1
2

0 − 1
2

ψ4
uci
R

03

[+i]
12

(+) |
56

(+)
78

[+] || · · · ψ4
uci
L

03

(−i)
12

(+) |
56

(+)
78

(−) || · · · 1
2

0 1
2

0 − 1
2

Table 6.2. Four families of the right handed uc1R with the weak and the hyper charge
(τ13 = 0, Y = 2

3
) and of the left handed uc1L quarks with (τ13 = 1

2
, Y = 1

6
), both with spin 1

2

and colour (τ33, τ38) = [(1/2, 1/(2
√
3), (−1/2, 1/(2

√
3), (0,−1/(

√
3)] charges are presented.

They represent two of the family members from Table 6.3 — u
c1
R and uc1L — appearing

on 1st and 7th line of Table 6.3. Spins and charges commute with ÑiL, τ̃1i and τ̃4, and are
correspondingly the same for all the families.

Transitions among families for any family member are caused by (ÑiL Ã
ÑL±

and τ̃1i Ã1̃±), what manifests the symmetry S̃UNL(2)× S̃Uτ1(2). There are correc-
tions in all orders, which make all the matrix elements of the mass matrix for any
of the family members α dependent on the three singlets (τ4A4±, τ23A23± , τ13A13± ),
Eq. (6.11).
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i |aψi > Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, Γ(7,1) = (−1) 1 , Γ(6) = (1) − 1

of (anti)quarks and (anti)leptons

1 uc1
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] 1 1

2
0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

2 uc1
R

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] 1 − 1

2
0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

3 dc1
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] 1 1

2
0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

4 dc1
R

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] 1 − 1

2
0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

5 dc1
L

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] -1 1

2
− 1
2

0 1
2

1
2
√
3

1
6

1
6

− 1
3

6 dc1
L

03
(+i)

12
(−) |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] -1 − 1

2
− 1
2

0 1
2

1
2
√
3

1
6

1
6

− 1
3

7 uc1
L

03
[−i]

12
[+] |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] -1 1

2
1
2

0 1
2

1
2
√
3

1
6

1
6

2
3

8 uc1
L

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] -1 − 1

2
1
2

0 1
2

1
2
√
3

1
6

1
6

2
3

9 uc2
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] 1 1

2
0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

10 uc2
R

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] 1 − 1

2
0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

11 dc2
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] 1 1

2
0 − 1

2
− 1
2

1
2
√
3

1
6

− 1
3

− 1
3

12 dc2
R

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] 1 − 1

2
0 − 1

2
− 1
2

1
2
√
3

1
6

− 1
3

− 1
3

13 dc2
L

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] -1 1

2
− 1
2

0 − 1
2

1
2
√
3

1
6

1
6

− 1
3

14 dc2
L

03
(+i)

12
(−) |

56
(−)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] -1 − 1

2
− 1
2

0 − 1
2

1
2
√
3

1
6

1
6

− 1
3

15 uc2
L

03
[−i]

12
[+] |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] -1 1

2
1
2

0 − 1
2

1
2
√
3

1
6

1
6

2
3

16 uc2
L

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] -1 − 1

2
1
2

0 − 1
2

1
2
√
3

1
6

1
6

2
3

17 uc3
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) 1 1

2
0 1

2
0 − 1√

3
1
6

2
3

2
3

18 uc3
R

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) 1 − 1

2
0 1

2
0 − 1√

3
1
6

2
3

2
3

19 dc3
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) 1 1

2
0 − 1

2
0 − 1√

3
1
6

− 1
3

− 1
3

20 dc3
R

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) 1 − 1

2
0 − 1

2
0 − 1√

3
1
6

− 1
3

− 1
3

21 dc3
L

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) -1 1

2
− 1
2

0 0 − 1√
3

1
6

1
6

− 1
3

22 dc3
L

03
(+i)

12
(−) |

56
(−)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) -1 − 1

2
− 1
2

0 0 − 1√
3

1
6

1
6

− 1
3

23 uc3
L

03
[−i]

12
[+] |

56
[+]

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) -1 1

2
1
2

0 0 − 1√
3

1
6

1
6

2
3

24 uc3
L

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) -1 − 1

2
1
2

0 0 − 1√
3

1
6

1
6

2
3

25 νR

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) 1 1

2
0 1

2
0 0 − 1

2
0 0

26 νR

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) 1 − 1

2
0 1

2
0 0 − 1

2
0 0

27 eR

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) 1 1

2
0 − 1

2
0 0 − 1

2
−1 −1

28 eR

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) 1 − 1

2
0 − 1

2
0 0 − 1

2
−1 −1

29 eL

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) -1 1

2
− 1
2

0 0 0 − 1
2

− 1
2

−1

30 eL

03
(+i)

12
(−) |

56
(−)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) -1 − 1

2
− 1
2

0 0 0 − 1
2

− 1
2

−1

31 νL

03
[−i]

12
[+] |

56
[+]

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) -1 1

2
1
2

0 0 0 − 1
2

− 1
2

0

32 νL

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) -1 − 1

2
1
2

0 0 0 − 1
2

− 1
2

0

33 d̄c̄1
L

03
[−i]

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
(+) -1 1

2
0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

34 d̄c̄1
L

03
(+i)

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
(+) -1 − 1

2
0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

35 ūc̄1
L

03
[−i]

12
[+] |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
(+) -1 1

2
0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

36 ūc̄1
L

03
(+i)

12
(−) |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
(+) -1 − 1

2
0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

37 d̄c̄1
R

03
(+i)

12
[+] |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
(+) 1 1

2
1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

38 d̄c̄1
R

03
[−i]

12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
(+) 1 − 1

2
1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

39 ūc̄1
R

03
(+i)

12
[+] |

56
(−)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
(+) 1 1

2
− 1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

Continued on next page
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i |aψi > Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, Γ(7,1) = (−1) 1 , Γ(6) = (1) − 1

of (anti)quarks and (anti)leptons

40 ūc̄1
R

03
[−i]

12
(−) |

56
(−)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
(+) 1 − 1

2
− 1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

41 d̄c̄2
L

03
[−i]

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
(+) -1 1

2
0 1

2
1
2

− 1
2
√
3

− 1
6

1
3

1
3

42 d̄c̄2
L

03
(+i)

12
(−) |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
(+) -1 − 1

2
0 1

2
1
2

− 1
2
√
3

− 1
6

1
3

1
3

43 ūc̄2
L

03
[−i]

12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
(+) -1 1

2
0 − 1

2
1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

44 ūc̄2
L

03
(+i)

12
(−) |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
(+) -1 − 1

2
0 − 1

2
1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

45 d̄c̄2
R

03
(+i)

12
[+] |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
(+) 1 1

2
1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

46 d̄c̄2
R

03
[−i]

12
(−) |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
(+) 1 − 1

2
1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

47 ūc̄2
R

03
(+i)

12
[+] |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
(+) 1 1

2
− 1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

48 ūc̄2
R

03
[−i]

12
(−) |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
(+) 1 − 1

2
− 1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

49 d̄c̄3
L

03
[−i]

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
[−] -1 1

2
0 1

2
0 1√

3
− 1
6

1
3

1
3

50 d̄c̄3
L

03
(+i)

12
(−) |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
[−] -1 − 1

2
0 1

2
0 1√

3
− 1
6

1
3

1
3

51 ūc̄3
L

03
[−i]

12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
(+)

13 14
[−] -1 1

2
0 − 1

2
0 1√

3
− 1
6

− 2
3

− 2
3

52 ūc̄3
L

03
(+i)

12
(−) |

56
(−)

78
[−] ||

9 10
(+)

11 12
(+)

13 14
[−] -1 − 1

2
0 − 1

2
0 1√

3
− 1
6

− 2
3

− 2
3

53 d̄c̄3
R

03
(+i)

12
[+] |

56
[+]

78
[−] ||

9 10
(+)

11 12
(+)

13 14
[−] 1 1

2
1
2

0 0 1√
3

− 1
6

− 1
6

1
3

54 d̄c̄3
R

03
[−i]

12
(−) |

56
[+]

78
[−] ||

9 10
(+)

11 12
(+)

13 14
[−] 1 − 1

2
1
2

0 0 1√
3

− 1
6

− 1
6

1
3

55 ūc̄3
R

03
(+i)

12
[+] |

56
(−)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
[−] 1 1

2
− 1
2

0 0 1√
3

− 1
6

− 1
6

− 2
3

56 ūc̄3
R

03
[−i]

12
(−) |

56
(−)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
[−] 1 − 1

2
− 1
2

0 0 1√
3

− 1
6

− 1
6

− 2
3

57 ēL

03
[−i]

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
[−]

13 14
[−] -1 1

2
0 1

2
0 0 1

2
1 1

58 ēL

03
(+i)

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
[−]

13 14
[−] -1 − 1

2
0 1

2
0 0 1

2
1 1

59 ν̄L

03
[−i]

12
[+] |

56
(−)

78
[−] ||

9 10
[−]

11 12
[−]

13 14
[−] -1 1

2
0 − 1

2
0 0 1

2
0 0

60 ν̄L

03
(+i)

12
(−) |

56
(−)

78
[−] ||

9 10
[−]

11 12
[−]

13 14
[−] -1 − 1

2
0 − 1

2
0 0 1

2
0 0

61 ν̄R

03
(+i)

12
[+] |

56
(−)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
[−] 1 1

2
− 1
2

0 0 0 1
2

1
2

0

62 ν̄R

03
[−i]

12
(−) |

56
(−)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
[−] 1 − 1

2
− 1
2

0 0 0 1
2

1
2

0

63 ēR

03
(+i)

12
[+] |

56
[+]

78
[−] ||

9 10
[−]

11 12
[−]

13 14
[−] 1 1

2
1
2

0 0 0 1
2

1
2

1

64 ēR

03
[−i]

12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
[−]

13 14
[−] 1 − 1

2
1
2

0 0 0 1
2

1
2

1

Table 6.3. The left handed (Γ(13,1) = −1, Eq. (6.53)) multiplet of spinors — the members of the fundamental representation of the SO(13, 1)

group, manifesting the subgroup SO(7, 1) of the colour charged quarks and anti-quarks and the colourless leptons and anti-leptons — is presented in the

massless basis using the technique presented in App. 6.5. It contains the left handed (Γ(3,1) = −1, App. 6.5) weak (SU(2)I) charged (τ13 = ± 1
2

,

Eq. (6.38)), and SU(2)II chargeless (τ23 = 0, Eq. (6.38)) quarks and leptons and the right handed (Γ(3,1) = 1, weak (SU(2)I ) chargeless and

SU(2)II charged (τ23 = ± 1
2

) quarks and leptons, both with the spin S12 up and down (± 1
2

, respectively). Quarks distinguish from leptons only

in the SU(3) × U(1) part: Quarks are triplets of three colours (ci = (τ33, τ38) = [( 1
2
, 1
2
√
3

), (− 1
2
, 1
2
√
3

), (0,− 1√
3

)], Eq. (6.2))

carrying the ”fermion charge” (τ4 = 1
6

, Eq. (6.2)). The colourless leptons carry the ”fermion charge” (τ4 = − 1
2

). The same multiplet contains also the left
handed weak (SU(2)I) chargeless and SU(2)II charged anti-quarks and anti-leptons and the right handed weak (SU(2)I ) charged and SU(2)II
chargeless anti-quarks and anti-leptons. Anti-quarks distinguish from anti-leptons again only in theSU(3)×U(1) part: Anti-quarks are anti-triplets, carrying

the ”fermion charge” (τ4 = − 1
6

). The anti-colourless anti-leptons carry the ”fermion charge” (τ4 = 1
2

). Y = (τ23 + τ4) is the hyper charge, the

electromagnetic charge isQ = (τ13 + Y). The states of opposite charges (anti-particle states) are reachable from the particle states besides bySab also by
the application of the discrete symmetry operator CN PN , presented in Refs. [43,44]. The vacuum state, on which the nilpotents and projectors operate, is not
shown. The reader can find this Weyl representation also in Refs. [5,15,16,4] and in the references therein.

Taking into account Table 6.3 and Eqs. (6.49, 6.58) one easily finds what do

operators γ0
78

(±) do on the left handed and the right handed members of any
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family i = (1, 2, 3, 4).

γ0
78

(−) |ψiuR,νR > = |ψiuL,νL > ,

γ0
78

(+) |ψiuL,νL > = |ψiuR,νR > ,

γ0
78

(+) |ψidR,eR > = |ψidL,eL > ,

γ0
78

(−) |ψidL,eL > = |ψidR,eR > . (6.12)

We need to know also what do operators (τ̃1± = τ̃11 ± i τ̃12, τ̃13) and (Ñ±L =

Ñ1L ± i Ñ2L, Ñ3L) do when operating on any member (uL,R, νL,R, dL,R, eL,R) of a
particular family ψi, i = (1, 2, 3, 4).

Taking into account, Eqs. (6.47, 6.48, 6.58, 6.60, 6.51, 6.40, 6.41),

Ñ±L = −

03

(̃∓i)
12

(̃±) , τ̃1± = (∓)
56

(̃±)
78

(̃∓) ,

Ñ3L =
1

2
(S̃12 + i S̃03) , τ̃13 =

1

2
(S̃56 − S̃78) ,

ab

(̃−k)
ab

(k) = −i ηaa
ab

[k] ,

ab

(̃k)
ab

(k)= 0 ,

ab

(̃k)
ab

[k] = i
ab

(k) ,

ab

(̃k)
ab

[−k]= 0 ,

ab

(̃k) =
1

2
(γ̃a +

ηaa

ik
γ̃b) ,

ab

[̃k] =
1

2
(1+

i

k
γ̃aγ̃b) , (6.13)

one finds

Ñ+
L |ψ1 > = |ψ2 > , Ñ+

L |ψ2 >= 0 ,

Ñ−
L |ψ2 > = |ψ1 > , Ñ−

L |ψ1 >= 0 ,

Ñ+
L |ψ3 > = |ψ4 > , Ñ+

L |ψ4 >= 0 ,

Ñ−
L |ψ4 > = |ψ3 > , Ñ−

L |ψ3 >= 0 ,

τ̃1+ |ψ1 > = |ψ3 > , τ̃1+ |ψ3 >= 0 ,

τ̃1− |ψ3 > = |ψ1 > , τ̃1− |ψ1 >= 0 ,

τ̃1− |ψ4 > = |ψ2 > , τ̃1− |ψ2 >= 0 ,

τ̃1+ |ψ2 > = |ψ4 > , τ̃1+ |ψ4 >= 0 ,

Ñ3L |ψ
1 > = −

1

2
|ψ1 > , Ñ3L |ψ

2 >= +
1

2
|ψ2 > ,

Ñ3L |ψ
3 > = −

1

2
|ψ3 > , Ñ3L |ψ

4 >= +
1

2
|ψ4 > ,

τ̃13 |ψ1 > = −
1

2
|ψ1 > , τ̃13 |ψ2 >= −

1

2
|ψ2 > ,

τ̃13 |ψ3 > = +
1

2
|ψ3 > , τ̃13 |ψ4 >= +

1

2
|ψ4 > , (6.14)

independent of the family member α = (u, d, ν, e).
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The dependence of the mass matrix on the family quantum numbers can

easily be understood through Table 6.2, where we notice that the operator Ñ
±
L

transforms the first family into the second (or the second family into the first)
and the third family to the fourth (or the fourth family into the third), while the

operator τ̃1̃± transforms the first family into the third (or the third family into the
first) and the second family into the fourth (or the fourth family into the second).

The application of these two operators, Ñ
±
L and τ̃1̃±, is presented in Eq. (6.14) and

demonstrated in the diagram

Ñ
±

L↔(
ψ1 ψ2

ψ3 ψ4

)l τ̃1̃± . (6.15)

The operators Ñ3L and τ̃1̃3 are diagonal, with the eigenvalues presented in
Eq. (6.14): Ñ3L has the eigenvalue −1

2
on |ψ1 > and |ψ3 > and +1

2
on |ψ2 > and

|ψ4 >, while τ̃1̃3 has the eigenvalue −1
2

on |ψ1 > and |ψ2 > and +1
2

on |ψ3 > and
|ψ4 >. If we count 1

2
as a part of these diagonal fields, then the eigenvalues of both

operators on families differ only in the sign.
The sign and the values of Q,Q ′ and Y ′ depend on the family members

properties and are the same for all the families.

Let the scalars (Ã
NL±
78

(±)
, ÃNL3

78

(±)
, Ã
1±
78

(±)
, Ã13

78

(±)
) be scalar gauge fields of the opera-

tors (Ñ±L , Ñ3L, τ̃1±, τ̃13), respectively. Here Ã 78

(±)
= Ã7∓i Ã8 for all the scalar gauge

fields, while Ã
NL±
78

(±)
= 1
2
(ÃNL1

78

(±)
∓i ÃNL2

78

(±)
), respectively, and Ã

1±
78

(±)
= 1
2
(Ã11

78

(±)
∓i Ã12

78

(±)
),

respectively. All these fields can be expressed by ω̃abc, as presented in Eq. (6.45),
provided that the coupling constants are the same for all the spin connection fields
of both kinds, that is if no spontaneous symmetry breaking happens up to the
weak scale.

We shall from now on use the notationAAi± instead ofAAi
78

(±)
for all the operators

with the space index (7, 8).
In what follows we prove that the symmetry of the mass matrix of any family

member α remains the same in all orders of loop corrections, while the symmetry in all
orders of corrections (which includes besides the loop corrections also the repetition of
nonzero vacuum expectation values of the scalar fields) remains unchanged only under
certain conditions. In general case the break of symmetry can still be evaluated for small
absolute values of aα, Eq. (6.11). We shall work in the massless basis.
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Let us introduce the notation Ô for the operator, which in Eq. (6.10) determines
the mass matrices of quarks and leptons. The operator Ô is equal to, Eq. (6.10),

Ô =
∑
+,−

γ0
78

(±) (−
∑
α

ταAα± −
∑
Ãi

τ̃Ãi ÃÃi± ) ,

ταAα± = (QAQ± , Q
′AQ

′

± , Y
′AY

′

± ) ,

τ̃Ãi ÃÃi± = (τ̃1̃i Ã1̃i± , Ñ
i
L Ã

ÑLi
± ) ,

{τα, τβ}− = 0 , {τ̃Ãi, τ̃B̃j}− = i δÃB̃ fijk τ̃Ãk , {τα, τ̃B̃j}− = 0 . (6.16)

Each of the fields in Eq. (6.16) consists in general of the nonzero vacuum expecta-
tion value and the dynamical part: ÃÃi± = (< Ã1̃i± > +Ã1̃i± (x),< Ã

ÑLi
± > +ÃÑLi± (x),

< Aα± > +Aα±(x)), where a common notation for all three singlets is used, since
their eigenvalues depend only on the family members (α = (u, d, ν, e)) quantum
numbers and are the same for all the families.

We further find that

{γ0
78

(±), τ4}− = 0 , {γ0
78

(±), ~̃τ1̃}− = 0 , {γ0
78

(±), ~̃NL}− = 0 ,

{γ0
78

(±), τ13}− = −2 γ0
78

(±) S78 , {γ0
78

(±), τ23}− = +2 γ0
78

(±) S78 . (6.17)

To calculate the mass matrices of family members α = (u, d, ν, e) the operator
Ô must be taken into account in all orders. Since for our proof the dependence
of the operator Ô on the time and space does not play any role (it is the same for
all the operators), we introduce the dimensionless operator Ô, in which all the
degrees of freedom, except the internal ones determined by the family and family
members quantum numbers, are integrated away 14.

Then the change of the massless state of the ith family of the family member
α of the left or right handedness (L,R), |ψα iL,R >, changes in all orders of corrections
as follows

Û |ψα iL,R > = i

∞∑
n=0

(−1)n Ô2n+1

(2n+ 1)!
|ψα iL,R > . (6.18)

In Eq. (6.18) |ψα i(L,R) > represents the internal degrees of freedom of the ith, i =
(1, 2, 3, 4), family state for a particular family member α in the massless basis.
The mass matrix element in all orders of corrections between the left handed
αth family member of the ith family < ψα iL | and the right handed αth family
member of the jth family |ψα jR >, both in the massless basis, is then equal to
< ψα iL | Û |ψα iR >. Only an odd number of operators Ô2n+1 contribute to the mass
matrix elements, transforming |ψα iR > into |ψα jL > or opposite. The product of an
even number of operators Ô2n does not change the handedness and consequently

14 Ô is measured in TeV units (as all the scalar and vector gauge fields). If the time evolution
is concerned then Ô = Ô · (t − t0)/TeV is in units ~ = 1 = c dimensionless quantity. We
assume that also the integration over space coordinates is in < ψα iR |Ô|ψα iR > already
taken into account, only the integration over the family and family members is left to be
evaluated.
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contributes nothing. Correspondingly without the nonzero vacuum expectation
values of scalar fields all the matrix elements would remain zero, since only
nonzero vacuum expectation values may appear in an odd orders, while the
contribution of the loop corrections always contribute to the mass matrix elements
an even contribution (see Fig. (6.1)).

Our purpose is to show how do the matrix elements behave in all orders of
corrections

< ψα jL |Û |ψα iR > = i

∞∑
n=0

(−1)n

(2n+ 1)!
< ψα iL |

4∑
k1=1

Ô|ψαk1R >< ψαk1R |

4∑
k2=1

Ô|ψαk2L > · · ·

< ψαknL |

4∑
ki=1

Ô|ψαkiR > . (6.19)

Let be repeated again that all the matrix elements

< ψαk1R |Ô|ψαk2L >

or

< ψαk1L |

4∑
k2=1

Ô|ψαk2R >

only evaluate the internal degrees of freedom, that is the family and family mem-
bers ones, while all the rest are assumed to be already evaluated. Since the mass
matrix is in this notation the dimensionless object, also all the scalar fields are
already divided by the energy unit (let say 1 TeV). We correspondingly introduce
the dimensionless scalars (AQ± ,A

Q ′

± ,AY
′

± ), ~̃A1̃±,
~̃AÑL± .

The only operators τα, distinguishing among family members, are (τ4, τ13, τ23),
included in Q = (τ13 + Y), Y = (τ23 + τ4), Q ′ = (τ13 − Y tan2 ϑ1) and in
Y ′ = (τ23 − τ4 tan2 ϑ2). All the operators contributing to the mass matrices of

each family member α have a factor γ0
78

(±), which transforms the right handed
family member to the corresponding left handed family member and opposite.

When taking into account Ô2n+1 in all orders, the operators ταAα±, τα =

(Q,Q ′, Y ′), contribute to all the matrix elements, the diagonal and the off diagonal
ones.
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To simplify the discussions let us introduce a bit more detailed notation

Ô =
∑
i

Ôi = Ôα + ˆ̃O1̃3 + ˆ̃OÑL3 + ˆ̃O1̃± + ˆ̃OÑL±

Ôα = −
∑
+,−

γ0
78

(±) (QAQ± , Q
′AQ

′

± , Y
′AY

′

± ) ,

ˆ̃O1̃3 = −
∑
+,−

γ0
78

(±) τ̃1̃3 Ã1̃3± ,

ˆ̃OÑL3 = −
∑
+,−

γ0
78

(±) Ñ3L ÃÑL3± ,

ˆ̃O1̃± = −
∑
+,−

γ0
78

(±) τ̃1̃± Ã
1̃±
± ,

ˆ̃OÑL± = −
∑
+,−

γ0
78

(±) Ñ±L Ã
ÑL±
± . (6.20)

We shall use the notation for the expectation values among the states < ψiL| =<
i|, |ψjR >= |j > for the zero vacuum expectation values and the dynamical parts as
follows:

i. < i|Ôα|j > =< i|
∑

+,− γ
0
78

(±) τα(< Aα± > +Aα±(x))|j >.

ii. < i| ˆ̃O
1̃3

|j > =< i|−
∑

+,− γ
0
78

(±) τ̃1̃3(< Ã1̃3± > +Ã1̃3± (x))|j >.

iii. < i| ˆ̃O
ÑL3

|j >=< i|−
∑

+,− γ
0
78

(±) Ñ3L(< ÃÑL3± > +ÃÑL3± (x))|j >.

iv. < i| ˆ̃O
1̃±

|j > =< i|−
∑

+,− γ
0
78

(±) τ̃1̃±(< Ã
1̃±
± > +Ã

1̃±
± (x))|j >.

v. < i| ˆ̃O
ÑL±

|j >=< i|−
∑

+,− γ
0
78

(±) Ñ±L (< Ã
ÑL±
± > +Ã

ÑL±
± (x))|j >.

vi. < i| ˆ̃O
α

dia|i >=< i|
∑

+,− γ
0

78

(±) {τα(< Aα± > +Aα± (x))− τ̃1̃3(< Ã1̃3± >

+Ã1̃3± (x)) − Ñ3L(< ÃÑL3± > +ÃÑL3± (x))}|i >.

(< Aα± >,< Ã1̃3± >,< ÃÑL3± >,< Ã
1̃±
± >,< Ã

ÑL±
± >) represent nonzero

vacuum expectation values and (Aα±(x), Ã1̃3± (x), ÃÑL3± (x), Ã
1̃±
± (x), Ã

ÑL±
± (x)) the

corresponding dynamical fields.
In the case i. < Aα± > represent the sum of the vacuum expectation val-

ues of (QαAQ(±), Q
′αAQ ′

(±), Y ′αAY
′

(±)) of a particular family member α, where
(Qα, Q ′α, Y ′α) are the corresponding quantum numbers of a family member α.
Aα±(x) represent the corresponding dynamical fields.

In the case vi. we correspondingly have for the four diagonal terms on the
tree level, that is for n = 0 in Eq. (6.19) (after taking into account Eq. (6.14):
< 1 |Õαdia|1 > = aα − (ã1 + ã2), < 2|Õαdia|1 > |2 >= aα − (ã1 − ã2), < 3|Õαdia|3 >=

aα + (ã1 − ã2) and < 4|Õαdia|4 >= aα + (ã1 + ã2), where (ã1, ã2, aα) represent the
nonzero vacuum expectation values of 1

2
1√
2
(< Ã1̃3(+) > + < Ã1̃3(−) >),

1
2
1√
2
(<

ÃÑL3(+) > + < ÃÑL3(−) >),
1
2
1√
2
(< Aα(+) > + < Aα(−) >), all in dimensionless units.
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We are now prepared to show under which conditions the mass matrix elements for
any of the family members keep the symmetry S̃U(2) × S̃U(2) × U(1) at each step of
corrections, what means that the values of the matrix elements obtained in each
correction respect the symmetry of mass matrices on the tree level.

We use the massless basis |ψiL,R >, making for the basis the choice 1√
2
(|ψiL >

+ |ψiR >).
The diagrams for the tree level, one loop and three loop contributions of the

operator Ô, determining the masses of quarks and leptons, Eqs. (6.16, 6.20), are
presented in Fig. (6.1).

ψαi
L ψαj

R

Ô

ψαi
L ψαk

R ψαl
L ψαj

R

+
Ô Ô

ψαi
L ψαk

R ψαl
L

ψαm
R ψαn

L ψαp
R ψαq

L ψαj
R

+
Ô Ô Ô Ô

Fig. 6.1. The tree level contributions, one loop contributions (not all possibilities are drawn,
the tree level contributions occurs namely also to the left or to the right of the loop, while
to Ô three singlets and two triplets, presented in Eq. (6.16), contribute) and two loop
contributions are drawn (again not all the possibilities are shown up). Each (i, j, k, l,m . . . )

determines a family quantum number (running within the four families — (1, 2, 3, 4)), α
denotes one of the family members (α = (u, ν, d, e)) quantum numbers, all in the massless
basis ψiα(R,L). Dynamical fields start and end with dots •, while x with the vertical slashed
line represents the interaction of the fermion fields with the nonzero vacuum expectation
values of the scalar fields.

6.2.1 Mass matrices on the tree level

Let us first present the mass matrix on the tree level for an αth family member,
that is for n = 0 in Eq. (6.19).

Taking into account Eq. (6.14) one obtains for the diagonal matrix elements
on the tree level (for n = 0 in Eq. (6.19)) [aα − (ã1 + ã2), aα − (ã1 − ã2), aα + (ã1 −
ã2), aα + (ã1 + ã2)], respectively. The corresponding diagrams are presented in
Fig. (6.2).
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ψα1
L ψα1

R

−ã1 − ã2 + aα

ψα2
L ψα2

R

−ã1 + ã2 + aα

ψα3
L ψα3

R

ã1 − ã2 + aα

ψα4
L ψα4

R

ã1 + ã2 + aα

Fig. 6.2. The tree level contributions to the diagonal matrix elements of the operator Ôαdia,
Eq. (6.20). The eigenvalues of the operators Ñ3L and τ̃1̃3 on a family state i can be read in
Eq. (6.14).

Taking into account Eq. (6.14) one finds for the off diagonal elements on the
tree level:

< ψ1|..|ψ2 > =< ψ3|..|ψ4 > =< ψ2|..|ψ1 >†= < ψ4|..|ψ3 >† =< ÃÑL� >,
< ψ1|..|ψ3 > =< ψ2|..|ψ4 > =< ψ3|..|ψ1 >†= < ψ4|..|ψ2 >† =< Ã1̃� >.
The corresponding diagrams for < ψ1|..|ψ2 >, < ψ2|..|ψ1 >, < ψ2|..|ψ3 >

and < ψ3|..|ψ2 > are presented in Fig. (6.3). The vacuum expectation values of this
matrix elements on the tree level are presented in the mass matrix of Eq.(6.22).

ψα1
L (ψα3

L ) ψα2
R (ψα4

R )

ˆ̃OÑL+

ψα2
L (ψα1

L ) ψα4
R (ψα3

R )

ˆ̃O1̃+

ψα2
L (ψα4

L ) ψα1
R (ψα3

R )

ˆ̃OÑL−

ψα4
L (ψα3

L ) ψα2
R (ψα1

R )

ˆ̃O1̃−

Fig. 6.3. The tree level contributions to the off diagonal matrix elements of the operators

^̃O
1̃± and ^̃O

ÑL±, Eq. (6.20) are presented. The application of the operators Ñ
±
L and τ̃1̃± on a

family state i can be read in Eq. (6.14).

The contributions to the off diagonal matrix elements< ψ1|..|ψ4 >,< ψ2|..|ψ3 >,
< ψ3|..|ψ2 > and < ψ4|..|ψ1 > are nonzero only, if one makes three steps (not two,
due to the left right jumps in each step), that is indeed in the third order of cor-
rection. For < ψ1|..|ψ4 >we have (in the basis 1√

2
(|ψiL > + |ψiR >) and with the

notation < ÃÑL± >= 1√
2
(< Ã

ÑL±
(+) > + < Ã

ÑL±
(−) >) after we take intoaccount that

γ0
78

(±) transform the right handed family members into the left handed ones and
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opposite):< ψ1|
∑

+,− τ̃
1̃±
< Ã1̃± >

∑
k |ψ

k >< ψk|
∑

+,− Ñ
±
L < ÃÑL± > |ψ4 >

< ψ4| (ã1 + ã2 + aα)|ψ4 >. There are all together six such terms, presented in
Fig. (6.4), since the diagonal term appears also at the beginning as (−ã1 − ã2 + aα)

and in the middle as (ã1 − ã2 + aα), and since the operators
∑

+,− τ̃
1̃±
< Ã1̃± >

and
∑

+,− Ñ
±
L < ÃÑL± > appear in the opposite order as well. We simplify the

notation from |ψk > to |k >. Summing all these six terms for each of four matrix
elements (< 1|..|4 >, < 2|..|3 >, < 3|..|2 >, < 4|..|1 >) one gets (taking into account
Eqs. (6.19, 6.14)):

< 1|..|4 > = aα < Ã1̃� >< ÃÑL� > ,

< 2|..|3 > = aα < Ã1̃� >< ÃÑL� > ,

< 3|..|2 > = aα < Ã1̃� >< ÃÑL� > ,

< 4|..|1 > = aα < Ã1̃� >< ÃÑL� > . (6.21)

Each matrix element is in Eq. (6.21) divided by 3!, since it is the contribution in
the third order! One notices that < 4|..|1 >†=< 1|..|4 > and < 3|..|2 >†=< 2|..|3 >.
These matrix elements are included into the mass matrix, Eq. (6.22).

To show up the symmetry of the mass matrix on the lowest level we put all
the matrix elements in Eq. (6.22).

αM(o) = −ã1−ã2+aα <ÃÑL�> <Ã1̃�> aα<Ã1̃�><ÃÑL�>

<ÃÑL�> −ã1+ã2+aα aα<Ã1̃�><ÃÑL�> <Ã1̃�>
<Ã1̃�> aα<Ã1̃�><ÃÑL�> ã1−ã2+aα <ÃÑL�>

aα<Ã1̃�><ÃÑL�> <Ã1̃�> <ÃÑL�> ã1+ã2+aα


(6.22)

Mass matrix is dimensionless. One notices that the diagonal terms have on the
tree level the symmetry < ψ1|..|ψ1 > + < ψ4|..|ψ4 >= 2 aα = < ψ2|..|ψ2 >

+ < ψ3|..|ψ3 >, and that in the off diagonal elements with ”three steps needed”
the contribution of the fields, which depend on particular family member α =

(u, d, ν, e), enters.
We also notice that< ψi|..|ψj >†=< ψj|..|ψi >. We see that< 1|..|3 >=< 2|..|4 >

=< 3|..|1 >†=< 4|..|2 >†, that < 1|..|2 >=< 3|..|4 >=< 2|..|1 >†=< 4|..|3 >† and
that < 4|..|1 >†=< 1|..|4 > and < 3|..|2 >†=< 2|..|3 >, what is already written
below Eq. (6.21), < i|..|j > denotes < ψi|..|ψj >.

In the case that a =< Ã1̃� >=< Ã1̃� >= e and < ÃÑL� >=< ÃÑL� >= d,
which would mean that all the matrix elements are real, the mass matrix simplifies
to

Mα
(o) =


−ã1 − ã2 + a

α d e b

d −ã1 + ã2 + a
α b e

e b ã1 − ã2 + a
α d

b e d ã1 + ã2 + a
α

 , (6.23)

with b = aαed.
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ψα1
L ψα1

R ψα3
L ψα4

R

Ôα
diag ˆ̃O1̃− ˆ̃OÑL−

ψα1
L ψα3

R ψα3
L ψα4

R

ˆ̃O1̃− Ôα
diag ˆ̃OÑL−

ψα1
L ψα3

R ψα4
L ψα4

R

ˆ̃O1̃− ˆ̃OÑL− Ôα
diag

ψα1
L ψα1

R ψα2
L ψα4

R

Ôα
diag ˆ̃OÑL− ˆ̃O1̃−

ψα1
L ψα2

R ψα2
L ψα4

R

ˆ̃OÑL− Ôα
diag ˆ̃O1̃−

ψα1
L ψα2

R ψα4
L ψα4

R

ˆ̃OÑL− ˆ̃O1̃− Ôα
diag

Fig. 6.4. The tree level contribution to the matrix element < ψ1|b|ψ4 > is presented.

One comes from < ψ1| to |ψ4 > in three steps: < ψ1|
∑

+,− τ̃
1̃±

< Ã1̃± >
∑
k |ψ

k ><

ψk|
∑

+,− Ñ
±
L < ÃÑL± > |ψ4 > < ψ4| (ã1 + ã2 + aα)|ψ4 >. There are all together six

such terms, since the diagonal term appears also at the beginning as (−ã1 − ã2 + aα)

and in the middle as (ã1 − ã2 + aα), and since the operators
∑

+,− τ̃
1̃±

< Ã1̃± > and∑
+,− Ñ

±
L < ÃÑL± > appear in the opposite order as well.

6.2.2 Mass matrices beyond the tree level

We discuss in this subsection the matrix elements of the mass matrix in all orders
of corrections, Eq. (6.19), the tree level, n = 0, of which is presented in Eq. (6.22).
The tree level mass matrix manifests the S̃U(2)× S̃U(2)×U(1) symmetry as seen
in Eq. (6.22), with (< 1|x|1 > + < 4|x|4 >) − (< 2|x|2 > + < 3|x|3 >) = 0 and
< 1|x|3 >=< 2|x|4 >=< 3|x|1 >†=< 4|x|1 >† and with (< 1|xxx|4 >, < 2|xxx|3 >,

< 3|xxx|2 >, < 4|xxx|1 >) related so that all are equal if < Ã1̃± > and < ÃÑL± >
are real.

Let us repeat that the generators of the two groups which operate among
families commute: {τ̃1̃i, ÑjL}− = 0 , and that these generators commute also with
generators which distinguish among family members: {τ̃1̃i, τα}− = 0 , {τα, ÑjL}− =

0 , where τα represents (Q,Q ′, Y ′) (or τ4, τ23, τ13).
To study the symmetry S̃U(2)× S̃U(2)×U(1) of the mass matrix, Eq. (6.22), in

all orders of loop corrections, of repetition of nonzero vacuum expectation values
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and of both together — loop corrections and nonzero vacuum expectation values
— we just have to calculate at each order of corrections the difference between
each pair of the matrix elements which are equal on the three level, as well as the
Hermitian conjugated difference of such a pair.

Since the dependence of all the scalar fields on ordinary coordinates are in all
cases the same, we only have to evaluate the application of the operators to the
internal space of basic state, that is on the space of family and family members
degrees of freedom. Correspondingly we pay attention only on this internal part
— on the interaction of scalar fields with the space index (7, 8) with any family
member of any of four families separately with respect to their internal space. The
dependence of the mass matrix elements on the family member quantum numbers
appears through the nonzero vacuum expectation value aα, Eq. (6.22), as well as
through the dynamical part of Ôα, Eq. (6.20).

We demonstrate in this subsection how does the repetition of the nonzero
vacuum expectation values of the scalar fields and loop corrections in all orders
influence matrix elements, presented on the tree level in Eq. (6.22).

In the case that aα = 0 (that is for < AQ >= 0, < AQ
′
>= 0 and < AY

′
>= 0)

the symmetry in all corrections, that is in all loop corrections and all the repetition
of nonzero vacuum expectation values of the scalar fields, and of both — the loop
corrections and the repetitions of nonzero vacuum expectation values nonzero of
all the scalar fields except aα — keep the symmetry of the tree level, presented in
Eq. (6.22).

We prove in this subsection that in the case that < AQ >= 0, < AQ
′
>= 0 and

< AY
′
>= 0, that is for aα = 0, the symmetry of mass matrices remains unchanged

in all orders of corrections: the loop ones of dynamical fields — AQ, AQ
′
, AY

′
,

~̃AÑL , ~̃A1̃ — in the repetition of nonzero vacuum expectation values of the scalar
fields carrying the family quantum numbers — < ~̃AÑL > and < ~̃A1̃ >— and of all
together. The symmetry of mass matrices remains in all orders of corrections the
one of the tree level also if aα 6= 0while ã1 = 0 and ã2 = 0. The symmetry changes
if the nonzero vacuum expectation values of all the scalar fields are nonzero.

In the case, however, that aα = 0, the matrix elements, which are in the lowest
order proportional to aα in Eq. (6.22), remain zero in all orders of corrections, while
the nonzero matrix elements become dependent on family members quantum
numbers due to the participations in loop corrections in all orders of the dynamical
fields AQ, AQ

′
and AY

′
.

We study in what follows first the symmetry of mass matrices in all orders of
corrections in the case that aα = 0, and then the symmetry of the mass matrices,
again in all orders of corrections, when aα 6= 0. We also comment that the symme-
try of the tree level remain the same in all orders of corrections, if aα 6= 0, while
ã1 = 0 = ã2.

Mass matrices beyond the tree level, if aα = 0 We study corrections to which the
scalar fields which distinguish among families, contribute — with their nonzero
vacuum expectation values < ~̃AÑL > and < ~̃A1̃ > and their dynamical parts ~̃AÑL

and ~̃A1̃ — while we assume aα = 0 (aα denotes the vacuum expectation values to
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which the tree singlet fields, distinguishing among family members, contribute,
that is (< AQ >, < AQ

′
>, < AY

′
>), taking into account the loop corrections of

the corresponding dynamical parts (AQ, AQ
′
, AY

′
) in all orders.

We show that in such a case — that is in the case that aα = 0while all the other
scalar fields determining mass matrices have nonzero vacuum expectation values

(ã1 6= 0, ã2 6= 0, < ÃÑL± > 6= 0, < Ã1̃± > 6= 0) — the matrix elements, evaluated in
all orders of corrections, keep the symmetry of the tree level.

We also show, that in this case the off diagonal matrix elements, represented
in Eq. (6.22) as (aα < Ã1̃� >< ÃÑL� >, aα < Ã1̃� >< ÃÑL� >, aα < Ã1̃� ><
ÃÑL� >, aα < Ã1̃� >< ÃÑL� >), remain zero in all orders of corrections.

Let us look how the corrections in all orders manifest for each matrix element
separately.

i. We start with diagonal terms: < ψi|.....|ψi >, i = (1, 2, 3, 4).
On the tree level the symmetry is:
{< ψ1| < Ôαdia > |ψ1 > + < ψ4| < Ôαdia > |ψ4 >} − {< ψ2| < Ôαdia > |ψ2 >

+{< ψ3| < Ôαdia > |ψ3 >} = 0.
i.a. It is easy to see that the tree level symmetry, {< ψ1| < Ôαdia > |ψ1 >

+ < ψ4| < Ôαdia > |ψ4 >} − {< ψ2| < Ôαdia > |ψ2 > + < ψ3| < Ôαdia > |ψ3 >} = 0,
remains in all orders of corrections, if only the nonzero vacuum expectation values

of < Ã1̃3 >= ã1 and < ÃÑL3 >= ã2 contribute in operators γ0
78

(±) τ̃1̃3 < Ã1̃3 >

and γ0
78

(±) Ñ3L < ÃÑL3 >. At, let say, (2k+ 1)st order of corrections we namely
have {(−(ã1+ã2))(2k+1)+(ã1+ã2)(2k+1)}−{(−(ã1−ã2))(2k+1)+(ã1−ã2)(2k+1)} =
0.

i.b. The contributions of the dynamical terms, either (AQ, AQ
′
, AY

′
) or

(Ã1̃3, ÃÑL3) do not break the three level symmetry. Each of them namely always
appears in an even power, Fig. (6.1), changing the order of corrections by a factor of
two or 2n (|Aα|2(n−k−l), |Ã1̃3|2k, |ÃÑL3|2l), where (n− k− l, k, l) are nonnegative
integers, while τAα represents (Qα, Q ′α, Y ′α). The contribution to |Aα|2m,m =

(n− k− l), origins in the product of |AQ|2(m−p−r) · |AQ ′ |2p · |AY ′ |2r. Again (m−

p− r, p, r) are nonnegative integers.
i.c. There are also other contributions, either those with only nonzero vac-

uum expectation values or with dynamical fields in addition to nonzero vacuum

expectation values of scalars, in which ^̃O1̃± and ^̃OÑL± together with all kinds of

diagonal terms contribute. Let us repeat again what do the operators ^̃O
1̃± and

^̃O
ÑL±, Eq. (6.20), do when they apply on ψi. The operators ^̃O1̃� transforms ψ1

into ψ3 and ψ2 into ψ4. Correspondingly the states ψ1 and ψ4 take under the
application of ^̃O1̃� the role of ψ2 and ψ3, while ψ2 and ψ3 take the role of ψ1 and
ψ4, all carrying the correspondingly changed eigenvalues of τ̃1̃3. The operator
^̃OÑL� transforms ψ1 into ψ2 and ψ3 into ψ4. Correspondingly the states ψ1 and
ψ2 take under the application of ^̃OÑL� the role of ψ3 and ψ4, while ψ3 and ψ4

take the role of ψ1 and ψ2, carrying the correspondingly changed eigenvalues of
ÑL

3
. Either the dynamical fields or the nonzero vacuum expectation values of

these scalar fields, ^̃O1̃± and ^̃O
ÑL±, must in diagonal terms appear in the second
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power or in n× the second power. We easily see that also in such cases the tree
level symmetry remains in all orders.

i.c.1. To better understand the contributions in all orders to the diagonal
terms, discussing here, let us calculate the contribution of the third order correc-
tions either from the loop or from the nonzero vacuum expectation values to the
diagonal matrix elements < ψi|...|ψi > under the assumption that aα = 0. Let

us evaluate the contributions of the operators < ^̃O1̃3 >, ^̃OÑL3, ^̃O1̃± and ^̃OÑL±

in the third order. We see that τ̃1̃� transforms ψ3 into ψ1 and ψ4 into ψ2, while
τ̃1̃� transforms ψ2 into ψ4 and ψ1 into ψ3. We see that Ñ�

L transforms ψ2 into ψ1

and ψ4 into ψ3, while Ñ�
L transforms ψ1 into ψ2 and ψ3 into ψ4. It then follows

that {< ψ1|xxx|ψ1 > + < ψ4|xxx|ψ4 >} − {< ψ2|xxx|ψ2 > + < ψ3|xxx|ψ3 >} = 0,

where xxx represent all possible acceptable combination of < ^̃O1̃± >, < ^̃OÑL± >
and the diagonal terms < ^̃O1̃3 > and < ^̃OÑL3 >. One namely obtains that the
contribution of {< ψ1|xxx|ψ1 > + < ψ4|xxx|ψ4 >} = {| < Ã1̃� > |2[−2(ã1 + ã2) +
(ã1 − ã2)] + | < ÃÑL� > |2[−2(ã1 + ã2) − (ã1 − ã2)] + (−(ã1 + ã2)3) + | < Ã1̃� >
|2[+2(ã1+ ã2)−(ã1− ã2)]+ | < ÃÑL− > |2[+2(ã1+ ã2)+(ã1− ã2)]+(ã1+ ã2)3} = 0,
and for {< ψ2|xxx|ψ2 > + < ψ3|xxx|ψ3 >} one obtains = {| < Ã1̃� > |2[−2(ã1 −
ã2) + (ã1 + ã2)] + | < ÃÑL� > |2[−2(ã1 − ã2) − (ã1 + ã2)] + (−(ã1 − ã2)3) + | <

Ã1̃� > |2[+2(ã1 − ã2) − (ã1 + ã2)] + | < ÃÑL− > |2[+2(ã1 − ã2) + (ã1 + ã2)] +
(ã1 − ã2)3} = 0. Also the dynamical fields keep the tree level symmetry of mass
matrices. To prove one only must replace in the above calculation | < Ã1̃� > |2 by
|Ã1̃�|2 and | < ÃÑL� > |2 by |ÃÑL�|2.

To the diagonal terms the three singlets contribute in absolute squared values
(|AQ|2, |AQ

′
|2, |AY

′
|2, each on a power, which depend on the order of corrections.

This makes all the diagonal matrix elements, < ψ1|.....|ψ1 >, < ψ2|.....|ψ2 >,
< ψ3|.....|ψ3 > and < ψ4|.....|ψ4 >, dependent on the family member quantum
numbers.

Such behaviour of matrix elements remains unchanged in all orders of cor-
rections, either due to loops of dynamical fields or due to repetitions of nonzero

vacuum expectation values. The reason is in the fact that the operators < ^̃O1̃± >

and < ^̃OÑL± > exchange the role of the states in the way that the odd power of
diagonal contributions to the diagonal matrix elements always keep the symmetry
{< ψ1|Û|ψ1 > + < ψ4|Û|ψ4 >}− {< ψ2|Û|ψ2 > + < ψ3|Û|ψ3 >} = 0.

These proves the statement that corrections in all orders keep the symmetry of the
tree level diagonal terms in the case that aα = 0.

ii. Let us look at matrix element < ψ1|.....|ψ3 > and < ψ2|.....|ψ4 > in
Eq. (6.22), where we have on the tree level < 1|x|3 >=< 2|x|4 > and < 3|x|1 >=<
4|x|2 >=< 1|x|3 >†. We again simplify the notation < ψi|.....|ψj > into < i|...|j >.
The two matrix elements — < 1|x|3 >,< 2|x|4 > — are on the tree level denoted
by < Ã1̃� >, while < 3|x|1 > and < 4|x|2 > are denoted by < Ã1̃� >.

We have to prove that corrections, either of the loops kind or of the repetitions
of the nonzero vacuum expectation values or of both kinds in any order keeps the
symmetry of the tree level.
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ii.a. Let us start with the corrections in which besides < Ã1̃� > in the first
power only < Ã1̃3 >= ã1 and < ÃÑL3 >= ã2 contribute, the last two together
appear in an even power so that all three together contribute in an odd power.

The contribution of (< 1|x|1 >)2k+1 = (−(ã1+ ã2))2k+1 in the (2k+1)th order
is up to a sign equal to (< 4|x|4 >)2k+1 = (ã1 + ã2)2k+1, where k is a nonnegative
integer, while the contribution of (< 2|x|2 >)2k+1 = (−(ã1 − ã2))2k+1 is up to a
sign equal to (< 3|x|3 >)2k+1 = (ã1 − ã2)2k+1. In each of the matrix elements,
either < 1|.....|3 > or < 2|.....|4 >, both factors together, (−(ã1 + ã2))m (ã1 − ã2)n

in the case < 1|.....|3 > and (−(ã1 − ã2))m (ã1 + ã2)n in the case < 2|.....|4 >, with
(m+ n) an even nonnegative integer (since together with < Ã1̃� >must be of an
odd integer corrections to take care of the left/right nature of matrix elements)
one must make the sum over all the terms contributing to corrections of the order
(m + n + 1). It is not difficult to see that the contribution to < 1|.....|3 > is in any
order of corrections equal to the contributions to the same order of corrections to
< 2|.....|4 >.

ii.a.1. To illustrate the same contribution in each order of corrections to
< 1|.....|3 > and to < 2|.....|4 > let us calculate, let say, the third order corrections.
The contribution of the third order to < 1|xxx|3 > is − 1

3! < Ã1̃� > {(ã1 + ã2)2 +
(ã1−ã2)2−(ã1−ã2)(ã1+ã2)} and the contribution of the third order to< 2|xxx|4 >
is − 1

3! < Ã1̃� > {(ã1−ã2)2+(ã1+ã2)2−(ã1+ã2)(ã1−ã2)}, that is the contributions
in the third order of < 1|xxx|3 > and < 2|xxx|4 > are the same.

ii.b. One can repeat the calculations with < Ã1̃� > and the dynamical fields
Ã1̃� and Ã1̃�, with or without the diagonal nonzero vacuum expectation values. In
all cases all the contributions keep the symmetry on the tree level due to the above
discussed properties of the diagonal terms. All the dynamical terms must namely
appear in absolute values squared in order to contribute to the mass matrices, as
shown in Fig. 6.1. To the diagonal terms the three singlets contribute in absolute
squared values (|AQ|2, |AQ

′
|2, |AY

′
|2), each on some power, depending on the

order of corrections. This makes the matrix element < 1|.....|3 > and < 2|.....|4 >,
< 3|.....|1 > and < 4|.....|2 >, dependent on the family members quantum numbers.

In all cases all the contributions keep the symmetry on the tree level.
ii.c. The Hermitian conjugate values < 1|.....|3 >†=< 2|.....|4 >† have the

transformed value of < Ã1̃� >, that means that the value is < Ã1̃� >, provided
that the diagonal matrix elements of the mass matrix are real, keeping the symme-
try of the matrix elements < 1|.....|3 >†=< 2|.....|4 >† in all orders of corrections.

These proves the statement that corrections in all orders keep the symmetry of the
tree level of the off-diagonal terms < 1|.....|3 > and < 2|.....|4 > and of their Hermitian
conjugated matrix elements in the case that aα = 0.

iii. Let us look at matrix element < 1|.....|2 > and < 3|.....|4 > in Eq. (6.22),
where we have on the tree level < 1|x|2 >=< 3|x|4 >. These two matrix elements
are on the tree level denoted by < ÃÑL� >. We have to prove that corrections,
either the loop corrections or the repetitions of the nonzero vacuum expectation
values or both kinds of corrections, in any order, keep the S̃U(2) ×S̃U(2)×U(1)
symmetry of the tree level.

The proof for the symmetry of these matrix elements is carried out in equiva-
lent way to the proof under ii. .
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iii.a. Let us start with the corrections in which besides < ÃÑL� > in the first
power also only < Ã1̃3 >= ã1 and < ÃÑL3 >= ã2 contribute. The sum of powers
of the last two a must be even, so that a correction would be of an odd power due
to the left/right transitions.

Again the contributions of both diagonal terms, < 1|x|1 > and < 4|x|4 >,
in any power — (< 1|x|1 >)2k+1 = (−(ã1 + ã2))2k+1 and (< 4|x|4 >)2k+1 =

(ã1 + ã2)2k+1, where k is a nonnegative integer — differ only up to a sign when
they appear in an odd power and are equal when they appear in an even power.
These is true also for the contributions of < 2|x|2 > and < 3|x|3 > since (< 2|x|2 >

)2k+1 = (−(ã1 − ã2))2k+1 is up to a sign equal to (< 3|x|3 >)2k+1 = (ã1 − ã2)2k+1.
If they appear with an even power, they are equal. In each of the (m + n + 1)th

order corrections to the matrix elements, either < 1|.....|2 > or < 3|.....|4 >, where
(−(ã1 + ã2))m (−(ã1 − ã2))n contribute to < 1|.....|2 > and (ã1 − ã2)m (ã1 + ã2)n

contribute to < 3|.....|4 >, the two contributions are again equal, since bothm and
n are even nonnegative integers.

iii.a.1. Let us, as an example, calculate the fifth order corrections to the tree
level contributions of < 1|x|2 > =< ÃÑL� >. The contribution of the fifth order
< 1|xxxxx|2 > to< 1|x|2 > is 1

5! < ÃÑL� > {(−(ã1−ã2))4+(−(ã1+ã2))4+3(−(ã1+
ã2))(−(ã1− ã2))3+6(−(ã1+ ã2))2(−(ã1− ã2))2+3(−(ã1+ ã2))3(−(ã1− ã2))}, and
the contribution of the fifth order< 3|xxxxx|4 > to< 3|x|4 > is 1

5! < ÃÑL� > {(ã1+
ã2)4+(ã1− ã2)4+3(ã1− ã2)(ã1+ ã2)3+6(ã1− ã2)2(ã1+ ã2)2+3(ã1− ã2)3(ã1+ ã2)},
which is equal to the contribution of the fifth order in the case of < 1|xxxxx|2 >.

iii.b. One can repeat the calculations with dynamical fields (ÃÑL�, ÃÑL�) in
all orders and with < Ã1̃� > and with the diagonal nonzero vacuum expectation
values and with the diagonal dynamical terms, paying attention that the dynamical
fields contribute to masses of any of the family members only if they appear in
pairs.

To the diagonal terms the three singlets (AQ, AQ
′
, AY

′
) contribute in the

absolute squared values (|AQ|2, |AQ
′
|2, |AY

′
|2), each on a power, which depends

on the order of corrections.
In all cases all the contributions keep the symmetry on the tree level.
iii.c. The proof is valid also for< 2|.....|1 >= (< 1|.....|2 >)† and< 4|.....|3 >=

(< 3|.....|4 >)† in any order of corrections. Namely, if diagonal mass matrix el-
ements are real then in the matrix elements < 2|.....|1 > only < ÃÑL� > of the
matrix element < 1|.....|2 >must be replaced by < ÃÑL� >.

These proves the statement that corrections in all orders keep the symmetry of the
tree level off-diagonal terms < 1|.....|2 > and < 3|.....|4 > in the case that aα = 0.

iv. It remains to check the matrix elements < 1|.....|4 >, < 2|.....|3 >, <
3|.....|2 > and < 4|.....|1 > in all orders of corrections. The matrix elements on the
third power, (< 1|xxx|4 >, < 2|xxx|3 >, < 3|xxx|2 >, < 4|xxx|1 >), appearing in
Eqs. (6.21, 6.22), are for aα = 0 all equal to zero. It is not difficult to prove that
these four matrix elements remain zero in all order of loop corrections. The reason
is the same as in the above three cases, i., ii., iii..

The proof that the symmetry ˜SU(2) × ˜SU(2) × U(1) of the tree level remains un-
changed in all orders of corrections, provided that aα = 0, is completed.
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There are in all these cases the dynamical singlets contributing in the absolute
squared values (|AQ|2, |AQ

′
|2, |AY

′
|2 — each on a power, which depend on the

order of corrections — which make that all the matrix elements of a mass matrix,
except the (< 1|.....|4 >, < 2|.....|3 >, < 3|.....|2 >, < 4|.....|1 >) which remain zero
in all orders of corrections, depend on a particular family member.

Mass matrices beyond the tree level if aα 6= 0 We demonstrated that for aα = 0

the symmetry of the tree level remains in all orders of corrections, the loops
corrections and the repetitions of nonzero vacuum expectation values of all the
scalar fields contributing to mass terms, the same as on the tree level, that is
S̃U(2)× S̃U(2)×U(1).

Let us denote all corrections to the diagonal terms in all orders, in which the
nonzero vacuum expectation values in all orders as well as their dynamical fields
in all orders contribute when aα = 0 as:

−(ã1 + ã2) :=< ψ
α1
L |....|ψα1R >, −(ã1 − ã2) :=< ψ

α2
L |....|ψα2R >,

(ã1 − ã2) :=< ψ
α3
L |....|ψα3R >, (ã1 + ã2) :=< ψ

α4
L |....|ψα4R >.

We study for aα 6= 0 how does the symmetry of the diagonal and the off
diagonal matrix elements of the family members mass matrices change with
respect to the symmetry on the tree level, presented in Eq. (6.22), in particular for
small values of |aα| in comparison with the contributions of all the rest of nonzero
vacuum expectation values or of dynamical fields.

We discuss diagonal and off diagonal matrix elements separately. The sym-
metry of all depends on aα.

i. Let us start with diagonal terms: < ψi|.....|ψi >.
On the tree level the symmetry is for aα 6= 0: {< ψ1| < Ôαdia > |ψ1 > + <

ψ4| < Ôαdia > |ψ4 > }− { < ψ2| < Ôαdia > |ψ2 > +{< ψ3| < Ôαdia > |ψ3 >} = 0.
i.a. Let us evaluate the matrix elements < ψαiL |....|ψαiR >. Let us denote for a

while, just to simplify the derivations, n1 = aα − (ã1 + ã2), n2 = aα − (ã1 − ã2)
n3 = aα + (ã1 − ã2) n4 = aα + (ã1 + ã2). One finds

< ψα1L |....|ψα1R >= [aα − (ã1 + ã2)]

−
1

3!
[(aα)3 − 3(aα)2(ã1 + ã2) + 3(a

α)(ã1 + ã2)
2]

+
1

5!
[(aα)5 − 5(aα)4(ã1 + ã2) + 10(a

α)3(ã1 + ã2)
2 − 10(aα)2(ã1 + ã2)

3

+5(aα)(ã1 + ã2)
4] − · · · . (6.24)

Assuming that |aα| << (|(ã1|, |(ã2|) it follows

< ψα1L |....|ψα1R >= −(ã1 + ã2) + aα{1−
3

3!
(ã1 + ã2)

2 +
5

5!
(ã1 + ã2)

4

−
7

7!
(ã1 + ã2)

6 + · · · }. (6.25)

Correspondingly we obtain for < ψα4L |....|ψα4R > in the limit that |aα| << (ã1|, |ã2|)

< ψα4L |....|ψα4R >= +(ã1 + ã2) + aα{1−
3

3!
(ã1 + ã2)

2 +
5

5!
(ã1 + ã2)

4

−
7

7!
(ã1 + ã2)

6 + · · · } . (6.26)
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For < ψα2L |....|ψα2R > one obtains in the limit that |aα| << (|(ã1|, |ã2|)

< ψα2L |....|ψα2R >= −(ã1 − ã2) + aα{1−
3

3!
(ã1 − ã2)

2 +
5

5!
(ã1 − ã2)

4

−
7

7!
(ã1 − ã2)

6 + · · · (6.27)

And for < ψα2L |....|ψα2R > one obtains in the limit that |aα| << (|(ã1|, |(ã2|) the
expression

< ψα3L |....|ψα3R >= −(ã1 − ã2) + aα{1−
3

3!
(ã1 − ã2)

2 +
5

5!
(ã1 − ã2)

4

−
7

7!
(ã1 − ã2)

6 + · · · } . (6.28)

Finally we obtain

(< ψα1L | . . . |ψα1R > + < ψα4L | . . . |ψα4R >)−

(< ψα2L | . . . |ψα2R > + < ψα3L | . . . |ψα3R >) =

4 aαã1 ã2 {1−
1

12
[(ã1)

2 + (ã2)
2]}+ · · · . (6.29)

The term with (aα)2 drops away. For small |aα| the term (aα)3 might be negligible.
It is obvious that for aα 6= 0 the diagonal matrix elements do not keep the tree

level symmetry of mass matrices (which is (< ψα1L | . . . |ψα1R > + < ψα4L | . . . |ψα4R >

) − (< ψα2L | . . . |ψα2R > + < ψα3L | . . . |ψα3R >) = 0). But one sees as well that the
contributions of higher terms to asymmetry are getting smaller and smaller and
for |aα| << (|ã1|, |ã2|) and for (|ã1|, |ã2|) < 1, the first term is dominant and the non
symmetry can be evaluated.

ii. Let us look at the matrix element < 1|.....|3 > and < 2|.....|4 > in all
orders of corrections in the case that aα = 0 (on the tree level, Eq. (6.22), < 1|x|3 >

=< 2|x|4 >=< 3|x|1 >†=< 4|x|2 >†) and let in this case < Ã1̃� > represent
the matrix elements i< 1|.....|3 > and < 2|.....|4 > in both cases in all orders of
corrections. We namely showed that in this case the matrix element < 1|.....|3 > is

equal to < 2|.....|4 >= < Ã1̃� >.
We now allow aα 6= 0.
Taking into account that in the case that aα is zero < Ã1̃� > includes all the

corrections in all orders and that also ã2 includes the corrections in all orders, we
find

(< ψα1L | . . . |ψα3R > − < ψα2L | . . . |ψα4R >) =

< Ã1̃� > (1+
8

3
aαã2{1−

2

5
(ã2)

2 + · · · } . (6.30)

It is obvious that for aα 6= 0 also the non diagonal matrix elements do not keep the
tree level symmetry of mass matrices (< ψα1L | . . . |ψα3R > − < ψα2L | . . . |ψα4R >) = 0,
which is not zero any longer). But one sees as well that the contributions of
higher terms to asymmetry are getting smaller and smaller and for |aα| << |ã2|,
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for |ã2| < 1, the first term in corrections is dominant. One can correspondingly
evaluate the amount of non symmetry.

iii. Let us look also at the matrix element < 1|.....|2 > and < 3|.....|4 >, first
in all orders of corrections in the case that aα = 0 (on the tree level, Eq. (6.22),

< 1|x|2 > =< 3|x|4 >=< 2|x|1 >†=< 4|x|3 >†) and let in this case < ÃÑL� > repre-
sent the matrix elements < 1|.....|2 > and < 3|.....|4 > in all orders of corrections.
We namely showed that in the case that aα = 0 the matrix element < 1|.....|2 > is

equal to < 3|.....|4 >= < Ã1̃� >.
We now allow aα 6= 0.
Taking into account that for aα = 0 the matrix element < ÃÑL� > includes

corrections in all orders and that also ã2 includes in this case corrections in all
orders, one finds

(< ψα1L | . . . |ψα2R > − < ψα3L | . . . |ψα4R >) =

< ÃÑL� > (1+
8

3
aαã1{1−

2

5
(ã1)

2 + · · · ) . (6.31)

It is obvious that for aα 6= 0 also these non diagonal matrix elements do not keep
the tree level symmetry of mass matrices (< ψα1L | . . . |ψα3R > − < ψα2L | . . . |ψα4R >=

0 is no longer the case). But one sees as well that the contributions of higher terms
to asymmetry are getting smaller and smaller and for |aα| << |ã1| and for |ã1| < 1,
the first term in corrections is dominant and the non symmetry, the difference
< ψα1L | . . . |ψα3R > − < ψα2L | . . . |ψα4R > can be evaluated.

iv. It remains to check the matrix elements < 1|.....|4 >, < 2|.....|3 >, <
3|.....|2 > and < 4|.....|1 >. The matrix elements which are nonzero only in the
third order of corrections, (< 1|x|4 >= 0 =< 2|x|3 >= 0 =< 3|x|2 >=< 4|x|1 >,
the first nonzero terms are < 1|xxx|4 >, < 2|xxx|3 >, < 3|xxx|2 >, < 4|xxx|1 >),
appearing in Eqs. (6.21, 6.22), which are for aα = 0 all equal to zero in all orders of
corrections.

We again take into account that for aα = 0 the matrix element < Ã1̃± > and

< ÃÑL± > include the corrections in all orders and that also ã1 and ã2 include the
corrections in all orders. We find when aα 6= 0

< ψα1L | . . . |ψα4R >

< Ã1̃� >< ÃÑL� >
=

< ψα2L | . . . |ψα3R >

< Ã1̃� >< ÃÑL� >
=

< ψα4L | . . . |ψα1R >

< Ã1̃� >< ÃÑL� >
=

< ψα3L | . . . |ψα2R >

< Ã1̃� >< ÃÑL� >
=

−aα{1−
3

10
[(ã1)

2 + (ã2)
2] + · · · } . (6.32)

One sees that these off diagonal matrix elements keep the relations from Eq. (6.22)
at least in the lowest corrections.

We demonstrated that the matrix elements of the mass matrix of Eq. (6.22) do
not keep the symmetry of the tree level in all orders of corrections if aα 6= 0, but
the changes can in the case that (|aα|, |ã1|, |ã2|) are small in comparison with unity
be estimated.
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Mass matrices beyond the tree level if aα 6= 0, while ã1 = 0 = ã2 One can
easily see that the mass matrix of Eq. (6.22) keeps the symmetry in all orders of
corrections also if aα 6= 0 and ã1 = 0 = ã2.

One obtains in this case for the diagonal terms < ψαiL |Û|ψαiR >, for each of
four families (i = (1, 2, 3, 4)) the expression

< ψαiL |Û|ψαiR >= aα −

1

3!
{(aα)3 + aα(| < Ã1̃� > |2 + | < ÃÑL� > |2 + |Aα|2 + |Ã1̃3|2 + |Ã1̃�|2 +

|ÃÑL3|2 + |ÃÑL�|2)}+
1

5!
{(aα)5 + (aα)3(| < Ã1̃� > |2 + | < ÃÑL� > |2 + |Aα|2 + |Ã1̃3|2 + |Ã1̃�|2 +

|ÃÑL3|2 + |ÃÑL�|2) +

aα(| < Ã1̃� > |4 + | < ÃÑL� > |4 + |Aα|4 +

|Ã1̃3|4 + |Ã1̃�|4 + |ÃÑL3|4 + |ÃÑL�|4 + · · ·+
| < Ã1̃� > |2| < ÃÑL� > |2 + · · · ) + · · · }−
1

7!
{(aα)7 + (aα)5(| < Ã1̃� > |2 + · · · ) + · · · }+ · · · . (6.33)

Let us denote the above expression for the diagonal terms < ψαiL |Û|ψαiR >, which
takes into account corrections in all orders while assuming ã1 = 0 = ã2, with aα.
(The definition of the scalar fields is presented in Eq. (6.20)).

Let us add that the choice that the third components of the scalar fields ~̃A1̃ and
~̃AÑL have no vacuum expectation values —< Ã1̃3 >= ã1 = 0,< Ã

ÑL3 >= ã2 = 0

— does not seem a meaningful choice. Namely, if all the components of the two
triplets, ~̃A1̃ and ~̃AÑL , influencing the family quantum numbers of the four families,
would have no vacuum expectation values, all the families would have the same
mass, determined by aα and the contributions in all orders of corrections of the
dynamical scalar fields, ~̃A1̃, ~̃AÑL and aα =< Aα > and the dynamical part of Aα.

Let be added, however, that the choice < Ã1̃± > 6= 0, < ÃÑL± > 6= 0 and aα 6= 0,
while ã1 = 0 = ã2, makes all the matrix elements of the mass matrix, Eq. (6.22),
different from zero.

6.3 Conclusions

In the spin-charge-family theory to the 4×4mass matrix of any family member (that
is of quarks and leptons — the observed three families namely form in the spin-
charge-family theory the 3× 3 submatrices of these predicted 4× 4mass matrices)
the two scalar triplets (~̃A1̃s , ~̃AÑLs ) and the three scalar singlets (AQs , AQ

′

s , AY
′

s ),
s = (7, 8), contribute, all with the weak and the hyper charge of the standard model
higgs (±1

2
,∓1

2
, respectively). The first two triplets influence the family quantum

numbers, while the last three singlets influence the family members quantum
numbers.
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The only dependence of the mass matrix on the family member (α = (u, d, ν, e))

quantum numbers is due to the operators γ0
78

(±) QAQ± , γ0
78

(±) Q ′AQ
′

± and

γ0
78

(±) Y ′AY ′± . The operator γ0
78

(±), appearing at the contribution of the two
triplet scalar fields as well as at the three singlet scalar fields, transforms the right
handed members into the left handed ones, or opposite, while the family operators
transform a family member of one family into the same family member of another
family.

We demonstrate in this paper that the matrix elements of mass matrices
4 × 4, predicted by the spin-charge-family theory for each family member α =

(u, d, ν, e), keep the symmetry S̃U(2)
S̃O(4)1+3

× S̃U(2)
S̃O(4)"weak"

× U(1) in all
orders of corrections under the assumption that either the vacuum expectation
values of three singlets< Aα >= aα are equal to zero, Subsect. 6.2.2, aα = 0, while
all the other scalar fields — ~̃A1̃, ~̃AÑL — can have for all the components nonzero
vacuum expectation values, or that aα does not need to be zero, aα 6= 0, but then
the two third components of the two scalar triplets, < Ã1̃3 >= ã1, < ÃÑL3 >= ã2,
Subsect. 6.2.2, must be zero, ã1 = 0, ã2 = 0.

For the case that the two triplets and the three singlets have for all components
nonzero vacuum expectation values we represent the symmetries of the mass
matrices in dependence of the order of corrections, Subsect. 6.2.2.

In the first case, when aα = 0, to any order of corrections all the components of
the two triplet scalar fields contribute, either with the nonzero vacuum expectation
values or as dynamical fields or as both in all orders of corrections, while the three
singlet scalar fields contribute only as dynamical fields. In this case the corrections
keep the symmetry of the three level in all orders of corrections.

The contributions of the dynamical fields of the three singlets in all orders
of loop corrections — together with the contributions of the two triplets which
interact with spinors through the family quantum numbers either with the nonzero
vacuum expectation values or as dynamical fields — make all the matrix elements
dependent on the particular family member quantum numbers. Correspondingly
all the mass matrices bring different masses to any of the family members and
correspondingly also different mixing matrices to quarks and leptons. However,
the choice aα = 0 keeps the four off diagonal terms, which are proportional to aα

in Eq.(6.22), equal to zero in all orders of correction.
In the second case, when ã1 = 0, ã2 = 0, in any order of corrections the three

singlet scalar fields contribute either with nonzero vacuum expectation values or
as dynamical fields, while the two triplets scalar fields contribute with the nonzero
vacuum expectation values and the dynamical fields, except the two of the triplet
components — Ã1̃3 and ÃÑL3 — which contribute only as dynamical fields. The
symmetry of the tree level is kept in all order of corrections, this choice makes,
however, all the diagonal terms to remain equal in all orders of corrections.

When all the singlets and the triplets have for all the components nonzero

vacuum expectation values (aα 6= 0, ã1 6= 0, ã2 6= 0, < ÃÑL± 6= 0 > < Ã
1̃±
> 6=

0) the symmetry of the tree level changes, but we are still able to determine
the symmetry of mass in all orders of corrections, that is of the loop ones and
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the repetition of the nonzero vacuum expectation values, expressing the matrix
elements of mass matrices with a few parameters only, due to the fact that the
symmetry of the mass matrices limit the number of free parameters. In the case
that |aα| is small (in comparison with |ã1| and |ã2|), the higher order corrections
drop away very quickly. When fitting the free parameters of mass matrices to
the observed masses of quarks and leptons and their 3 × 3 submatrices of the
predicted 4× 4 mixing matrices, we are able to predict the masses of the fourth
family members as well as the matrix elements of the fourth components to the
observed free families, provided that the mixing 3×3 submatrices of the predicted
4 × 4 mass matrices of quarks and leptons are measured accurately enough —
since the (accurate) 3 × 3 submatrix of a 4 × 4 matrix determines 4 × 4 matrix
uniquely [21,22].

This means that although we are so far only in principle able to calculate
directly the mass matrix elements of the 4 × 4 mass matrices, predicted by the
spin-charge-family, yet the symmetry of mass matrices, discussed in this paper,
enables us — due to the limited number of free parameters — to predict properties
of the four family of quarks and lepton to the observed three families, that is the
masses of the fourth families and the corresponding mixing matrices [21,22]. We
only have to wait for accurate enough data for the 3× 3 mixing (sub)matrices of quarks
and leptons.

Let us add that the right handed neutrino, which is a regular member of the
four families, Table 6.3, has the nonzero value of the operator Y ′AY

′

s only.

6.4 Appendix: Short presentation of the spin-charge-family theory

This section follows similar sections in Refs. [1,4–7].
The spin-charge-family theory [1–7,9–12,15–17,19–24] assumes:

a. A simple action (Eq. (6.35)) in an even dimensional space (d = 2n, d > 5), d is
chosen to be (13+ 1). This choice makes that the action manifests in d = (3+ 1)

in the low energy regime all the observed degrees of freedom, explaining all the
assumptions of the standard model, as well as other observed phenomena.

There are two kinds of the Clifford algebra objects, γa’s and γ̃a’s in this theory
with the properties.

{γa, γb}+ = 2ηab , {γ̃a, γ̃b}+ = 2ηab , {γa, γ̃b}+ = 0 . (6.34)

Fermions interact with the vielbeins fαa and the two kinds of the spin-connection
fields — ωabα and ω̃abα — the gauge fields of Sab = i

4
(γa γb − γb γa) and

S̃ab = i
4
(γ̃a γ̃b − γ̃b γ̃a), respectively.

The action

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) , (6.35)
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in which p0a = fαa p0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃ab ω̃abα,

and
R =

1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c.,

R̃ =
1

2
{fα[afβb] (ω̃abα,β − ω̃caα ω̃

c
bβ)}+ h.c.

15, introduces two kinds of the Clifford algebra objects, γa and γ̃a, {γa, γb}+ =

2ηab = {γ̃a, γ̃b}+. fαa are vielbeins inverted to eaα, Latin letters (a, b, ..) denote
flat indices, Greek letters (α,β, ..) are Einstein indices, (m,n, ..) and (µ, ν, ..) de-
note the corresponding indices in (0, 1, 2, 3), while (s, t, ..) and (σ, τ, ..) denote the
corresponding indices in d ≥ 5:

eaαf
β
a = δβα , eaαf

α
b = δab , (6.36)

E = det(eaα).
b. The spin-charge-family theory assumes in addition that the manifoldM(13+1)

breaks first into M(7+1) × M(6) (which manifests as SO(7, 1) ×SU(3) ×U(1)),
affecting both internal degrees of freedom — the one represented by γa and the
one represented by γ̃a. Since the left handed (with respect to M(7+1)) spinors
couple differently to scalar (with respect toM(7+1)) fields than the right handed
ones, the break can leave massless and mass protected 2((7+1)/2−1) families [36].
The rest of families get heavy masses 16.
c. There is additional breaking of symmetry: The manifoldM(7+1) breaks further
intoM(3+1)×M(4).
d. There is a scalar condensate (Table 6.5) of two right handed neutrinos with
the family quantum numbers of the upper four families, bringing masses of the
scale ∝ 1016 GeV or higher to all the vector and scalar gauge fields, which interact
with the condensate [5].
e. There are the scalar fields with the space index (7, 8) carrying the weak (τ1i)
and the hyper charges (Y = τ23+τ4, τ1i and τ2i are generators of the subgroups of
SO(4), τ4 and τ3i are the generators of U(1)II and SU(3), respectively, which are
subgroups of SO(6)), which with their nonzero vacuum expectation values change
the properties of the vacuum and break the weak charge and the hyper charge.
Interacting with fermions and with the weak and hyper bosons, they bring masses
to heavy bosons and to twice four groups of families. Carrying no electromagnetic
(Q = τ13 + Y) and colour (τ3i) charges and no SO(3, 1) spin, the scalar fields leave
the electromagnetic, colour and gravity fields in d = (3+ 1) massless.

The assumed action A and the assumptions offer:
o. the explanation for the origin and all the properties of the observed fermions:

15 Whenever two indexes are equal the summation over these two is meant.
16 A toy model [36,37] was studied in d = (5 + 1) with the same action as in Eq. (6.35).

The break from d = (5 + 1) to d = (3 + 1)× an almost S2 was studied. For a particular
choice of vielbeins and for a class of spin connection fields the manifoldM(5+1) breaks
into M(3+1) times an almost S2, while 2((3+1)/2−1) families remain massless and mass
protected. Equivalent assumption, although not yet proved how does it really work, is
made in the d = (13 + 1) case. This study is in progress.
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o.i. of the family members, on Table 6.3 the family members belonging to one
Weyl (fundamental) representation of massless spinors of the group SO(13, 1) are
presented in the ”technique” [10–12,15–17,13,14] and analyzed with respect to the
subgroups SO(3, 1), SU(2)I, SU(2)II, SU(3), U(1)II), Eqs. (6.37, 6.38, 6.2) with the
generators τAi =

∑
s,t c

Ai
st S

st,
o.ii. of the families analyzed with respect to the subgroups (S̃O(3, 1), S̃U(2)I,

S̃U(2)II, Ũ(1)II) with the generators τ̃Ai =
∑
ab c

Ai
ab S̃

st, Eqs. (6.40, 6.41, 6.42)
— they are presented on Table 6.4 — all the families are singlets with respect to
S̃U(3),

oo.i. of the observed vector gauge fields of the charges (SU(2)I, SU(2)II,
SU(3), U(1)II) discussed in Refs. ([1,4,2], and the references therein), all the vector
gauge fields are the superposition ofωstm, AAim =

∑
s,t c

Ai
stωstm, Eq. (6.44),

oo.ii. of the Higgs’s scalar and of the Yukawa couplings, explainable with the
scalar fields with the space index (7, 8), there are two groups of two triplets, which
are scalar gauge fields of the charges τ̃Ai, expressible with the superposition of
ω̃abs, AAis =

∑
a,b c

Ai
abωabs, Eq. (6.45), and three singlets, the gauge fields of

Q,Q ′, Y ′, Eqs. (6.43, 6.45), all with the weak and the hyper charges as assumed by
the standard model for the Higgs’s scalars,

oo.iii. of the scalar fields explaining the origin of the matter-antimatter asym-
metry, Ref. [5],

oo.iv. of the appearance of the dark matter, there are two decoupled groups
of four families, carrying family charges ( ~̃NL, ~̃τ1) and ( ~̃NR, ~̃τ2), Eqs. (6.40, 6.41),
both groups carry also the family members charges (Q,Q ′, Y ′), Eq. (6.43).

The standard model groups of spins and charges are the subgroups of the
SO(13, 1) group with the generator of the infinitesimal transformations expressible
with Sab (= i

2
(γaγb − γbγa), {Sab, Scd}− = −i(ηadSbc + ηbcSad − ηacSbd −

ηbdSac)) for the spin

~N±(= ~N(L,R)) : =
1

2
(S23 ± iS01, S31 ± iS02, S12 ± iS03) , (6.37)

for the weak charge, SU(2)I, and the second SU(2)II, these two groups are the
invariant subgroups of SO(4),

~τ1 : =
1

2
(S58 − S67, S57 + S68, S56 − S78) ,

~τ2 : =
1

2
(S58 + S67, S57 − S68, S56 + S78) , (6.38)

for the colour charge SU(3) and for the ”fermion charge” U(1)II, these two groups
are subgroups of SO(6),

~τ3 :=
1

2
{S9 12 − S10 11 , S9 11 + S10 12, S9 10 − S11 12,

S9 14 − S10 13, S9 13 + S10 14 , S11 14 − S12 13 ,

S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 := −
1

3
(S9 10 + S11 12 + S13 14) , (6.39)
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τ4 is the ”fermion charge”, while the hyper charge Y = τ23 + τ4.
The generators of the family quantum numbers are the superposition of

the generators S̃ab (S̃ab = i
4
{γ̃a, γ̃b}−, {S̃ab, S̃cd}− = −i(ηadS̃bc + ηbcS̃ad −

ηacS̃bd − ηbdS̃ac), {S̃ab, Scd}− = 0). One correspondingly finds the generators of
the subgroups of S̃O(7, 1),

~̃NL,R : =
1

2
(S̃23 ± iS̃01, S̃31 ± iS̃02, S̃12 ± iS̃03) , (6.40)

which determine representations of the two S̃U(2) invariant subgroups of S̃O(3, 1),
while

~̃τ1 : =
1

2
(S̃58 − S̃67, S̃57 + S̃68, S̃56 − S̃78) ,

~̃τ2 : =
1

2
(S̃58 + S̃67, S̃57 − S̃68, S̃56 + S̃78) , (6.41)

determine representations of S̃U(2)I× S̃U(2)II of S̃O(4). Both, S̃O(3, 1) and S̃O(4),
are the subgroups of S̃O(7, 1). One finds for the infinitesimal generator τ̃4 of Ũ(1),
originating in S̃O(6), the expression

τ̃4 := −
1

3
(S̃9 10 + S̃11 12 + S̃13 14) . (6.42)

The operators for the charges Y and Q of the standard model, together with Q ′

and Y ′, and the corresponding operators of the family charges Ỹ, Ỹ ′, Q̃, Q̃ ′, are
defined as follows:

Y = τ4 + τ23 , Y ′ = −τ4 tan2 ϑ2 + τ23 , Q = τ13 + Y , Q ′ = −Y tan2 ϑ1 + τ13 ,

Ỹ = τ̃4 + τ̃23 , Ỹ ′ = −τ̃4 tan2 ϑ2 + τ̃23 , Q̃ = Ỹ + τ̃13 Q̃ ′ = −Ỹ tan2 ϑ1 + τ̃13

(6.43)

Families split into two groups of four families, each manifesting the S̃U(2)×S̃U(2)×
U(1), with the generators of the infinitesimal transformations ( ~̃NL, ~̃τ1, Q,Q ′, Y ′)
and ( ~̃NR, ~̃τ2, Q,Q ′, Y ′), respectively. The generators of U(1) group (Q,Q ′, Y ′),
Eq. 6.43, distinguish among family members and are the same for both groups of
four families, presented on Table 6.4, taken from Ref. [4].

The vector gauge fields of the charges ~τ1, ~τ2, ~τ3 and τ4 follow from the
requirement

∑
Ai τ

AiAAim =
∑
s,t

1
2
Sstωstm and the requirement that τAi =∑

a,b cAiab S
ab, Eq. (6.4), fulfilling the commutation relations {τAi, τBj}− =

iδABfAijkτAk, Eq. (6.5). Correspondingly we find AAim =
∑
s,t cAist ω

st
m,

Eq. (6.6), with (s, t) either in (5, 6, 7, 8) or in (9, . . . , 14).
The explicit expressions for these vector gauge fields in terms of ωstm [[4],

Eq. (22)], [5]] are presented in the case that the electroweak ϑ1 = ϑW is zero and
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so is ϑ2 and in the case that the two angles, (ϑ1, ϑ2), are not zero.
~A1m = (ω58m −ω67m,ω57m +ω68m,ω56m −ω78m) ,

~A2m = (ω58m +ω67m,ω57m −ω68m,ω56m +ω78m) ,

AQm = ω56m − (ω9 10m +ω11 12m +ω13 14m) ,

AYm = (ω56m +ω78m) − (ω9 10m +ω11 12m +ω13 14m) ,

~A3m = (ω9 12m −ω10 11m,ω9 11m +ω10 12m,ω9 10m −ω11 12m,

ω9 14m −ω10 13m,ω9 13m +ω10 14m,ω11 14m −ω12 13m,

ω11 13m +ω12 14m,
1√
3
(ω9 10m +ω11 12m − 2ω13 14m)) ,

A4m = (ω9 10m +ω11 12m +ω13 14m) ,

AQm = sin ϑ1A13m + cos ϑ1AYm ,

AQ
′

m = cos ϑ1A13m − sin ϑ1AYm ,

AY
′

m = cos ϑ2A23m − sin ϑ2A4m ,

(m ∈ (0, 1, 2, 3)) . (6.44)

Allωstm vector gauge fields are real fields. Here the fields contain in general the
coupling constants which are not necessarily the same for all of them. The angle ϑ1
is the angle of the electroweak break, while ϑ2 is the angle of breaking the SU(2)II
and U(1)II at much higher scale [[5,4] and references therein].

One obtains in a similar way the scalar gauge fields, which determine mass
matrices of family members. They carry the space index s = (7, 8). The scalar
fields contain in general the coupling constants. Before the electroweak break the
electroweak angle ϑ1 = ϑW is zero, while ϑ2 is the angle determined by the break
of symmetry at much higher scale.

~̃A1s = (ω̃58s − ω̃67s, ω̃57s + ω̃68s, ω̃56s − ω̃78s) ,

~̃A2s = (ω̃58s + ω̃67s, ω̃57s − ω̃68s, ω̃56s + ω̃78s) ,

~̃ANLs = (ω̃23s + iω̃01s, ω̃31s + iω̃02s, ω̃12s + iω̃03s) ,

~̃ANRs = (ω̃23s − iω̃01s, ω̃31s − iω̃02s, ω̃12s − iω̃03s) ,

AQs = ω56s − (ω9 10s +ω11 12s +ω13 14s) ,

AYs = (ω56s +ω78s) − (ω9 10s +ω11 12s +ω13 14s)

A4s = −(ω9 10s +ω11 12s +ω13 14s) ,

AQs = sin ϑ1A13s + cos ϑ1AYs , AQ
′

s = cos ϑ1A13s − sin ϑ1AYs ,

AY
′

s = cos ϑ2A23s − sin ϑ2A4s ,

(s ∈ (7, 8)) . (6.45)

All ωsts ′ , ω̃sts ′ , (s, t, s ′) = (5, . . . , 14), ω̃i,j,s ′ and i ω̃0,s ′ , (i, j) = (1, 2, 3) scalar
gauge fields are real fields.

The theory predicts, due to commutation relations of generators of the in-
finitesimal transformations of the family groups, S̃U(2)I ×S̃U(2)I and S̃U(2)II
×S̃U(2)II, the first one with the generators ~̃NL and ~̃τ1, and the second one with
the generators ~̃NR and ~̃τ2, Eqs. (6.40,6.41), two groups of four families.
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The theory offers (so far) several predictions:
i. several new scalars, those coupled to the lower group of four families —

two triplets and three singlets, the superposition of (~̃A1s , ~̃ANLs and AQs , AYs , A4s ,
Eq. (6.45)) — some of them to be observed at the LHC ([1,5,4]),

ii. the fourth family to the observed three to be observed at the LHC ([1,5,4]
and the references therein),

iii. new nuclear force among nucleons among quarks of the upper four fami-
lies.

The theory offers also the explanation for several phenomena, like it is the
”miraculous” cancellation of the standard model triangle anomalies [3].

The breaks of the symmetries, manifesting in Eqs. (6.37, 6.40, 6.38, 6.41, 6.2,
6.42), are in the spin-charge-family theory caused by the scalar condensate of the
two right handed neutrinos belonging to one group of four families, Table 6.5, and
by the nonzero vacuum expectation values of the scalar fields carrying the space
index (7, 8) (Refs. [4,1] and the references therein). The space breaks first to SO(7, 1)
×SU(3)×U(1)II and then further to SO(3, 1)× SU(2)I ×U(1)I ×SU(3)×U(1)II,
what explains the connections between the weak and the hyper charges and the
handedness of spinors [3].

state S03 S12 τ13 τ23 τ4 Y Q τ̃13 τ̃23 τ̃4 Ỹ Q̃ Ñ3L Ñ
3
R

(|νVIII
1R >1 |νVIII

2R >2) 0 0 0 1 −1 0 0 0 1 −1 0 0 0 1

(|νVIII1R >1 |e
VIII
2R >2) 0 0 0 0 −1 −1 −1 0 1 −1 0 0 0 1

(|eVIII1R >1 |e
VIII
2R >2) 0 0 0 −1 −1 −2 −2 0 1 −1 0 0 0 1

Table 6.5. This table is taken from [5]. The condensate of the two right handed neutrinos νR,
with the VIIIth family quantum numbers, coupled to spin zero and belonging to a triplet
with respect to the generators τ2i, is presented together with its two partners. The right
handed neutrino has Q = 0 = Y. The triplet carries τ4 = −1, τ̃23 = 1, τ̃4 = −1, Ñ3R = 1,
Ñ3L = 0, Ỹ = 0, Q̃ = 0, τ̃31 = 0. The family quantum numbers are presented in Table 6.4.

The stable of the upper four families is the candidate for the dark matter, the
fourth of the lower four families is predicted to be measured at the LHC.

6.5 Appendix: Short presentation of spinor
technique [1,4,11,13,14]

This appendix is a short review (taken from [4]) of the technique [11,42,13,14],
initiated and developed in Ref. [11] by one of the authors (N.S.M.B.), while propos-
ing the spin-charge-family theory [2,4,5,7,9,1,15,16,10–12,17,19–24]. All the internal
degrees of freedom of spinors, with family quantum numbers included, are de-
scribable with two kinds of the Clifford algebra objects, besides with γa’s, used in
this theory to describe spins and all the charges of fermions, also with γ̃a’s, used
in this theory to describe families of spinors:

{γa, γb}+ = 2ηab , {γ̃a, γ̃b}+ = 2ηab , {γa, γ̃b}+ = 0 . (6.46)
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We assume the “Hermiticity” property for γa’s (and γ̃a’s) γa† = ηaaγa (and
γ̃a† = ηaaγ̃a), in order that γa (and γ̃a) are compatible with (6.34) and formally
unitary, i.e. γa † γa = I (and γ̃a †γ̃a = I). One correspondingly finds that (Sab)† =
ηaaηbbSab (and (S̃ab)† = ηaaηbbS̃ab).

Spinor states are represented as products of nilpotents and projectors, formed
as odd and even objects of γa’s, respectively, chosen to be the eigenstates of a
Cartan subalgebra of the Lorentz groups defined by γa’s

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]:=
1

2
(1+

i

k
γaγb) , (6.47)

where k2 = ηaaηbb. We further have [4]

γa
ab

(k): =
1

2
(γaγa +

ηaa

ik
γaγb) = ηaa

ab

[−k], γa
ab

[k]:=
1

2
(γa +

i

k
γaγaγb) =

ab

(−k),

γ̃a
ab

(k): = −i
1

2
(γa +

ηaa

ik
γb)γa = −iηaa

ab

[k], γ̃a
ab

[k]:= i
1

2
(1+

i

k
γaγb)γa = −i

ab

(k),

(6.48)

where we assume that all the operators apply on the vacuum state |ψ0〉. We define

a vacuum state |ψ0 > so that one finds <
ab

(k)

†
ab

(k) >= 1 , <
ab

[k]

†
ab

[k] >= 1.

We recognize that γa transform
ab

(k) into
ab

[−k], never to
ab

[k], while γ̃a transform
ab

(k) into
ab

[k], never to
ab

[−k]

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k)= −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) .(6.49)

The Clifford algebra objects Sab and S̃ab close the algebra of the Lorentz
group

Sab : = (i/4)(γaγb − γbγa) ,

S̃ab : = (i/4)(γ̃aγ̃b − γ̃bγ̃a) , (6.50)

{Sab, S̃cd}− = 0 , {Sab, Scd}− = i(ηadSbc+ηbcSad−ηacSbd−ηbdSac) , {S̃ab, S̃cd}−
= i(ηadS̃bc + ηbcS̃ad − ηacS̃bd − ηbdS̃ac) .

One can easily check that the nilpotent
ab

(k) and the projector
ab

[k] are ”eigen-
states” of Sab and S̃ab

Sab
ab

(k)=
1

2
k
ab

(k) , Sab
ab

[k]=
1

2
k
ab

[k] ,

S̃ab
ab

(k)=
1

2
k
ab

(k) , S̃ab
ab

[k]= −
1

2
k
ab

[k] , (6.51)

where the vacuum state |ψ0〉 is meant to stay on the right hand sides of projectors

and nilpotents. This means that multiplication of nilpotents
ab

(k) and projectors
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ab

[k] by Sab get the same objects back multiplied by the constant 1
2
k, while S̃ab

multiply
ab

(k) by k
2

and
ab

[k] by (−k
2
) (rather than by k

2
). This also means that when

ab

(k) and
ab

[k] act from the left hand side on a vacuum state |ψ0〉 the obtained states
are the eigenvectors of Sab.

The technique can be used to construct a spinor basis for any dimension d
and any signature in an easy and transparent way. Equipped with nilpotents and
projectors of Eq. (6.47), the technique offers an elegant way to see all the quantum
numbers of states with respect to the two Lorentz groups, as well as transformation
properties of the states under the application of any Clifford algebra object.

Recognizing from Eq.(6.50) that the two Clifford algebra objects (Sab, Scd)
with all indexes different commute (and equivalently for (S̃ab, S̃cd)), we select
the Cartan subalgebra of the algebra of the two groups, which form equivalent
representations with respect to one another

S03, S12, S56, · · · , Sd−1 d, if d = 2n ≥ 4,
S̃03, S̃12, S̃56, · · · , S̃d−1 d, if d = 2n ≥ 4 . (6.52)

The choice of the Cartan subalgebra in d < 4 is straightforward. It is useful to
define one of the Casimirs of the Lorentz group — the handedness Γ ({Γ, Sab}− = 0)
(as well as Γ̃ ) in any d = 2n

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa), if d = 2n,

Γ̃ (d) : = (i)(d−1)/2
∏
a

(
√
ηaaγ̃a), if d = 2n . (6.53)

We understand the product of γa’s in the ascending order with respect to the index
a: γ0γ1 · · ·γd. It follows from the Hermiticity properties of γa for any choice of
the signature ηaa that Γ † = Γ, Γ2 = I.( Equivalent relations are valid for Γ̃ .) We
also find that for d even the handedness anticommutes with the Clifford algebra
objects γa ({γa, Γ }+ = 0) (while for d odd it commutes with γa ({γa, Γ }− = 0)).

Taking into account the above equations it is easy to find a Weyl spinor
irreducible representation for d-dimensional space, with d even or odd 17. For d
even we simply make a starting state as a product of d/2, let us say, only nilpotents
ab

(k), one for each Sab of the Cartan subalgebra elements (Eqs.(6.52, 6.50)), applying
it on an (unimportant) vacuum state. Then the generators Sab, which do not
belong to the Cartan subalgebra, being applied on the starting state from the left

17 For d odd the basic states are products of (d − 1)/2 nilpotents and a factor (1± Γ).
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hand side, generate all the members of one Weyl spinor.

0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >
0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >
0d

[−k0d]
12

(k12)
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >

...
0d

[−k0d]
12

(k12)
35

(k35) · · ·
d−1 d−2

[−kd−1 d−2] |ψ0 >
od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >

... (6.54)

All the states have the same handedness Γ , since {Γ, Sab}− = 0. States, belonging
to one multiplet with respect to the group SO(q, d− q), that is to one irreducible
representation of spinors (one Weyl spinor), can have any phase. We could make
a choice of the simplest one, taking all phases equal to one. (In order to have the
usual transformation properties for spinors under the rotation of spin and under
CN PN ,some of the states must be multiplied by (−1).)

The above representation demonstrates that for d even all the states of one
irreducible Weyl representation of a definite handedness follow from a starting

state, which is, for example, a product of nilpotents
ab

(kab), by transforming all

possible pairs of
ab

(kab)
mn

(kmn) into
ab

[−kab]
mn

[−kmn]. There are Sam, San, Sbm, Sbn,
which do this. The procedure gives 2(d/2−1) states. A Clifford algebra object γa

being applied from the left hand side, transforms a Weyl spinor of one handedness
into a Weyl spinor of the opposite handedness.

We shall speak about left handedness when Γ = −1 and about right handed-
ness when Γ = 1.

While Sab, which do not belong to the Cartan subalgebra (Eq. (6.52)), gener-
ate all the states of one representation, S̃ab, which do not belong to the Cartan
subalgebra (Eq. (6.52)), generate the states of 2d/2−1 equivalent representations.

Making a choice of the Cartan subalgebra set (Eq. (6.52)) of the algebra Sab and
S̃ab: (S03, S12, S56, S78, S9 10, S11 12, S13 14 ), (S̃03, S̃12, S̃56, S̃78, S̃9 10, S̃11 12, S̃13 14 ),
a left handed (Γ (13,1) = −1) eigenstate of all the members of the Cartan subalgebra,
representing a weak chargeless uR-quark with spin up, hyper charge (2/3) and
colour (1/2 , 1/(2

√
3)), for example, can be written as

03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] |ψ0〉 =
1

27
(γ0 − γ3)(γ1 + iγ2)|(γ5 + iγ6)(γ7 + iγ8)||

(γ9 + iγ10)(1− iγ11γ12)(1− iγ13γ14)|ψ0〉 . (6.55)

This state is an eigenstate of all Sab and S̃ab which are members of the Cartan
subalgebra (Eq. (6.52)).
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The operators S̃ab, which do not belong to the Cartan subalgebra (Eq. (6.52)),
generate families from the starting uR quark, transforming the uR quark from
Eq. (6.55) to the uR of another family, keeping all of the properties with respect
to Sab unchanged. In particular, S̃01 applied on a right handed uR-quark from
Eq. (6.55) generates a state which is again a right handed uR-quark, weak charge-
less, with spin up, hyper charge (2/3) and the colour charge (1/2 , 1/(2

√
3))

S̃01
03

(+i)
12

(+) |
56

(+)
78

(+) ||
910

(+)
1112

[−]
1314

[−] = −
i

2

03

[ +i]
12

[ + ] |
56

(+)
78

(+) ||
910

(+)
1112

[−]
1314

[−] .(6.56)

One can find both states in Table 6.4, the first uR as uR8 in the eighth line of this
table, the second one as uR7 in the seventh line of this table.

Below some useful relations follow. From Eq.(6.49) one has

Sac
ab

(k)
cd

(k) = −
i

2
ηaaηcc

ab

[−k]
cd

[−k] , S̃ac
ab

(k)
cd

(k)=
i

2
ηaaηcc

ab

[k]
cd

[k] ,

Sac
ab

[k]
cd

[k] =
i

2

ab

(−k)
cd

(−k) , S̃ac
ab

[k]
cd

[k]= −
i

2

ab

(k)
cd

(k) ,

Sac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[−k]
cd

(−k) , S̃ac
ab

(k)
cd

[k]= −
i

2
ηaa

ab

[k]
cd

(k) ,

Sac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(−k)
cd

[−k] , S̃ac
ab

[k]
cd

(k)=
i

2
ηcc

ab

(k)
cd

[k] . (6.57)

We conclude from the above equation that S̃ab generate the equivalent representa-
tions with respect to Sab and opposite.

We recognize in Eq. (6.58) the demonstration of the nilpotent and the projector

character of the Clifford algebra objects
ab

(k) and
ab

[k], respectively.

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(−k)
ab

(−k)= 0 ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

[−k]
ab

[k]= 0 ,
ab

[−k]
ab

[−k]=
ab

[−k] ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(−k)
ab

[k]=
ab

(−k) ,
ab

(−k)
ab

[−k]= 0 ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0,
ab

[−k]
ab

(k)= 0 ,
ab

[−k]
ab

(−k)=
ab

(−k) .

(6.58)

Defining

ab
˜(±i)= 1

2
(γ̃a ∓ γ̃b),

ab
˜(±1)= 1

2
(γ̃a ± iγ̃b),

ab
˜[±i]= 1

2
(1± γ̃aγ̃b),

ab
˜[±1]= 1

2
(1± iγ̃aγ̃b).

one recognizes that

ab
˜(k)
ab

(k) = 0,
ab
˜(−k)

ab

(k)= −iηaa
ab

[k] ,
ab
˜(k)
ab

[k]= i
ab

(k) ,
ab
˜(k)

ab

[−k]= 0 . (6.59)
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Below some more useful relations [15] are presented:

N±+ = N1+ ± iN2+ = −
03

(∓i)
12

(±) , N±− = N1− ± iN2− =
03

(±i)
12

(±) ,

Ñ±+ = −
03
˜(∓i)

12
˜(±) , Ñ±− =

03
˜(±i)

12
˜(±) ,

τ1± = (∓)
56

(±)
78

(∓) , τ2∓ = (∓)
56

(∓)
78

(∓) ,

τ̃1± = (∓)
56
˜(±)

78
˜(∓) , τ̃2∓ = (∓)

56
˜(∓)

78
˜(∓) . (6.60)

In Table 6.4 [4] the eight families of the first member in Table 6.3 (member
number 1) of the eight-plet of quarks and the 25th member in Table 6.3 of the
eight-plet of leptons are presented as an example. The eight families of the right
handed u1R quark are presented in the left column of Table 6.4 [4]. In the right
column of the same table the equivalent eight-plet of the right handed neutrinos
ν1R are presented. All the other members of any of the eight families of quarks or
leptons follow from any member of a particular family by the application of the
operators N±R,L and τ(2,1)±, Eq. (6.60), on this particular member.

The eight-plets separate into two group of four families: One group contains
doublets with respect to ~̃NR and ~̃τ2, these families are singlets with respect to ~̃NL

and ~̃τ1. Another group of families contains doublets with respect to ~̃NL and ~̃τ1,
these families are singlets with respect to ~̃NR and ~̃τ2.

The scalar fields which are the gauge scalars of ~̃NR and ~̃τ2 couple only to the
four families which are doublets with respect to these two groups. The scalar fields
which are the gauge scalars of ~̃NL and ~̃τ1 couple only to the four families which
are doublets with respect to these last two groups.

After the electroweak phase transition, caused by the scalar fields with the
space index (7, 8), the two groups of four families become massive. The lowest
of the two groups of four families contains the observed three, while the fourth
remains to be measured. The lowest of the upper four families is the candidate for
the dark matter [1].
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37. D. Lukman and N.S. Mankoč Borštnik, ”Spinor states on a curved infinite disc with
non-zero spin-connection fields”, J. Phys. A: Math. Theor. 45, 465401 (2012) 19 pages
[arxiv:1205.1714, arxiv:1312.541, hep-ph/0412208 p.64-84].



i
i

“proc18” — 2018/12/10 — 11:44 — page 147 — #163 i
i

i
i

i
i

6 The Symmetry of 4× 4Mass Matrices Predicted by. . . 147

38. R. Franceshini, G.F. Giudice, J.F. Kamenik, M. McCullough, A.Pomarol, R. Rattazzi, M.
Redi, F. Riva, A. Strumia, R. Torre, ArXiv:1512.04933.

39. CMS Collaboration, CMS-PAS-EXO-12-045.
40. CMS Collaboration, Phys. Rev. D 92 (2015) 032004.
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