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Abstract
Transaction costs of derivative hedging appear in financial markets. This paper 
considers the problem of delta hedging and the reduction of expected proportional 
transaction costs. In the literature the expected approximate proportional 
transaction costs are customarily estimated by the gamma term, usually the 
largest term of the associated series expansion. However, when options are to 
expire in a month or few weeks, other terms may become even larger so that 
more precise estimates are needed. In this paper, different higher-order estimates 
of proportional transaction costs are analyzed. The problem of the reduction of 
expected transaction costs is considered. As a result, a suitably adjusted delta is 
given, for which the expected approximate proportional transaction costs can 
be reduced. The order of the mean and the variance of the hedging error can be 
preserved. Several examples are provided.
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Introduction

In order to reduce the risk of highly leveraged derivative contracts, different 
hedging strategies can be applied. As known, the discrete-time delta hedging is 
a dynamic hedging technique widely used in practice. Transaction costs due to 
discrete-time delta hedging are highly dependent on the frequency of hedging and 
thus on the time length ∆t between successive adjustments of the portfolio. If the 
hedging is relatively frequent, then the time ∆t is relatively small. More frequent 
hedging means more precise hedging (smaller hedging error) as well as higher 
total transaction costs (see, for example, Boyle & Emanuel, 1980; Toft, 1996). Less 
frequent hedging means lower total transaction costs, but also higher hedging error.

This paper considers the problem of the reduction of the expected transaction 
costs for the case when the frequency of hedging is not necessarily lowered. Spe-
cifically, let the option value V = V(t,S) be a function of the time t and the under-
lying assets price S. Suppose that the price S = S(t) has lognormal distribution. 
In the continuous-time Black-Scholes model, where the hedging is instantaneous 
and the replication is perfect, the number of shares at time is given exactly by 
the delta—the current value of the partial derivative VS (t,S), where V(t,S) is the 
solution of the Black-Scholes-Merton (BSM) equation (Black & Scholes, 1973; 
Merton, 1973). When the hedging is in discrete time, then over the time interval 
(t,t + ∆t) the number of shares is kept constant while at the time point t + ∆t the 
number of shares is readjusted to the new value VS (t + ∆t,S + ∆S). For details, see 
(Boyle and Emanuel, 1980). 
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The proportional transaction costs depend on the difference 
|VS (t + ∆t,S + ∆S) – VS (t,S)|, which is usually approximated 
by the gamma term—in most cases, the largest term of the 
associated Taylor series expansion (see, for example, Leland, 
1985; Mastinsek, 2006; Toft, 1996). However, when options 
are near expiry, other terms of the series expansion are not 
necessarily small compared to the gamma term. Actually 
they can be even higher; thus, they cannot be ignored. This 
motivates further research. The following analysis will treat 
the problem more closely.

In order to deal with the subject, more precise estimates of 
proportional transaction costs will be considered. Conse-
quently the problem of the reduction of the expected trans-
action costs will be analyzed. As a result, a suitably adjusted 
delta will be given for which the expected approximate 
proportional transaction costs can be reduced, while the 
order of the mean and the variance of the hedging error can 
simultaneously be preserved.

The paper is organized as follows: In the first section, the 
problem of proportional transaction costs and its reduction 
are considered. In the second section, the associated problem 
of the hedging error is studied. For illustration, an example 
of the European call option and several numerical results 
are given.

Transaction Costs

Let the number of shares N' at point t + ∆t be equal to the 
Black-Scholes delta: N' = VS (t + ∆t,S + ∆S), which is the 
hedge ratio customarily used in practice (compare Remark 
1 below). If N is given by N = VS (t,S), then the proportional 
transaction costs CTR at the rehedging moment t + ∆t are 
equal to:

 (1.1)

where k represents the round-trip transaction costs measured 
as a fraction of the volume of transactions. For details on the 
approximate transaction costs, see Leland (1985).

If S = S(t) follows the geometric Brownian motion, then over 
the non-infinitesimal interval of the length ∆t, its change can 
be approximated by:

  (1.2)

where σ is volatility, μ is the drift rate, and Ζ is the normally 
distributed variable with mean zero and variance one; in short 
Ζ ~ N(0,1) . For details, see Hull (2006). As noted, in this 
case, the first-order Taylor series approximation |N'–N| of in 
(1.1) can be given by the partial derivative VSS (the gamma), 
provided that other terms of the series are relatively small 
(Leland, 1985):

, (1.3)

However, in many cases in practice, other partial derivatives 
of the series (like VSt ) as well as the associated series terms 
may be too high to be neglected, as shown in example 1. 

Example 1 

Let V be the value of the European call option. Using the 
BSM formula (see (3.1) in the Appendix), the following 
ratio q between the partial derivatives can be obtained:

where S0 is the exercise price and T the time to expiry.

Suppose that S = 110$, S0 = 100$, σ = 0.2, r = 0.05. Using the 
previous formula, very large ratios will be obtained:

if  T = 0.1, then q = 48.6,
if  T = 0.05, then q = 101.0,
if  T = 0.02, then q = 258.3.

Moreover, if ∆S = 0.5 and ∆t = 0.01, then the gamma term 
is not necessarily the largest term of the associated approxi-
mating series (1.4). Thus, other terms of the approximating 
series cannot be neglected. In order to deal with the problem, 
the following higher-order estimate can be considered:

, (1.4)

where O(.) is the order of the error. Consequently, the 
problem of the reduction of expected proportional transac-
tion costs can be treated.

The objective of this paper is to obtain an appropriate choice 
of such that the expected transaction costs can be reduced 
while the order of the mean and the variance of the hedging 
error can be preserved. In particular, let us consider the 
adjusted hedge ratio of the form:
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 , (1.5)

where the parameter α is arbitrary and the number of shares 
N' is equal to the Black-Scholes delta: N' = VS (t+ ∆t,S + ∆S). 
For details, see Remark 1 below. In this case, we have: 

 (1.6)

For simplicity of exposition, let us assume that μ = 0 (as 
proposed by Leland (1985) the drift term in (1.2) may be 
neglected, when ∆t is small). Then ∆N in (1.6) can be ap-
proximated to the order  in the following way:

We rewrite D briefly:

 , (1.7)

where

 (1.8)

The parameters a, b, c depend on S, σ, ∆t and the time to 
expiry T.

Remark 1 

At time t + ∆t, when the option is near the expiration date 
and the stock price S + ∆S is known, the hedger may choose 
a different hedging frequency using, for instance, price-
based or delta-based rebalancing. Then the adjusted delta 
VS (t + ∆t + β∆t',S + ∆S) β ≠ 0 can be calculated with respect 
to the new stock price S + ∆S. Alternatively, the two-period 
model can be considered. However, in this case, the terms of 
the form |aZ + (1 + β – α)c + Z2| will appear; thus, the op-
timization problem with the two unknown parameters has to 
be treated.

Remark 2 

In practical cases where ∆t is relatively small, the VSS term in 
(1.6) is usually larger than the VSSS the term so that |α| given 
by (1.8) is larger than 1. In particular, for the European call 
option, specific values are given in the Appendix (formula 
(3.2) and Example 8); moreover, parameter c is in most 
practical cases negative. The explicit formula c for is given 
by (3.3) in the Appendix. Therefore, the following problem 
associated with the reduction of the expected proportional 
transaction costs CTR given by (1.1) can be considered:

Proposition 1

If a>1 and c<0, then the minimal value

 (1.9)

is obtained for an α that satisfies the estimates:

 (1.10)

where the constants ω1, ω2 depend on a, c and are given 
explicitly by the formulae (1.16) through (1.20), provided 
below. 

Proof

If we introduce a new variable Y = aZ + Z2, the minimization 
problem can be written as: 

 . (1.11)

As known from stochastic analysis, its solution is given by 
the median ym of Y: 

 . (1.12)

The value ym>0 can be obtained from the cumulative normal 
distribution function Φ(z) of Z. Using (1.12), the following 
relationship holds: 

 ,  (1.13)

where z1, z2 are solutions of the quadratic equation: 
z2 + az – ym = 0 and thus are given by:
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 .

Using the binomial (Taylor) series expansion, we have:

  . (1.14)

Hence, for , we get the estimates: 

 and  . (1.15)

i)  Using (1.13), (1.15), and the monotonicity of Φ(z), we 
find:

 and  .

Hence, 

 (1.16)

and based on the quadratic equation, it follows:

 . (1.17)

ii)  Moreover, using (1.13) and (1.15), we also have:

and

 .

Based on the monotonicity of Φ, it follows:

 (1.18)

and

 . (1.19)

Hence, using (1.17) and (1.19), it follows:

Thus, we get the estimates (1.10):

 

where

 and   (1.20)

As mentioned, in many practical cases where the option 
is not near expiry and ∆t is small, the VSS term in (1.6) is 
usually much larger than the VSSS term, so that |α| is relative-
ly large. This means that the value of Φ(–|a|) is very small. If 
the constants ω1, ω2 are very small, the optimal delta is close 
to the standard Black-Scholes delta. For illustration, let us 
give some examples.

Example 2

Let us assume that 4 < a < 20 and –1 < c < –0.6 . (For specific 
values a and c in the case of the European call option, see 
the Appendix.) Based on the tables of the cumulative normal 
distribution function Φ(z) of Z, we find:

Hence, using (1.16), za < 0.00026. Based on the assumption 
of a and using (1.17) and (1.20), we have:

ya < 0.0053

and 

Thus, based on (1.10), the optimal α satisfies the estimates:

0.99 < α < 1 . (1.21)

Example 3

Suppose that a > 1 is not very large (e.g., a = 2) and 
–1 ≤ c ≤ –0.6. Then we find:

 Φ(–2) = 0.0228

and 

Φ(za) = 0.5228

Moreover, from the tables for Φ we find: za < 0.058. Based 
on (1.17), it follows:
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ya <0.12 (1.22)

Using (1.18) we also get:

Hence, based on (1.19), we have:

0.082 < yb (1.23)

Therefore, (1.22) and (1.23) lead to: 0.08 < ym < 0.12 .

Using (1.20), it follows:

Thus, when –1 ≤ c ≤ –0.6, then the optimal α satisfies the 
estimates:

0.80 < α < 0.92 . (1.24)

For particular values of c, sharper estimates can be obtained. 
For instance,

 if c = –0.6, then 0.80 < α < 0.87 

and 

 if c = –1, then 0.88 < α < 0.92 

As shown in (1.1), (1.6), and (1.7), proportional transac-
tion costs CTR can be approximated using ∆N ≈ D, where 

 . Let us illustrate the conclusions 
with the following numerical results.

Example 4 

Let a = 1.2, and c = –1. Then by direct calculations of the 
expected value, we get the following results for different 
values of α:

Table 1 

α =  0. 0.3 0.5 0.8 0.9 1.

∆N ≈ 1.296b 1.208b 1.172b 1.160b 1.169b 1.188b

This shows that the expected approximate proportional 
transaction costs CTR for the standard delta (α = 0) are ap-
proximately 12% higher than those where the adjusted delta 
(α = 0.8) is used. Thus, using the appropriate delta, they can 
be reduced by 10.5%.

Example 5 

Let a = 2, and c = –1. In this case, we get the following 
results for different values of α:

Table 2 

α =  0. 0.3 0.5 0.8 0.9 1.

∆N ≈ 1.786b 1.707b 1.670b 1.641b 1.639b 1.642b

In this case, the expected approximate proportional transac-
tion costs CTR for the standard delta (α = 0) are approximate-
ly 9% higher than those where the adjusted delta (α = 0.9) 
is used.

Remark 3

For a < –1, the proof and the estimates can be given in a 
similar way as for a > 1. In this case, the symmetry of the 
Gaussian (density) function and the symmetry between 
(z2 – az) and (z2 + az) can be used. Thus, using an analogous 
argument, we can give here explicit estimates as well. The 
following result can be obtained. 

Proposition 2 

If a < –1 and c < 0, then the minimal value 
 is obtained for an α that satisfies the 

estimates:  , where constants ω1, ω2 depend 
on a and c and are given by formulae (1.26) through (1.30) 
below.

Proof: 

In this case, using (1.14), we generate the following 
estimates:

 and  (1.25)

i) First, based on the monotonicity of Φ, we have:

 ,

 . (1.26)

Hence, |z1| < |wa| , and given that a < 0, it follows:

 (1.27)
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ii) Moreover, using (1.25), we get:

 

Thus,

 (1.28)

Using the quadratic equation and based on |z1| > |wb|, we also 
get:

 (1.29)

Hence, based on (1.27) and (1.29), we have yb < ym < ya. 
Thus, it follows that 1 – ω1 < α < 1 – ω2 where

 and  . (1.30)

Example 6

Let us assume that a = –2 and –1 ≤ c ≤ –0.6.

i) Based on the tables of the cumulative normal distribution 
function Φ(z) of Z, we find:

Hence, using (1.26), it follows:

 

and

Using (1.27), we get:

 (1.31)

ii) Based on (1.28), we have:

Using (1.29) we get 0.08 < yb < ym.Thus, based on (1.31):

0.08 < ym < 0.12

Hence, using (1.30), it follows:

 (1.32)

Therefore, when –1 ≤ c ≤ –0.6, we have estimates for the 
optimal α : 0.8 < α < 0.92. In particular cases, (1.32) can be 
used to obtain the following sharper estimates:

if c = –0.6, then 0.80 < α < 0.87

and

if c = –1, then 0.88 < α < 0.92

Example 7 

Let a = –1.1 and c = –1. Then using direct calculations of 
the expected value, we get the following results for different 
values of α:

Table 3 

α =  0. 0.3 0.5 0.8 0.9 1.

∆N ≈ 1.246b 1.158b 1.123b 1.115b 1.127b 1.149b

This shows that the expected proportional transaction 
costs CTR for the standard delta (α = 0) are again approx-
imately 12% higher than those where the adjusted delta 
(α = 0.8) is taken.

Next, let us analyze the hedging error when—instead of the 
standard delta—the adjusted delta is used. We will show 
that, in this case, the order of the mean and the variance of 
the hedging error can be preserved.

Hedging Error

As above, let us assume that S = S(t) following the geomet-
ric Brownian motion:

, (2.1)

where μ is the expected annual drift rate, σ the volatility, and 
W(.) the Brownian motion. Thus, over the interval of length 
∆t, the stock price change can be given by:
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 , (2.2)

where Z ~ N(0,1). For details, see Hull (2006). Then the 
change  of  over the interval of 
length ∆t can be approximated using the Taylor series (see 
Mastinsek, 2012):

  
 (2.3) 

With respect to (1.2), in this way, higher-order estimates 
of the hedging error ( ) can be given. As usual, let us 
assume that at time t a portfolio consists of a long position 
in the option and a short position in N(t) units of stock S, so 
that the portfolio Π value at time t is equal to:

Π = V – N(t)S (2.4)

The return of the portfolio value over the interval [t,t + ∆t] 
is then equal to

∆Π = ∆V – N(t)∆S (2.5)

as the number of shares N(t)  is held fixed during the time 
step ∆t. The change ∆V of the option value V(t,s) over the 
time interval of length ∆t is, based on the Taylor series ex-
pansion, equal to:

  
 (2.6)

Thus, based on (2.4), (2.5), and (2.6), the change of the port-
folio value is equal to:

 
 (2.7)

If the amount Π is invested in a riskless asset (e.g., bonds) 
with an interest rate r, then over the interval of length ∆t the 
return to the riskless investment is equal to:

 .  (2.8)

In this case, the hedging error ∆H, defined as the difference 
between the return ∆Π to the portfolio value and the return 
∆B to the bond value, is equal to ∆H = ∆Π – ∆B. Hence, 
based on (2.7) and (2.8), we get: 

 
 (2.9)

Then the following result can be concluded.

Proposition 3 

Let σ be the annualized volatility and r the annual interest 
rate of a riskless asset. Let V(t,S) be the solution of the 
Black-Scholes-Merton equation:

 .  (2.10)

If the number of shares N(t) held short over the rebalancing 
interval of length, ∆t is equal to:

 

where 

,  (2.11)

then the mean and the variance of the hedging error are of 
order .

Proof

Let us sketch the proof (for details, see Mastinsek, 2012). 
Based on the assumption , it holds  
that . We put 

 into equation (2.9) and apply the BSM 
equation (2.10) to equation (2.9). Thus, the terms of equation 
(2.9) associated with the terms in (2.10) are cancelled, and 
it follows that: 

Miklavž Mastinšek: Reduction of the Mean Hedging Transaction Costs
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Based on the assumption Z~N(0,1), E(Z) = 0, E(Z2) = 1, and 
E(Z3) = 0. Thus, it follows that the mean of the hedging error 
satisfies the equation E(∆H) = 0 + O(∆t2) for all α, 0 ≤ α ≤ 1. 
In light of this result and the fact that E(Z2n) = 1.3.5...(2n–1) 
and E(Z2n–1) = 0, for n = 1, 2, 3, ..., then the variance of ∆H 
can be readily calculated. 

Conclusion

In the preceding analysis, the problem of expected propor-
tional transaction costs due to discrete-time delta hedging 
has been considered. A suitably adjusted delta associated 
with the frequency of hedging and the time sensitivity of 
the delta were given. In this way, expected approximate 
proportional transaction costs can be reduced while the 
order of the mean and the variance of the hedging error can 
be preserved.

Appendix 

Let V(t, S)denote the value of a European call option. Using 
the BSM formula, we get: 

  , 

  (3.1)

with 

            

Here S0 is the strike price, σ the annual volatility, r the interest 
rate, and T the time to expiry. Moreover, N(x) is the cumu-
lative probability distribution function for a standardized 
normally distributed variable. For details, see Hull (2006). 
Based on the definition of a given in (1.8), we directly obtain:

 .  (3.2)

This means, when ∆t is relatively small and d1 is not too 
large (the option price is not too far from the strike price), 
|a| is larger than 1. 

Example 8

Suppose that σ = 0.2, ∆t = 0.01 and r = 0 . Thus, we have:

 when T = 0.25, and  then |a| > 5.0

when T = 0.1, and  then |a| > 1.9

when T = 0.4, and  then |a| > 1.4

When the option is relatively deep in or out of the money (for 
instance, if ), the gamma and delta options change 
very little over time. Thus, the needed readjustments of the 
portfolio are small and the proportional transaction costs low.

Next let us consider the parameter c for the European call 
option. Note that the terms associated with VSt, VSSS in (1.6) 
are of the same order so that c is independent of ∆t. In that 
case, using the BSM formula, we have:

. (3.3)
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Redukcija povprečnih transakcijskih  
stroškov hedging tehnike

Izvleček

Na finančnih trgih se pri uporabi hedging tehnike pojavijo transakcijski stroški. V tem članku se obravnava problem uporabe 
delta hedging tehnike ter redukcije proporcionalnih transakcijskih stroškov. V literaturi navedene metode običajno temeljijo 
le na uporabi tako imenovanega faktorja gama, ki ponavadi predstavlja največji člen v aproksimacijski vrsti. Toda pri opcijah 
s kratkim časom dospetja, mesec ali nekaj tednov, lahko drugi členi vrste postanejo celo večji. Tedaj so potrebne natančnejše 
aproksimacije. V tem članku so analizirane aproksimacije višjega reda in njihova uporaba pri zmanjšanju povprečnih 
proporcionalnih transakcijskih stroškov. Na podlagi analize je podan ustrezno prilagojen faktor delta, s katerim se povprečni 
aproksimativni proporcionalni transakcijski stroški lahko zmanjšajo. Pripadajoča napaka hedging tehnike se pri tem ne 
poveča. Za ilustracijo metode je dodanih nekaj primerov. 

Ključne besede: finančni derivati, transakcijski stroški, delta hedging tehnika
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