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Abstract

It is very well-known that there are precisely two minimal non-planar graphs:
K5 and K33 (degree 2 vertices being irrelevant in this context). In the language
of crossing numbers, these are the only 1-crossing-critical graphs: they each have
crossing number at least one, and every proper subgraph has crossing number less
than one. In 1987, Kochol exhibited an infinite family of 3-connected, simple 2-
crossing-critical graphs. In this work, we: (i) determine all the 3-connected 2-
crossing-critical graphs that contain a subdivision of the Mobius Ladder Vig; (ii)
show how to obtain all the not 3-connected 2-crossing-critical graphs from the 3-
connected ones; (iii) show that there are only finitely many 3-connected 2-crossing-
critical graphs not containing a subdivision of Vjp; and (iv) determine all the 3-
connected 2-crossing-critical graphs that do not contain a subdivision of V.
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CHAPTER 1

Introduction

For a positive integer k, a graph G is k-crossing-critical if the crossing number
cr(G) is at least k, but every proper subgraph H of G has cr(H) < k. In general,
it is not true that a k-crossing-critical graph has crossing number exactly k. For
example, any edge-transitive non-planar graph G satisfies cr(G — e) < cr(G), for
any edge e of G, so every such graph is k-crossing-critical for any k satisfying
cr(G —e) < k < cr(G). If G is the complete graph K,,, then cr(K,) — cr(K, —e)
is of order n2, so K, is k-crossing-critical for many different values of k.

Insertion and suppression of vertices of degree 2 do not affect the crossing
number of a graph, and a k-crossing-critical graph has no vertices of degree 1 and
no component that is a cycle. Thus, if G is a k-crossing-critical graph, the graph
G’ whose vertex set consists of the nodes of G (i.e., the vertices of degree different
from 2) and whose edges are the branches of G (i.e., the maximal paths all of
whose internal vertices have degree 2 in @) is also k-crossing-critical. Our interest
is, therefore, in k-crossing-critical graphs with minimum degree at least 3.

By Kuratowski’s Theorem, the only 1-crossing-critical graphs are K3 3 and Ks.
The classification of 2-crossing-critical graphs is currently not known. The earliest
published remarks on this classification of which we are aware is by Bloom, Kennedy,
and Quintas [7], where they exhibit 21 such graphs. Kochol [20] gives an infinite
family of 3-connected, simple 2-crossing-critical graphs, answering a question of
Siran [33] who gave, for each n > 3, an infinite family of 3-connected n-crossing-
critical graphs. Richter [29] shows there are just eight cubic 2-crossing-critical
graphs.

About 15 years ago, Oporowski gave several conference talks about showing
that every large peripherally-4-connected, 2-crossing-critical graph has a very par-
ticular structure which was later denoted as ‘being composed of tiles’. The method
suggested was to show that if a peripherally-4-connected, 2-crossing-critical graph
has a subdivision of a particular Vo (that is, k is fixed), then it has the desired
structure and that only finitely many peripherally-4-connected, 2-crossing-critical
graphs do not have a subdivision of Vai. (The graph V5, is obtained from a 2n-cycle
by adding the n diagonals. Note that V, is Ky and Vg is K33.)

Approximately 10 years ago, it was proved by Ding, Oporowski, Thomas, and
Vertigan [13] that, for any k, a large (as a function of k) 3-connected, 2-crossing-
critical graph necessarily has a subdivision of V5. It remains to show that having
the V5p-subdivision implies having the desired global structure. Their proof involves
first showing a statement about non-planar graphs that is of significant independent
interest: for every k, any large (as a function of k) “almost 4-connected” non-planar
graph contains a subdivision of one of four non-planar graphs whose sizes grow with
k. One of the four graphs is Voi. This theorem is then used for the crossing-critical
application mentioned above.
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Tiles have come to be a very fruitful tool in the study of crossing-critical graphs.
Their fundamentals were laid out by Pinontoan and Richter [27], and later they
turned out to be a key in Bokal’s solution of Salazar’s question regarding average
degrees in crossing-critical graphs [8, 28, 31]. These results all rely on the ease
of establishing the crossing number of a sufficiently large tiled graph, and they
generated considerable interest in the reverse question: what is the true structure
of crossing-critical graphs? How far from a tiled graph can a large crossing-critical
graph be? Hlinény’s result about bounded path-width of k-crossing-critical graphs
[18] establishes a rough structure, but is it possible that, for small values of k, tiles
would describe the structure completely? It turns out that, for & = 2, the answer is
positive. A more detailed discussion of these and other matters relating to crossing
numbers can be found in the survey by Richter and Salazar [30].

Our goal in this work, not quite achieved, is to classify all 2-crossing-critical
graphs. The bulk of our effort is devoted to showing that if G is a 3-connected
2-crossing-critical graph that contains a subdivision of Vig, then G is one of a
completely described infinite family of 3-connected 2-crossing-critical graphs. These
graphs are all composed from 42 tiles. This takes up Chapters 3 — 13. This combines
with [13] to prove that a “large” 3-connected 2-crossing-critical graph is a member
of this infinite family.

The remainder of the classification would involve determining all 2-crossing-
critical graphs that either are not 3-connected or are 3-connected and do not have
a subdivision of Vig. In Chapter 14, we deal with the 2-crossing-critical graphs
that are not 3-connected: they are either one of a small number of known particular
examples, or they are 2-connected and easily obtained from 3-connected examples.

There remains the problem of determining the 3-connected 2-crossing-critical
graphs that do not contain a subdivision of Vig. In the first five sections of Chapter
15, we explain how to completely determine all the 3-connected 2-crossing-critical
graphs from peripherally-4-connected graphs that either have crossing number 1 or
are themselves 2-crossing-critical. In the sixth and final subsection, we determine
which peripherally-4-connected graphs do not contain a subdivision of Vg and either
have crossing number 1 or are themselves 2-crossing-critical. Combining the two
parts yields a definite (and practical) procedure for finding all the 3-connected 2-
crossing-critical graphs that do not contain a subdivision of Vg. This leaves open
the problem of classifying those that contain a subdivision of V3 but do not have a
subdivision of Vjg. In Sections 16.1 and 16.2, we show that there are only finitely
many. (Although this follows from [11], the approach is different and it keeps our
work self-contained.)

There is hope for a complete description. In her master’s essay, Urrutia-
Schroeder [36] begins the determination of precisely these graphs and finds 326
of them. Oporowski (personal communication) had previously determined 531 3-
connected 2-crossing-critical graphs, of which 201 contain a subdivision of V5 but
not of Vip. Austin [3] improves on Urrutia-Schroeder’s work, correcting a minor
error (only 214 of Urrutia-Schroeder’s graphs are actually 2-crossing-critical) and
finding several others, for a total of 312 examples. Only 8 of Oporowski’s examples
are not among the 312. A few have been determined by us as stepping stones in our
classification of those that have a subdivision of Vig. We have hopes of completing
the classification.



1. INTRODUCTION 3

The principal facts that we prove in this work are summarized in the following
statement.

THEOREM 1.1 (Classification of 2-crossing-critical graphs). Let G be a 2-cros-
sing-critical graph with minimum degree at least 3. Then either:

o if G is 3-connected, then either G has a subdivision of Vig and a very
particular tile structure or has at most 3 million vertices; or

e (G is not 3-connected and is one of 49 particular examples; or

o G is 2- but not 3-connected and is obtained from a 3-connected example
by replacing digons by digonal paths.

We remark again that vertices of degree 2 are uninteresting in the context of
crossing-criticality, so we assume all graphs have minimum degree at least 3.

Chapters 2-13 of this work contain the proof of the following, which is the main
contribution of this work. (The formal definitions required for the statement given
below are presented in Chapter 2.)

THEOREM 1.2 (2-crossing-critical graphs with Vig). Let G be a 3-connected, 2-
crossing-critical graph containing a subdivision of Vig. Then G is a twisted circular
sequence (T1,Ts, ..., T,) of tiles, with each T; coming from a set of 42 possibilities.

This is part of the first item in the statement of Theorem 1.1.

Chapter 14 is devoted to 2-crossing-critical graphs that are not 3-connected.
(We remind the reader of Tutte’s theory of cleavage units and introduce digonal
paths in Chapter 14.) The results there are summarized in the following.

THEOREM 1.3 (2-crossing-critical graphs with small cutsets). Let G be a 2-
crossing-critical graph with minimum degree at least 3 that is not 3-connected.

(1) If G is not 2-connected, then G is one of 13 graphs. (See Figure 14.1.)

(2) If G is 2-connected and has two nonplanar cleavage units, then G is one
of 86 graphs. (See Figures 14.2 and 14.3.)

(3) If G is 2-connected with at most one nonplanar cleavage unit, then G has
precisely one nonplanar cleavage unit and is obtained from a 3-connected,
2-crossing-critical graph by replacing pairs of parallel edges by digonal
paths.

Chapter 15 shows how to reduce the determination of 3-connected 2-crossing-
critical graphs to “peripherally-4-connected” 2-crossing-critical graphs. A graph G
is peripherally-4-connected if G is 3-connected and, for every 3-cut X in G, any
partition of the components into nonnull subgraphs H and J has one of H and J
being a single vertex. The main result here is the following.

THEOREM 1.4. FEvery 3-connected, 2-crossing-critical graph is obtained from a
peripherally-4-connected, 2-crossing-critical graph by replacing each degree 3 vertex
with one of at most 20 different graphs, each having at most 6 vertices.

We combine this with Robertson’s characterization of Vz-free graphs to explain
how to determine all the 3-connected 2-crossing-critical graphs that do not have
a subdivision of Vg. This requires a further reduction to “internally 4-connected”
graphs.

Chapter 16 shows that a 3-connected, 2-crossing-critical graph with a subdivi-
sion of Vg but no subdivision of Vg has at most three million vertices. The general
result we prove there is the following.



4 1. INTRODUCTION

THEOREM 1.5. Suppose G is a 3-connected, 2-crossing-critical graph. Letn > 3
be such that G has a subdivision of Va,, but not of Vo(ny1). Then |V (G)| = O(n?).



CHAPTER 2

Description of 2-crossing-critical graphs with V)

In this section, we describe the structure of the 2-crossing-critical graphs that
contain Vig. As mentioned in the introduction, they are composed of tiles. This
concept was first formalized by Pinontoan and Richter [27, 28] who studied large
sequences of equal tiles. Bokal [8] extended their results to sequences of arbitrary
tiles, which are required in this section. In those results, “perfect” tiles were intro-
duced to establish the crossing number of the constructed graphs. However, this
property required a lower bound on the number of the tiles that is just slightly too
restrictive to include all our graphs. As we are able to establish the lower bound on
the crossing number of all these graphs in a different way (Theorem 5.5), we sum-
marize the concepts of [8] without reference to “perfect” tiles. Where the reader
feels we are imprecise, please refer to [8] for details.

DEFINITION 2.1. (1) A tile is a triple T = (G, A, p), consisting of a graph
G and two sequences A and p of distinct vertices of G, with no vertex of
G appearing in both A and p.

(2) A tile drawing is a drawing D of G in the unit square [0,1] x [0,1] for
which the intersection of the boundary of the square with D[G] contains
precisely the images of the vertices of the left wall A\ and the right wall
p, and these are drawn in {0} x [0,1] and {1} x [0, 1], respectively, such
that the y-coordinates of the vertices are increasing with respect to their
orders in the sequences A and p.

(3) The tile crossing number tcr(T) of a tile T is the smallest number of
crossings in a tile drawing of 7.

(4) The tile T is planar if ter(T) = 0.

(5) A k-drawing of a graph or a k-tile-drawing of a tile is a drawing or tile-
drawing, respectively, with at most k crossings.

It is a central point for us that tiles may be “glued together” to form larger
tiles. We formalize this as follows.

DEFINITION 2.2. (1) The tiles T = (G,\,p) and TV = (G, X,p’) are
compatible if |p| = |N'|.

(2) Asequence (Ty, T4, ..., Ty) of tiles is compatible if, for each i = 1,2,...,m,
T;_1 is compatible with T;.

(3) The join of compatible tiles (G, \, p) and (G', X, p’) is the tile (G, A, p) ®
(G', N, p’) whose graph is obtained from G and G’ by identifying the
sequence p term by term with the sequence )\; left wall is \; and right
wall is p/.

(4) As ® is associative, the join ®7T of a compatible sequence T = (1o, 11, . . .,
T,,) of tiles is well-defined as Tp @ T1 ® - - - ® T,

5
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Note that identifying wall vertices in a join may introduce either multiple edges
or vertices of degree two. If we are interested in 3-connected graphs, we may
suppress vertices of degree two, but we keep the multiple edges.

We have the following simple observation.

OBSERVATION 2.3. Let (Tp,T1,-..,Tm) be a compatible sequence T of tiles.
Then .
ter(®7T) < Ztcr(Ti), |
i=0

An important operation on tiles that we need converts a tile into a graph.

DEFINITION 2.4. (1) A tile T is cyclically compatible if T is compatible
with itself.

(2) For a cyclically-compatible tile T', the cyclization of T is the graph oT
obtained by identifying the respective vertices of the left wall with the
right wall. A cyclization of a cyclically-compatible sequence of tiles is
defined as o7 = o(®T).

The following useful observation is easy to prove. Typically, we will apply this
to the tile ®7 obtained from a compatible sequence T of tiles.

LEMMA 2.5 ([8, 28]). Let T be a cyclically compatible tile. Then cr(oT) <
ter(T). |

We now describe various operations that turn one tile into another.

DEFINITION 2.6. (1) For a sequence w, @ denotes the reversed sequence.
(2) e The right-inverted tile of a tile T' = (G, A, p) is the tile Tt = (G, A p);
e the left-inverted tile is = (G, )\ p);
e the inverted tile is 7T+ = (G, )\, p); and
o the reversed tile is T = (G, p, A). (T made an item.)
(3) A tile T is k-degenerate if T is planar and, for every edge e of T,
tcr(Ti —e) <k.
Note that our k-degenerate tiles are not necessarily perfect, as opposed to the
definition in [8]. However, the following analogue of [8, Cor. §] is still true.

LEMMA 2.7. Let T = (To,...,Tm), m > 0, be a cyclically-compatible sequence
of k-degenerate tiles. Then &(T) is a k-degenerate tile.

ProOOF. By Lemma 2.5, ®7 is planar. Let e be any edge of ®7. Let T; be
the tile of 7 containing e. Let 7' = (To,... ,’l’i_l,Tii - e,$T7;+1$, . ,iTmi)7 S0
QT = ®Ti — e; in particular, they have the same tile crossing number. As Tii is
k-degenerate, tcr(Ti$ —e) < k. Since all other tiles of 7’ are planar, Lemma 2.5
implies tcr(®7'i —e) < tcr(Tii —e) <k O

The following is an obvious corollary.

COROLLARY 2.8. Let T be a k-degenerate tile so that cr(o(Ti)) > k. Then
0(T$) s a k-crossing-critical graph. |
DEFINITION 2.9. (1) T is a compatible sequence (Tp,T1, ..., Ty ), then:

o the reversed sequence T is the sequence (1,5, 15 1,..., T57);



2. DESCRIPTION OF 2-CROSSING-CRITICAL GRAPHS WITH Vio 7

e the i-flip T is the sequence (Tp, ... ,Tii,iTiH,THg ooy T); and
e the i-shift T; is the sequence (T;,..., T, To, -, Tit1).
(2) Two sequences of tiles are equivalent if one can be obtained from the other
by a series of shifts, flips, and reversals.

Note that the cyclizations of two equivalent sequences of tiles are the same
graph.

DEFINITION 2.10. The set S of tiles consists of those tiles obtained as combina-
tions of two frames, illustrated in Figure 2.1, and 13 pictures, shown in Figure 2.2,
in such a way, that a picture is inserted into a frame by identifying the two squares.
A given picture may be inserted into a frame either with the given orientation or
with a 180° rotation (some examples are given in Figure 2.3).

FIGURE 2.1. The two frames.

FIGURE 2.2. The thirteen pictures.

We remark that each picture produces either two or four tiles in S; see Figure
2.3

LEMMA 2.11. Let T be a tile in the set S. Then both T and iTii are 2-
degenerate.

PROOF. Figure 2.4 shows that all the tiles are planar. The claim for T implies
the result for iTii, S0 it is enough to prove the result for an arbitrary 7' € S. Let
e be an arbitrary edge of T. We consider cases, depending on whether e is either
dotted, thin solid, thick solid, thin dashed, or thick dashed in Figure 2.4. Using
this classification, we argue that tcr(T —e) < 2.
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FIGURE 2.3. Each picture produces either two or four tiles.
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FIGURE 2.4. The different kinds of edges in the pictures.

If e is a dotted edge, then T'—e has a wall with a single vertex and tcr(Ti —e) =
0.

If e is a thin solid edge, then there is a 1-tile-drawing of T* with two dotted
edges of T' crossing each other.

If e is a thick solid edge, then there is a unique thin dashed edge f adjacent to
e, and there exists a 1-tile-drawing of T* — e with f crossing the dotted edge not
on the same horizontal side of T" as f.

If e is a thin dashed edge, then there is a unique thick dashed edge e’ such
that e and ¢’ are in the same face of the exhibited planar drawing of T, as well
as a unique dotted edge f, that is not in the same horizontal side of T as e. For
such e and €', there exists a 1-tile-drawing of T* — e with ¢’ crossing f, as well as a
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1-tile-drawing of T’ T _ ¢ with e crossing f. As each thick dashed edge corresponds
to at least one thin dashed edge, this concludes the proof. O

We now define the set of graphs that is central to this work.

DEFINITION 2.12. The set T(S) consists of all graphs of the form O((®T)$),
where T is a sequence (T07$T¥, Ty, .‘.,$Tgm_1,T2m) so that m > 1 and, for each
i=0,1,2,....2m, T, € S.

The rim of an element of T(S) is the cycle R that consists of the top and
bottom horizontal path in each frame (including the part that sticks out to either
side) and, if there is a parallel pair in the frame, one of the two edges of the parallel
pair.

The following is an immediate consequence of Lemmas 2.7 and 2.11.
COROLLARY 2.13. Let G € T(S). For every edge e of G, cx(G—e) < 2. N

In Theorem 5.5, we complete the proof that each graph G in T (S) is 2-crossing-
critical by proving there that cr(G) > 2.
We are now able to state the central result of this work.

THEOREM 2.14. If G is a 3-connected 2-crossing-critical graph containing a
subdivision of Vyg, then G € T(S).

This theorem is proved in the course of Chapters 3 — 13. We remark that not
every graph in 7 (S) contains a subdivision of Vig.



CHAPTER 3

Moving into the projective plane

It turns out that considering the relation of a 2-crossing-critical graph to its
embeddability in the projective plane is useful. This perspective was employed by
Richter to determine all eight cubic 2-crossing-critical graphs [29]. It is a triviality
that, if G has a 1-drawing, then G embeds in the projective plane (put the crosscap
on the crossing). Therefore, any graph G that does not embed in the projective
plane has crossing number at least 2. Moreover, Archdeacon [1, 2] proved that
it contains one of the 103 graphs that do not embed in the projective plane but
every proper subgraph does. Each obstruction for projective planar embedding has
crossing number at least 2. Of these, only the ones in Figure 3.1 are 3-connected
and 2-crossing-critical. (The non-projective planar graphs that are not 3-connected
are found by different means in Section 14.) These are the ones labelled — left to
right, top to bottom — D17, E20, E22, E23, E26, F4, F5, F10, F12, F13, and G1
in Glover, Huneke, and Wang [15].

>
Vel

FIicURE 3.1. The 3-connected, 2-crossing-critical graphs that do
not embed in RP2.

DEFINITION 3.1. Let G be a graph embedded in a (compact, connected) surface
3. Then:
(1) the representativity rep(G) of G is the largest integer n so that every non-
contractible, simple, closed curve in ¥ intersects G in at least n points
(this parameter is undefined when ¥ is the sphere);
(2) G is n-representative if n > r(G);

10
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(3) G is embedded with representativity n if rep(G) = n.

Representativity is also known as face-width and gained notoriety in the Graph
Minors project of Robertson and Seymour. We only require very elementary aspects
of this parameter; the reader is invited to consult [12] or [26] for further information
on representativity and Graph Minors.

Barnette [4] and Vitray [37] independently proved that every 3-representative
embedding in the projective plane topologically contains one of the 15 graphs ([37,
Figure 2.2]). Vitray pointed out in a conference talk [38] that each of these
15 graphs has crossing number at least 2. Therefore, any graph that has a 3-
representative embedding in the projective plane has crossing number at least 2.
One immediate conclusion is that there are only finitely many 2-crossing-critical
graphs that embed in RP? and do not have a representativity at most 2 embedding
in RP2, and, not only are there only finitely many of these, but they are all known
and are shown in Figure 3.2. Vitray went on to show that the only 2-crossing-
critical graph whose crossing number is not equal to 2 is C30C3, whose crossing
number is 3.

FIGURE 3.2. The 2-crossing-critical 3-representative embeddings
in RP2.

Since every graph that has an embedding in the projective plane with represen-
tativity at most 1 is planar, it remains to explore those 2-crossing-critical graphs
that have an embedding in RP? with representativity precisely 2. To cement some
terminology and notation, we have the following.

DEFINITION 3.2. Let n > 3 be an integer. The graph V5, is the Mobius ladder
consisting of:
e the rim R of V5, which is a 2n-cycle (vg, v1,v2,. .., Van—1,v0); and,
o for i =0,1,2,...,n—1, the spoke v;V,4;.
Suppose Vo, 2 H C G. (The notation L= H means that H is a subdivision of L.
Thus, Vs, 2 H C G means H is a subgraph of G and is also a subdivision of V3,,.)
e The H-nodes are the vertices of H corresponding to vg, v1, ..., V2,_1 Iin
Von; the H-nodes are also labelled vg, v1, ..., vop_1.
e Fori =0,1,2,...,2n — 1, the H-rim branch r; is the path in H corre-
sponding to the edge v;v;41 of Va,.
e For i =0,1,2,...,n — 1, the H-spoke is the path s; in H corresponding
to the edge v;v,,+; in Va,.
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e We also use H-rim and R for the cycle in H corresponding to the rim of
Vap.

Whenever we discuss elements of a subdivision H of the Md&bius ladder Vs,
we presume the indices are read appropriately. For the H-nodes v, and the H-rim
branches rj, the index k is to be read modulo 2n. For the H-spokes sy, the index
¢ is to be read modulo n. Thus, for example, s51, = s5 and vgt9, = vg, while
T84n 7 Ts-

Let G be a 2-crossing-critical graph embedded in RP? with representativity 2.
Let v be a simple closed curve in RP? meeting G in precisely the two points a and
b. We further assume V5, 2 H C G, with n > 3. Because G — a and G — b have
1-representative embeddings in the projective plane, they are both planar. We note
that, for n > 3, Vo, is not planar; therefore, a,b € H.

REMARK 3.3. Throughout this work, we abuse notation slightly. If K is any
graph and z is either a vertex or an edge of K, then we write x € K, rather than
the technically correct € V(K) or x € E(K). We have taken care so that, in any
instance, the reader will never be in doubt about whether x is a vertex or an edge.

If n > 4, the deletion of a spoke of V5, leaves a non-planar subgraph; thus,
when n > 4, we conclude a,b € R. If v does not cross R at a, say, then deleting
the H-spoke incident with a (if there is one), and shifting v away from a leaves a
subdivision of K3 3 in RP? that meets the adjusted y only at b. But then this K33
has a 1-representative embedding in RP?, showing K3 3 is planar, a contradiction.
Therefore, v must cross R at a and b. As any two non-contractible curves cross an
odd number of times, R is contractible and so bounds a closed disc ® and a closed
Mobius strip 9t.

Let P and @ be the two ab-subpaths of R, let « = yND and § = yN M.
(We alert the reader that the notations ©, MM, «, B, and ~ will be reserved for
these objects.) Since each spoke is internally disjoint from -, the spoke is either
contained in ® or contained in 9. Since the spokes interlace on R, at most one
can be embedded in ©.

Moreover, observe that a divides © into two regions, one bounded by PU« and
the other bounded by @Q U . Thus, if a spoke — label it sg — is embedded in D,
then sg has both attachments in just one of P and @), say P. In this case, P contains
either all the H-nodes vg,vy,...,v, or all the H-nodes v,,vp41,...,V2n—1,00. It
follows that, for n > 4, there are only two (up to relabelling) representativity 2
embeddings of Va, in the projective plane. See Figure 3.3. We remark that it is
possible that one or both of @ and b might be an H-node.

We introduce a notation that will be used extensively in this work.

DEFINITION 3.4. The set of 3-connected, 2-crossing-critical graphs is denoted
M3,
It is a tedious (and unimportant) exercise to check the observation that none

of the graphs in M3 found among the obstructions to having a representativity 2
embedding in RP? has a subdivision of V;5. We record it in the following assertion.

THEOREM 3.5. Let G € ./\/lg’ and Vip=2 H C G. Then G has a representativity
2 embedding in RP?. |

We will also need information about 1-drawings of V5, for n > 4. These are
similarly straightforward facts that can be proved by considering K3 3’s in Va,.
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(e} (7
S0
v v vz v p : v v v v v
a 1 U2 3 V4 b o 0 1 2 3 4
Vo V5 B
ve vr  vg Vg i@ : vs  ve U7 Vg Vg
(e} o

FIGURE 3.3. Standard labellings of the representativity 2 embed-
dings of V1.
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LEMMA 3.6. Let n > 4 and let D be a 1-drawing of Va,,. Then there is an i so

that r; crosses one of Tiyn_1, Titn, ONA Ti1pi1-



CHAPTER 4
Bridges

The notion of a bridge of a subgraph of a graph is a valuable tool that allows
us to organize many aspects of this work. This section is devoted to their definition
and an elucidation of their properties that are relevant to us. Bridges are discussed
at length in [35] and, under the name J-components, in [34].

DEFINITION 4.1. Let G be a graph and let H be a subgraph of G.

(1) For a set W of vertices of G, ||W|| consists of the subgraph of G with
vertex set W and no edges.

(2) An H-bridge in G is a subgraph B of G such that either B is an edge not
in H, together with its ends, both of which are in H, or B is obtained
from a component K of G — V(H) by adding to K all the edges from
vertices in K to vertices in H, along with their ends in H.

(3) For an H-bridge B in G, a vertex u of B is an attachment of Bifu € V(H);
att(B) denotes the set of attachments of B.

(4) If B is an H-bridge, then the nucleus Nuc(B) of B is B — att(B).

(5) For u,v € V(G), a uv-path P in G is H-avoiding if PN H C |[{u,v}|.

(6) Let A and B be either subsets of V(G) or subgraphs of G. An AB-path is
a path with an end in each of A and B but otherwise disjoint from AU B.
If, for example, A is the single vertex u, we write uB-path for {u}B-path.

We will be especially interested in the bridges of a cycle.
DEFINITION 4.2. Let C be a cycle in a graph G and let B and B’ be distinct
C-bridges.

(1) The residual arcs of B in C are the B-bridges in C' U B; if B has at least
two attachments, then these are the maximal B-avoiding subpaths of C.

(2) The C-bridges B and B’ do not overlap if all the attachments of B are in
the same residual arc of B’; otherwise, they overlap.

(3) The overlap diagram OD(C) of C has as its vertices the C-bridges; two
C-bridges are adjacent in OD(C') precisely when they overlap.

(4) The cycle C has bipartite overlap diagram, denoted BOD, if OD(C) is
bipartite; otherwise, C' has non-bipartite overlap diagram, denoted NBOD.

The following is easy to see and well-known.
LEMMA 4.3. Let C be a cycle in a graph G. The distinct C-bridges B and B’
overlap if and only if either:

(1) there are attachments u,v of B and u’,v" of B’ so that the vertices u,u’,v,v’
are distinct and occur in this order in C' (in which case B and B’ are skew
C-bridges); or

(2) att(B) = att(B’) and |att(B)| = 3 (in which case B and B’ are 3-
equivalent ). |

14
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The following concept plays a central role through the next few sections of this
work.

DEFINITION 4.4. Let C be a cycle in a graph G and let B be a C-bridge. Then
B is a planar C-bridge if C' U B is planar. Otherwise, B is a non-planar C-bridge.

Note that there is a difference between C'U B being planar and, in some em-
bedding of G in RP?, C' U B being plane, that is, embedded in some closed disc in
RP2. If C U B is plane, then B is planar, but the converse need not hold.

We now present the major embedding and drawing results that we shall use.
The theorem is due to Tutte, while the corollary is the form that we shall frequently
use.

THEOREM 4.5. [35, Theorems XI.48 and X1.49] Let G be a graph.

(1) G is planar if and only if either G is a forest or there is a cycle C of G
having BOD and all C-bridges planar.
(2) G is planar if and only if, for every cycle C of G, C has BOD. |

For the corollary, we need the following important notion.

DEFINITION 4.6. Let H be a subgraph of a graph G and let D be a drawing of
G in the plane. Then H is clean in D if no edge of H is crossed in D.

COROLLARY 4.7. Let G be a graph and let C' be a cycle with BOD. If there is
a C-bridge B so that every other C-bridge is planar and there is a I1-drawing of
C' U B in which C is clean, then cr(G) < 1.

Proof. Let x denote the crossing in a 1-drawing D of C'U B in which C is clean.
As C is not crossed in D, X is a crossing of two edges of B. Let G* denote the graph
obtained from G by deleting those two edges and adding a new vertex adjacent to
the four ends of the deleted edges. Then C has BOD in G* and every C-bridge
in G* is planar. By Theorem 4.5 (2), G* is planar. Any planar embedding of G*
easily converts to a 1-drawing of G. |

We will also need the following result.

LEMMA 4.8 (Ordering Lemma). Let G be a graph, C a cycle in G, B a set
of non-overlapping C-bridges. Let P and Q be disjoint paths in C, with V(C) =
V(PUQ). Suppose that each B € B has at least one attachment in each of P and
Q. Let Pg and Qp be the minimal subpaths of P and @, respectively, containing
PN B and QN B, respectively. Then:

(1) the {Pg} and {Qp} are pairwise internally disjoint and there is an order-

mg
(B1,...,Bx)
of B so that
P:PBln-PBg-HPBi“-PBk and Q:QBI"'QB2"'QBi"'QBk;
and

(2) if, for each B, B’ € B, att(B) # att(B’), the order is unique up to inver-
sion.
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Proof. Suppose B, B’ € B are such that Pg and Pg: have a common edge e.
Then B and B’ have attachments x1,x9, 2, x5 in both components of P — e and
attachments x, 2’ in Q. If |{z1,2], 22,25, 2,2'}| = 3, then they have 3 common
attachments and so overlap, a contradiction. Otherwise, some y € {x},z5,2'} is
not in {x1,z2,2}. Then y is in one residual arc A of 1, z2,2 in C and not both of
the other two of {z},x}, 2’} are in A. So again B, B’ overlap, a contradiction from
which we conclude P and Pp/ are internally disjoint.

Let C = P7'RiQR;. Suppose B, B’ € B are such that P = ... Pg...Pp/ ...
and Q@ =...Qp ... Qp.... We claim that either Pg = Pg' or Qg = @p/. If not,
then there is an attachment up of one of B and B’ in P that is not an attachment
of the other and likewise an attachment ug of one of B and B’ in @ that is not
an attachment of the other. Note that up and ug are not attachments of the same
one of B and B’, as otherwise the orderings in P and @Q imply B and B’ overlap.

For the sake of definiteness, we assume up € att(B), so that ug € att(B’).
Let wp € att(B’) N P and let wg € att(B) N Q. The ordering of B and B’ in P
and @ imply that, in C, these vertices appear in the cyclic order wp,up,ug, wq.
Since up,ug, wp,wq are all different, we conclude that B and B’ overlap on C, a
contradiction.

It follows that, by symmetry, we may assume Pg = Pg:. As Pg and Ppg/ are

internally disjoint, they are just a vertex. Soif P = ...Pg...Pg ... and Q =
...Qp ...Qp ..., we may exchange Pg and Pf, to see that P=...Pp/ ... Pg...
and Q@ =...Qp ...Qp.... We conclude there is an ordering of B as claimed.

Let (Bi,...,By) and (Br(),..., Bxrx)) be distinct orderings so that P =
PBI,...,PBk, P= PBW(I)""’PBW(k)’ Q = QBI QBk andQ = QBW(I)""’QBW(IC)'
There exist ¢ < j so that 7(i) > w(j). We may choose the labelling (P versus Q)
so that the preceding argument implies that Pg, = Pp, = u. If @, = Qp,, then
@B, = @B, = w and att(B;) = att(B;), which is (2). Therefore, we may assume
there is an attachment y of one of B; and B; that is not an attachment of the
other. Let z be an attachment of the other. Since @ is either (Q1,y, Q2, z, Q3) or
(Q;l, 2,Q5 ", y,Q7h), the only possibility is that  is the inversion (k,k—1,...,1).
|



CHAPTER 5

Quads have BOD

There are two main results in this section. One is to show that each graph in
the set 7(S) is 2-crossing-critical and the other, rather more challenging and central
to the characterization of 3-connected 2-crossing-critical graphs with a subdivision
of Vig, is to show that all H-quads and some H-hyperquads have BOD. We start
with the definition of quads and hyperquads.

DEFINITION 5.1. Let G be a graph and V3= H C G.

(1) For a path P and distinct vertices w and v in P, [uPv| denotes the uv-
subpath of P, while [uPv) denotes [uPv] — v, (uPv] is [uPv] — u, and
(uPv) is (uPv] — v.

(2) When concatenating a uv-path P with a vw-path @, we may write either
PQ or [uPvQw]. If w = w and P and @ are internally disjoint, then
both PQ and [uPvQu] are cycles. The reader may have to choose the
appropriate direction of traversal of either P or @ in order to make the
concatenation meaningful.

(3) If L is a subgraph of G and P is a path in G, then L — (P) is obtained
from L by deleting all the edges and interior vertices of P. (In particular,
this includes the case P has length 1, in which case L — (P) is just L less
one edge.)

(4) For i =0,1,2,3,4, the H-quad Q; is the cycle r; $;41 rit5 Si-

(5) Fori=0,1,2,3,4, the H-hyperquad Q, is the cycle (Q;_1 U Q;) — (s;).

(6) The Mobius bridge of Q; is the @Q;-bridge Mg, in G such that H C Q; U
Mo,.

(7) The Mdbius bridge of Q; is the Q;-bridge Mz in G for which (H —(s;)) C
Q;UMg.

The following notions will help our analysis.

DEFINITION 5.2. Let G be a graph, V5,2 H C G, n > 3, and let K be a
subgraph of G. Then:

(1) a claw is a subdivision of Kj 3 with centre the vertex of degree 3 and
talons the vertices of degree 1;

(2) an {x,y, z}-claw is a claw with talons z, y, and z;

(3) an open H-claw is the subgraph of H obtained from a claw in H consisting
of the three H-branches incident with an H-node, which is the centre of
the open H-claw, but with the three talons deleted;

(4) K is H-close if K N H is contained either in a closed H-branch or in a
open H-claw.

(5) A cycle C'in K is a K-preboz if, for each edge e of C'; K — e is not planar.

The following is elementary but not trivial.

17
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LEMMA 5.3. Let C be an H-close cycle, for some H=Vg. Then C is a (CUH)-
preboz.

Proof. For e € E(C), if e ¢ H, then evidently (C' U H) — e contains H, which is
a Vg; therefore (C'U H) — e is not planar. So suppose e € H. Since C is H-close,
C N H is contained in either a closed H-branch b or an open H-claw Y. There is
an H-avoiding path P in C — e having ends in both components of either b — e or
Y —e. In the former case, (H —e) U P, and hence (C'U H) — e, contains a Vg. In
the latter case, (Y — e) U P contains a different claw that has the same talons as
Y, so again (H —e) U P, and (C U H) — e, contains a V. |

LEMMA 5.4. Let K be a graph and C a cycle of K. If C is a K-preboz, then,
in any I-drawing of K, C is clean.

Proof. Let D be a 1-drawing of K and let e be any edge of C. Since K — e is
not planar, D(K — e) has a crossing. It must be the only crossing of D(K) and,
therefore, e is not crossed in D(K). |

We can now show that any of the tiled graphs described in Section 13 in fact
have crossing number 2, thereby completing the proof that they are all 2-crossing-
critical.

THEOREM 5.5. If G € T(S), then G € M3.

Proof. By Lemmas 2.7 and 2.11 and Corollary 2.8, we know that if K is a proper
subgraph of G, then cr(K) < 1. Thus, it suffices to prove that cr(G) > 2.

There are two edges in a tile that are not in the corresponding picture and are
not part of a parallel pair. An edge of G is a A-base if it is one of these edges.
A A-cycle is a face-bounding cycle in the natural projective planar embedding of
G containing precisely one A-base. Recall that the rim R of G is described in
Definition 2.12.

There are at least three A-cycles contained in G and any two are totally disjoint.
From each A-cycle we choose either of its RR-paths (by definition, these are R-
avoiding) as a “spoke”, and, with R as the rim, we find 8 different subdivisions
of V5. There are two of these that are edge-disjoint on the spokes, so if D is a
1-drawing of GG, the crossing must involve two edges of R.

CLAIM 1. If e is a rim edge in one of the 13 pictures, then e is in an H'-close
cycle C,, for some H' =2 Vj in G.

The point of this is that Lemmas 5.3 and 5.4 imply that C. is clean in D.
This is also obviously true for the other edges of the rim that are in digons. The
conclusion is that we know the two crossing edges must be from among the A-bases.
We shall show below that no two of these can cross in a 1-drawing of GG, the desired
contradiction.

Proof of Claim 1. Let e be in edge in the rim R of G that is in the picture T,
let r be the component of T'N R containing e, and let r’ be the other component
of TN R. There is a unique cycle in T — 7’ containing e; this is the cycle C,. Let
€’ be the one of the two A-bases incident with T that has an end in r. Choose the
RR-subpath of the e’-containing A-cycle that is disjoint from r. For any other two
of the A-cycles, choose arbitrarily one of the RR-subpaths. These three “spokes”,
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together with R, constitute a subdivision H' of Vg for which C. is H'-close, as
required. O

The proof is completed by showing that no two A-bases can cross in a 1-drawing
of G. If there are at least five tiles, then it is easy to find a subdivision of Vg so
that the two A-bases are on disjoint H-quads and therefore cannot be crossed in
a l-drawing of G. Thus, we may assume there are precisely three tiles and the
crossing A-bases e; and e; are, therefore, in consecutive A-cycles.

Let T be the picture incident with both e; and e;. Choose a subdivision H' of
Vs containing R but so that TN H' = T'N R. There is a unique 1-drawing D of H’
with e; and ey being the crossing pair. For i = 1,2, let the H’-branch containing
e; be b;. The end u; of e¢; that is in T is in the interior of b;.

The vertices u; and ug are two of the four attachments of T in GG. Let wy and
wsy be the other two, labelled so that w; is in the same component of T'N R as us.
It follows that ws is in the same component of TN R as u;. In T, there is a unique
pair of totally disjoint R-avoiding wjwi- and uswse-paths P; and Ps, respectively.
The crossing in D is of e; with e, so [u1bjws] and [ugbyw;] are both not crossed
in D. Therefore, D[P;] and D[P;] are both in the same face F' of D.

Since the two paths P; and P, are totally disjoint(text deleted), D[P;] and
DI[Ps] are disjoint arcs in F’; the contradiction arises from the fact that their ends
alternate in the boundary of F', showing there must be a second crossing. |

One important by-product of cleanliness is that it frequently shows a cycle has
BOD.

LEMMA 5.6. Let C be a cycle in a graph G. Let D be a 1-drawing of G in
which C is clean. If there is a non-planar C-bridge, then C has BOD and ezactly
one non-planar bridge.

Proof. Let B be a non-planar C-bridge. Then D[C U B] has a crossing, and, since
C is clean in D, the crossing does not involve an edge of C. Therefore, it involves
two edges of B. This is the only crossing of D, so inserting a vertex at this crossing
turns D into a planar embedding of a graph G*. As C is still a cycle of G*, C
has BOD in G* and all C-bridges in G* are planar. But ODgx (C) is the same as
OD¢(C) and all C-bridges other than B are the same in G and G*. |

We shall routinely make use of the following notions.

DEFINITION 5.7. Let G be a connected graph and let H be a subgraph of G.
Then:
(1) H# is the subgraph of G induced by E(G)\ E(H); and
(2) if G is embedded in RP?, then an H-face is a face of the induced embed-
ding of H in RP2.

We will often use this when B is a C-bridge, for some cycle C' in a graph G,
in which case B# is the union of C' and all C-bridges other than B. The following
two lemmas are useful examples.

LEMMA 5.8. Let G be a graph embedded in RP? with representativity 2 and let

7 be a non-contractible curve in RP? so that GN~y = {a,b}. Let C be a contractible
cycle in G and let B be a C-bridge so that Nuc(B)N{a,b} # &. Then B¥ is planar.
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Proof. This is straightforward: B# = G —Nuc(B) C G — ({a,b} "Nuc B) and the
latter has a representativity at most 1 embedding in RP2. Therefore it is planar.
]

The following result, when combined with the (not yet proved) fact that H-
quads and some H-hyperquads have BOD, yields the fact, often used in the sections
to follow, that deleting some edge results in a 1-drawing in which a particular H-
quad or H-hyperquad must be crossed.

LEMMA 5.9. Let G be a graph with ct(G) > 2 and let C be a cycle in G. If C
has BOD in G, then, for any planar C-bridge B, C is crossed in any I1-drawing of
B#.

Proof. Suppose there is a 1-drawing D of B# with C clean. Since C has BOD
and G is not planar, there is a non-planar C-bridge B’. Because C is clean, any
crossing in D[C'U B’] involves two edges of B’. The only crossing in D involves two
edges of B’ so every other C-bridge in B¥ is planar. Since B is planar, it follows
from Corollary 4.7 that cr(G) < 1, a contradiction. |

We remark that Mg is a non-planar @-bridge whenever ) is an H-quad or
H-hyperquad.

COROLLARY 5.10. Let G € M3 and Vo= H C G. If the H-quad Q; and H-
hyperquad Q; are disjoint, Q; has BOD, and there is a planar Q);-bridge B, then
Q; has BOD and there is precisely one non-planar Q;-bridge.

Proof. Let B be a planar @j—bridge. Because G is 2-crossing-critical, there is a
l-drawing D of B¥. By Lemma 5.9, Q; is crossed in D. Note that H — (s;) C
B#. In any 1-drawing of H — (sj) in which @j is crossed, the crossing is between
rj_oUrj—1Ur;Urjq1 and 7pqj—oUrpg i1 UTngj Uy Since @ is edge-disjoint
from these crossing rim segments, @Q; is clean in D.

The two graphs ODg(Q;) and ODg#(Q;) are isomorphic: the @Q;-bridges in
both G and B# are the same, except Mg, in G becomes Mg, —Nuc(B) in B# and
they have the same attachments. Since @; is clean in D, ODpg#(Q;) is bipartite.
Furthermore, the crossing in D is between two edges of @j, so D shows that every
QQ;-bridge other than Mg, is planar. |

We next introduce boxes, which are cycles that, it turns out, cannot exist in
a 2-crossing-critical graph G. On several occasions in the subsequent sections, we
prove a result by showing that otherwise G has a box.

DEFINITION 5.11. Let C be a cycle in a graph G. Then C is a boz in G if C
has BOD in G and there is a planar C-bridge B so that C' is a B#-prebox.

LEMMA 5.12. Let G € M3. Then G has no box.

Proof. Suppose C is a box in G. Then C has BOD and there is a planar C-bridge
B so that C'is a B#-prebox. As B# is a proper subgraph of G, there is a 1-drawing
D of B#. By Lemma 5.4, D[C] is clean. This contradicts Lemma 5.9. |

We can now determine the complete structure of a 2-connected H-close sub-
graph.



5. QUADS HAVE BOD 21

LEMMA 5.13. Let G € Mg and Vo, 2 H C G withn > 4. If K is a 2-connected
H-close subgraph of G, then K is a cycle.

Proof. If KNH consists of at least two vertices, then we include in K the minimal
connected subgraph of the H-branch or open H-claw containing K N H. Since K
is H-close, there is a K-bridge Mg in G so that H C K U Mg. Let e be an edge
of any H-spoke totally disjoint from K. Note that Mg — e is a K-bridge in G — e
and that Mg has the same attachments in G as Mk — e has in G — e.

Since K is 2-connected, every edge of K is in an H-close cycle contained in
K. Thus, for any 1-drawing D of G — e, Lemmas 5.3 and 5.4 imply that D[K] is
clean. There is a face F' of D[K]| containing D[My — e]. As D[K] is clean and K
is 2-connected, F' is bounded by a cycle C of K.

Lemma 5.3 implies the cycle C is a (C'U H)-prebox. If K is not just C, then
there is a C-bridge B contained on the side of D[C] disjoint from M. Evidently
B is a planar C-bridge.

Lemma 5.6 implies C' has BOD. Since C is a (CUH )-prebox, C' is a B#-prebox.
We conclude that C is a box, contradicting Lemma 5.12. This shows that K = C.
|

The second of the following two corollaries is used several times later in this
work. We recall from Definition 4.1 that, for a set W of vertices, ||WW] is the
subgraph with vertex set W and no edges.

COROLLARY 5.14. Let G € M3, let Vo, *H C G with n > 4, let B be an
H-bridge.
(1) If x,y € att(B) are such that ||{z,y}| is H-close, then there is a unique
H-avoiding xy-path in G.
(2) There do not exist vertices x,y, z € att(B) so that ||{z,y, z}|| is H-close.

Proof. Suppose P, and P, are distinct H-avoiding xzy-paths. There is either a
closed H-branch or an open H-claw containing an zy-path; this subgraph of H
contains a unique zy-path P. Then PU P; U P, is a 2-connected H-close subgraph
of G and so, by Lemma 5.13, is a cycle. But it contains three distinct zy-paths, a
contradiction.

For the second point, suppose by way of contradiction that such z,y, z exist.
Let Y be an {z,y, z}-claw in B. There is a minimal connected subgraph Z of
H contained either in a closed H-branch or in an open H-claw and containing =z,
y, and z. We note that Z is either a path or an {z,y,z}-claw. Thus, Y U Z is
2-connected and is H-close. It is a cycle by Lemma 5.13, but the centre of Y has
degree 3 in Y U Z, a contradiction. |

COROLLARY 5.15. Let G € M3, let Vip=H C G, and let B be a Q-local H-
bridge, for some H-quad Q. If s is an H-spoke and r is an H-rim branch, both
contained in Q, then |att(B) N s| < 2 and |att(B) N (Q — [r])| < 2.

Proof. The first claim follows immediately from Corollary 5.14. For the second,
suppose there are three such attachments x, y, and z. Corollary 5.14 implies they
are not all in the other H-rim branch r’ of ), so at least one of x, y, and z is in
the interior of some H-spoke of Q.

Suppose first that some H-spoke s in @ is such that (s) N {z,y, 2} = &. Then
let H = H — (s), let B’ be the H'-bridge containing B, and let ' and s’ be the
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two H-branches in @) other than r and s. Then z, y, and z are all attachments of
B’ and they are all in the same open H'-claw containing (v’ Us’) — r, contradicting
Corollary 5.14.

Otherwise, we may suppose both H-spokes s and s’ in @ have one of z, y, and
z in their interiors. We may suppose s has no other one of z, y and z. Choose
the labelling so that x € (s). Let r’ be the H-rim branch in @ other than r and
again let H' = H — (s) and B’ be the H’-bridge containing B. Then y and z are
attachments of B’, as is the H-node in s N7’. But now these three attachments of
B’ contradict Corollary 5.14. [ ]

We want to find cycles having BOD in our G € M3 that is embedded with
representativity 2 in the projective plane. The following will be helpful.

LEMMA 5.16. Let G be a graph embedded in RP? and let C be a contractible
cycle in G. Suppose B is a C-bridge so that C' U B has no non-contractible cycles
and let F be the C-face containing B. If B’ is another C-bridge embedded in F,
then B and B’ do not overlap on C.

Proof. Let z and y be any distinct attachments of B and let P be a C-avoiding
zy-path in B. Then C' U P has three cycles, all contractible by hypothesis. We
claim that one bounds a closed disc A so that C U P C A. If P is contained in the
disc A bounded by C, then we are done. In the remaining case, let C’ be one of
these cycles containing P. If the closed disc A’ bounded by C’ contains C, then we
are done. Otherwise, AN A’ is a path in C' and then A U A’ is the desired closed
disc.

As no other C-bridge in F' can have attachments in the interiors of both the
two xy-subpaths of C' and, therefore, there is no C-bridge embedded in F' that is
skew (see Lemma 4.3 (1)) to B.

Likewise, if x,, z are three distinct attachments of B, then there is a disc A’
containing the union of C' with a C-avoiding {z,y, z}-claw in B. This disc shows
that no other C-bridge embedded in F' can have all of z,y, z as attachments and,
therefore, no C-bridge embedded in F is 3-equivalent (see Lemma 4.3 (2)) to B. B

The following is an immediate consequence of Lemma 5.16 and the fact that C
has only two faces.

COROLLARY 5.17. Let G be a graph embedded in RP? and let C be a cycle of
G bounding a closed disc in RP%. If at most one C-bridge B is such that C' U B
contains a non-contractible cycle, then C' has BOD and, for every other C-bridge

B’, C U B’ is planar. u
The following result is surprisingly useful in later sections.

LEMMA 5.18. Let G € M3 and suppose G is embedded with representativity 2
in the projective plane. Let v be a non-contractible curve in the projective plane so
that |[yNG| = 2 and let C be a cycle of G so that yNC = &. If there is a non-planar
C-bridge B, then yNG C B, C has BOD, and, for every other C-bridge B’, CUB’
is planar.

Proof. Let a and b be the two points in v N G. We note that G —a and G — b are
planar, as they have representativity 1 embeddings in RP2. Thus, if, for example,
a ¢ B, then CUB C G —a and so C'U B is planar, a contradiction.
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If B’ is any other C-bridge, then a,b ¢ CU B’ and, therefore, C'U B’ is disjoint
from 7. Since any non-contractible cycle must intersect v, C' U B’ has no non-

contractible cycles. The result is now an immediate consequence of Corollary 5.17.
]

Here is a simple result that we occasionally use.

LEMMA 5.19. Suppose G € M3 and Vo, *H C G, withn > 4. Let B be an
H-bridge.
(1) Then |att(B)| > 2.
(2) If |att(B)| = 2, then B is isomorphic to Ks.
(8) If |att(B)| = 3, then B is isomorphic to K 3.

Proof. Note that att(B) = BNB#* and G = BUB¥. If |att(B)| < 1, then G is not
2-connected. If |att(B)| = 2 and Nuc(B) has a vertex, then G is not 3-connected.
Now suppose |att(B)| = 3 and B is not isomorphic to K1 3. Let Y be an att(B)-
claw contained in B. As B# UY is a proper subgraph of G, it has a 1-drawing D;;
Y is clean in Dy, as H must be self-crossed. On the other hand, if s is an H-spoke
disjoint from B, there is a 1-drawing Dy of G — (s). Again, the crossing in Do
involves two edges of H — (s), so B is clean. We can substitute Dy[B] for D1[Y] to
convert D; into a 1-drawing of G, a contradiction. |

The following lemma is the last substantial one we need before proving that
every H-quad has BOD.

LEMMA 5.20. Let G be a graph that is embedded in RP? and let C be a cycle
of G. Let B be a C-bridge so that Nuc(B) contains a non-contractible cycle. Then
C is contractible, C has BOD, and every C-bridge other than B is planar.

Proof. Let N be a non-contractible cycle in Nuc(B) and let B’ be a C-bridge
different from B. Then C' U B’ is disjoint from N. Since any two non-contractible
cycles in RP? intersect, C' U B’ does not contain a non-contractible cycle. Clearly

this implies C' is contractible and the remaining items are an immediate consequence
of Corollary 5.17. |

We prove below that every H-quad has BOD and that at least two hyperquads
have BOD. A standard labelling of the embedded Vi will help make the details of
the statement comprehensible. We have seen that, up to relabelling, there are two
representativity 2 embeddings of Vig in RP?. There is a simple non-contractible
curve 7 in RP? meeting G in two points a and b. These are both in the rim R of
H and either none or one of the H-spokes is outside the Mobius band 9t bounded
by R. Let a and 8 be the two ab-subarcs of -y, labelled so that § C 9.

DEFINITION 5.21. Let G be a graph and let Vig= H C G. If G is embedded
in RP? so that one H-spoke is not in 91, then H has an exposed spoke and the
exposed spoke is the H-spoke not in 91.

In this case, the standard labelling is chosen so that the exposed spoke is sqg
and so that vg, vy, v2,v3,v4, v5 are all incident with one of the two faces of H U~y
incident with sg.

The faces of H U~y are bounded by the cycles:
(1) [av 79, UO] 50 [1)5, rs, b7 a, a’];
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(2) roryir3r3 Ty SO;
(3) [a7 79, UO] To S1 [Uﬁa 75, ba ﬂa CL];
(4) Q1, Q2, Qs;
(5) rqlvs,rs5,b,8,a,19,v9] 84; and
(6) [b,75,v6] 16 77 18 [V9, T, @, , b].
This case is illustrated in the diagram to the left in Figure 3.3.
In the case all the H-spokes are in 0, the labelling of H may be chosen so that
the faces of H U~ are bounded by:
(1) [a,79,v0]70 71 T2 T3[V4, T4, b, @, al;
(2) [a,79,v0, 50, V5,74,b, B, al;
(3) Qo, Q1, Q2, Q3;
(4) [v4,74,b,8,a,79,v9, S4,v4]; and
(5) [b,ra,v5] 751677 T8 [V9, T9, @, , b].
This case is illustrated in the diagram to the right in Figure 3.3.
We need one more technical lemma before the main result of this section.

LEMMA 5.22. Let G € M3, let Vio=H C G, and leti,j € {0,1,2,3,4} be such
that Q,; and @j have precisely one H-spoke in common. If Q; has BOD and s; is

in a planar Q,-bridge, then (MQ )# is planar.

Proof. Let e be any edge of s; and let D be a 1-drawing of G —e. By Lemma 5.9,

Q, is crossed in D. Thus, the crossing of D involves an edge of Mz , showing that
J

(Mg )# is planar. |

The following is the main result of this section.

THEOREM 5.23. Let G € Mg and Vip=H C G. Let G be embedded with
representativity 2 in the projective plane, with the standard labelling. Then:

(1) each H-quad Q of G has BOD and ezxactly one non-planar bridge;
(2) Qy has BOD;
(8) for each i € {0,1,3,4}, (M@i)# is planar;
(4) if there is an exposed spoke, then Q)3 has BOD;
(5) if there is no exposed spoke, then at least one of Q, and Q3 has BOD.
(6) if there is no exposed spoke and (), does not have BOD, then there is a
Q,-bridge B different from MQ so that B C® and either:
(a) a = vg and B has an attachment at a, an attachment in rsre, and
att(B) C {a} Ursre; or
(b) b = v5 and B has an attachment at b, an attachment in rory, and
att(B) C {b}Urgri. (The analogous statement holds for Qs in place

of Q)
The following definitions will be useful throughout the remainder of this work.

DEFINITION 5.24. Let G be a graph embedded in RP? and let C be a cycle of
G bounding a closed disc A in RP?. A C-bridge B is C-interior if B is contained
in A and C-exterior otherwise.

Proof of Theorem 5.23. We distinguish two cases.
Case 1: H has an exposed spoke.
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We adopt the standard labelling, so sq is the exposed spoke. We note that Qs
is disjoint from GN+y and, therefore, Lemma 5.18 implies ()2 has BOD and precisely
one non-planar bridge, which is part of (1).

The arguments for Q1,Q3,Q,, Q3 are all analogous and so we do Q,. Since
¢ is exposed, the cycle [a, g, vg] S0 T4 S4[vg, r9, a] is not contractible and is disjoint
from @,. Lemma 5.20 shows @, has BOD and precisely one non-planar bridge,
proving (2) and (4). We have also proved (3) for j = 3 and (1) for @1 and Q3.

To complete the proof of (1) in Case 1, it remains to deal with Qg and Q4. These
two cases are symmetric and so it suffices to prove Qg has BOD and only one non-
planar bridge. We note that Q5 is completely disjoint from Qy and we have shown
that Q5 has BOD. Let B be the Q5-bridge containing s3. As Q5 is contractible and
B is Qs-interior, we conclude that B is planar. Therefore, Corollary 5.10 implies
Qo has BOD, and each Qo-bridge except Mg, is planar, as required for (1).

For (3), it remains to prove that, for j € {0, 1,4}, (MQ-)# is planar. We apply
Lemma 5.22: for j = 0 or 4, we take i = 2; for j = 1, we take ¢ = 3. In all cases,
the result follows.

Case 2: H has no exposed spoke.

Lemma 5.18 shows Q1, @2, and Q, all have BOD and just one non-planar
bridge. This proves (2) and part of (1). We use this in Corollary 5.10 to see that
(4 has BOD and just one non-planar bridge, another part of (1). Also, taking i = 2
and j € {0,4} in Lemma 5.22, we see that (MQ-)# is planar, part of (3).

If Q4 has BOD, then Corollary 5.10 implies Qo has BOD, so in order to show
Qo has BOD, we may assume ()3 has NBOD. There is an analogous situation for
Q3 and Q,. We first prove (6) for Q5; we will use this to prove both Qo has BOD
and (5).

If vy # b and vg # a, then Lemma 5.18 shows that @5 has BOD and exactly
one non-planar bridge. So suppose either (or both) vy = b or vg = a. If every Q-
bridge other than M@;, has only contractible cycles, then Q5 has BOD by Corollary

5.17. Thus, some Qs-bridge B other than Mg, is such that Q5 U B contains a
non-contractible cycle. Evidently, B is Qs-exterior. If B C 91, then again Q; U B

has only contractible cycles. Thus, B CD.
Any ()s-exterior bridge B contained in the face of H U~ bounded by

[(L, T9, UO] r1reTs [1}4, T4, b7 «, a]

has all its attachments in {a} U rqr3. Note that B is planar; moreover, if a is not
an attachment, then Q4 U B has no non-contractible cycle and, therefore, does not
overlap any other Q-exterior bridge. We have the analogous conclusions if B is
contained in the face of H U~ bounded by [b, 75, vg]7¢ 17 r8[vg, 9, a, a, b].

We conclude that either B has a as an attachment and also has an attachment
in 79 r3 or, symmetrically, B has b as an attachment and also has an attachment in
r7rs. This proves (6).

We now prove (5). If {vg,vs} N {a,b} = @, then @; has BOD and just one
non-planar bridge; likewise if {v4,v9} N {a,b} = @, then Q5 has BOD and just one
non-planar bridge. Up to symmetry, the only other possibility is that vg = a and
Vg = b.

Now suppose that @, also has NBOD. Then (6) implies that there must be, up
to symmetry, a Q;-bridge B; different from M@ having attachments at a and in
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r5T6. Likewise, there is an H-bridge Bj different from M§3 having attachments at
b and in r7rg. As By cannot have an attachment at b, By # Bs. Considering the
embedding of G in RP2, we see that both B; and Bs must be embedded in the face
of HU~y incident with [b, r4, vs]rs 76 77 8[V9, 79, a, e, b]. If By, say, has an attachment
other than a and v7, then the H-avoiding path in B3 from b to any attachment in
r7rg crosses By, a contradiction. So att(B1) = {a,vr}, att(Bs) = {b,vr}, and, by
Lemma 5.19, both By and B, are just edges.

Now recall that @, has BOD and, letting B, be the Q,-bridge containing so,
Lemma 5.9 implies Q, is crossed in a 1-drawing D of B#. The crossing must be
between the paths rgryro 73 and r51rg r7rs.

There are two maximal uncrossed subpaths of R in D and we know that vg and
vg are on one uncrossed segment, say Sy, of R, while vy and v5 are on Ss. Suppose
first that v7 is on S1. Then the cycle [vg, By, v7]re 75 T4 S4 70 separates vg from vs
in D, yielding the contradiction that ss is crossed in D. On the other hand, if v7
is on Sy, then the same cycle separates vg from v1, yielding the contradiction that
s1 is crossed in D.

We conclude that not both @; and @5 can have NBOD which is (5). By
symmetry, we may assume Q; has BOD. Then Lemma 5.22 shows (Mag)# is planar.
Furthermore, Corollary 5.10 implies @3 has BOD and precisely one non-planar
bridge.

What remains is to prove that ¢y has BOD and precisely one non-planar bridge
and that there is precisely one non-planar @;-bridge. Recall that symmetry implies
this will show the same things for Q3 and Q5, completing the proofs of (1) and (3).

From (6), we may assume that v9 = a and that there is a Q,-bridge Bs attaching
at a and in ro r3. Let w be any attachment of B3 in r3 73, let P be an H-avoiding
vow-path in Bz, and let ) be the subpath of ryr3 joining w to vy. Then the
cycle [vg, P,w, Q, vy, 84, V9] is non-contractible in RP? and is disjoint from Qq. By
Lemma 5.20, Qo has BOD and has just one non-planar bridge.

As for @, we consider two cases. If @5 has BOD, then Lemma 5.22 implies
(Mal)# is planar. If @4 has NBOD, then (6) implies either vy = a or v4 = b. In
both cases, Nuc(Mg ) N {a,b} # &, so Lemma 5.8 implies (M@)# is planar, as
required. |

The following technical corollary of Theorem 5.23 and Lemmas 5.6 and 5.9 will
be used in a few different places later.

COROLLARY 5.25. Let G € M3 and Vio= H C G. With indices read modulo 5,
suppose, i € {0,1,2,3,4} is such that Q; has BOD and, where {j,k} = {i+2,i+3},
suppose further that @j has NBOD. Then s; is in a planar Q,-bridge B; and Q,, has
BOD. Moreover, if e; is any edge of B; and D; is a 1-drawing of G —e;, then either
ri_17; crosses whichever of ri13 and riyg is in @j OT Ti44Ti+5 crosses whichever
of ri—o and riyq1 s in @j.

The two possibilities for D; in the case j = ¢ 4 2 are illustrated in Figure 5.1.

Proof of Corollary 5.25. By way of contradiction, suppose s; is not in a planar
Q,-bridge. We observe that sy must be exposed, as otherwise we have the contra-
diction that, for every ¢ € {0,1,2,3,4}, s is in a planar Q,-bridge. It follows that,
for £ € {2,3}, s is in a planar Q,-bridge. Thus, i ¢ {2, 3}.
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FI1GURE 5.1. The two possibilities for D; when j =i + 2.

Let ¢ € {2,3} be such that ¢ and ¢ are not consecutive in the cyclic order
(0,1,2,3,4). Let ey be the edge of sy incident with v, and let Dy be a 1-drawing of
G — ;. By Lemma 5.9, Q, is crossed in Dy.

If Q, is self-crossed in Dy, then D, shows that the @),-bridge containing s; is
planar. Thus, we have that Q, is not self-crossed in Dy. One of s;_; and s;41 is
exposed in Dy. If this exposed spoke is not also in @, then again s; is in a planar
Q,-bridge; therefore, we must have that the exposed spoke is in @,. For the sake
of definiteness, we assume that s,_; is exposed, which implies that £ =i + 2.

As the only non-planar @,-bridge is M5 , we must have an H-avoiding path P
from the interior of s; to the interior of one of ro_1Te7e4+1 and royq o455 Tere. The
drawing Dy restricts the possibility to the interior of one of ry,_1 7y and 7¢44 7¢45.
But now the embedding in RP? implies i = 0. This implies j € {2,3}; however,
neither Q, nor @5 has NBOD. Therefore, s; is in a planar Q,-bridge.

Because M@ —e; and MQ_ have the same attachments, OD¢g_e, (@J) and

ODg(Q);) are isomorphic. As the latter is not bipartite, neither is the former. By
Lemma 5.6, Qj is not clean in D;. Thus, either r;_qr; or rj 4745 is crossed in
Ds. These are edge-disjoint from @Q),.

Lemma 5.9 implies that @), is also crossed in D;. Since @), is crossed and, from
the preceding paragraph, something outside of @), is crossed, either

r;—17T; crosses 7r;4+3Uriie
or
Ti4a Tiqs Crosses 71;_oUr;y1,
as required. [}

Since @, always has BOD, Corollary 5.25 implies at least one of Q, and Q,
has BOD. Together with the fact that, in all cases, at least one of @, and Qs has
BOD, we conclude that at least three of the H-hyperquads have BOD.

The last result in this section will be useful early in the next section.

COROLLARY 5.26. Let G € M3 and let Vip= H C G and suppose G has a
representativity 2 embedding in the projective plane, with the standard labelling.
Suppose, for some i, B is an H-bridge having an attachment in both (r;_i s;—1)
and (Tyii Sit1)-



28 5. QUADS HAVE BOD

(1) if i #0, then BCD.
(2) If i = 0, then either Q4 has NBOD or B consists only of the edge vgvg.

Proof. For (1), we may assume B C 9. The two representativity 2 embeddings
of Vip in RP? show that B can only be embedded in a face bounded by either
[a,r9,v0]71 81[V6, b, B, a] or [b, B, a,Tg,vg] sS4 T4[vs, 75, b] and that sq is necessarily ex-
posed in RP?. Notice that i = 0 in both cases, proving (1).

Now assume i = 0 and suppose @5 has BOD. From Theorem 5.23, we know
that @, also has BOD. For j € {2,3}, let e; be the edge of s; incident with v; and
let D; be a 1-drawing of G —e;. Because s; is in a Qj-interior bridge, from Lemma
5.9, we know that @j is crossed in Dj.

If Q, is clean in Dj, then no face of D, is incident with vertices in both (rg s4)
and (sy r5). Therefore, D;[B] cannot be crossing-free in Dj, a contradiction. Thus,
Q, is crossed in D;. The two possibilities for Dy are shown in Figure 5.2, while the
two possibilities for D3 are shown in Figure 5.3.

(o V9

FIGURE 5.2. The two possibilities for Ds.

Let P be an H-avoiding path in G joining a vertex in each of (rgss) and
(s175). The left-hand version of Dy has no face incident with both these paths,
and so we must have the right-hand version of Dy. Thus, Ds implies P has one
end in (vg,79,v9] and one end in (vq, $1,vg]. The right-hand version of D3 has no
face incident with these paths, so it must be the left-hand version of D3. The only
possibility there for the ends of P are vg and vy, as claimed. |
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U6 U1

FIGURE 5.3. The two possibilities for Djs.



CHAPTER 6

Green cycles

In this section, we begin our study of the rim edges of H. Ultimately, we will
partition them into three types: “green”, “yellow”, and “red”, and it will be the
red ones that we focus on to find the desired tile structure. In this section, however,
we begin with the study of green edges. We shall show that the cycles C' we label
green and yellow cannot be crossed in any 1-drawing of H U C.

DEFINITION 6.1. An edge e of a non-planar graph G is red in G if G — e is
planar.

We will eventually prove that every edge of R is either in a green cycle, or in a
yellow cycle, or red. The main result in this section, one of the three main steps of
the entire proof, is that no edge of R is in two green cycles.

DEFINITION 6.2. Suppose G is a graph and Vo= H C G. Suppose further
that G is embedded in RP? with representativity 2 and that 9t is the Mdbius band
bounded by the H-rim R.

(1) A cycle Cin G is H-green if C is the composition P P, P3P, of four paths,
such that:
(a) P; C R and P; has length at least 1;
) P,P3Py is R-avoiding;
(C) P,U P, C H,;
) P; is H-avoiding (and, therefore, is either trivial or contained in an
H-bridge); and
(e) either
(i) Py contains at most 3 H-nodes or
(ii) Py is exceptional, that is, for some i € {0,1,2,...,9} and in-
dices read modulo 10,
Py =ririzirize.
(2) An edge of R is H-green if it is in an H-green cycle.

(3) A vertex v of R is H-green if both edges of R incident with v are in the
same H-green cycle.

There is a natural symmetry between P, and P,: if C' is an H-green cycle,
consisting of the composition P; Py P3Py as in Definition 6.2, then Py P, ' Py ' Pyt
is another H-green cycle. Thus P[l and P, can both be considered to be P,. As
the orientations of the individual P; will not be of any importance (except in as
much as they are required to make C' a cycle), we may say P, and P4 are symmetric.

Note that the exceptional case 1(e)ii is the only one in which P; has 4 H-nodes.

LEMMA 6.3. Suppose G is a graph and Vip = H C G. Let C be any H-green
cycle expressed as the composition Py PaPsPy as in Definition 6.2.

30
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(1) If i € {2,4}, then P; has an end in R and is either trivial or contained in
an H-spoke.

(2) The path Ps is not trivial.

(3) If Py and P, are both non-trivial, then they are contained in different
H -spokes.

Proof. (1) For sake of definiteness, we assume ¢ = 2. If P, is not trivial, then
there is an edge e in P,. From the definition, e is in H but not in R. Therefore,
there is a spoke s containing e. If P, has a vertex u not in s, then P is a path
contained in H and containing e and w. This implies that one end of s, a vertex of
R, is internal to P, contradicting the fact that P, P3P, is R-avoiding. So P, C s,
as required. Since P; C R and P, has an end in common with P;, P, has an end
in R.

(2) Suppose P; is trivial. Then P, Py is an R-avoiding path joining the ends of
P;. Each of P, and Py is either trivial or in a spoke and, since P, Py is R-avoiding,
either both are trivial or P, P, is contained in a single spoke. If both are trivial,
then P; is the cycle Py P, P3Py, which is impossible, since P; is properly contained
in the cycle R. Each of P, and P, has an end in R (or is trivial) and P> Py has
both ends in common with P;, so P, P, is the entire spoke. But then P; contains
six H-nodes, a contradiction.

(3) For j = 2,4, P; is non-trivial by hypothesis. Therefore, (1) shows it is
contained in an H-spoke s. As it has a vertex in common with P;, P; has a vertex
in R. This vertex is an H-node incident with s. If P, and Py are contained in the
same spoke s, then, as in the proof of (2), they contain different H-nodes. But then
P, contains six H-nodes, contradicting Definition 6.2. [ |

There is a small technical point that must be dealt with before we can success-
fully analyze the relation of an H-green cycle to the embedding of G in RP2.

DEFINITION 6.4. Let II be a representativity 2 embedding of a graph G in RP?
and let Vo2 H C G. Then Il is H-friendly if, for each H-green cycle C of G and
any non-contractible simple closed curve v in RP? meeting I1(G) in precisely two
points, IT[C] is contained in the closure of some face of II[H| U 7.

LEMMA 6.5. Suppose G € M3 and Vig= H C G. Let 11 be any representativity
2 embedding of G in RP?, let v be a non-contractible simple closed curve in RP?
meeting II(G) in precisely two points, and let C be an H-green cycle in G. Give H
the standard labelling relative to .

(1) Either II[C] is contained in the closure of some face of II[H| U~ or vgvg is
an edge of G embedded in M and C = rgr7r8[ve, Usvg, Us]. In particular,
if II[H] C M, then II is H-friendly.

(2) If11 is not H-friendly, then there is an H-friendly embedding of G in RP?
obtained from I1 by reembedding only vgvg.

(3) In particular, there is an H-friendly embedding of G in RP2.

Proof. Suppose IT[C] is not contained in the closure of any face of II[H]U~ and let
P, P, P3Py be the decomposition of C' as in Definition 6.2. As Ps is (H U~)-avoiding
and non-trivial by Lemma 6.3 (2), there is an (H U~y)-face F3 containing Ps. Note
that, if P, is not trivial, then Lemma 6.3 (1) asserts it is contained in an H-spoke
s and it contains an end of P3, so P, is contained in the boundary of F3. Likewise
for Py. We assume by way of contradiction that P;  cl(F5).
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CLAIM 1. Then:

(1) Pr=rerrrs;

(2) sg is exposed;

(3) either a = vy or b = vg; and

(4) if F5 C D, then both vg = b and vg = a.

PrRoOF. We first consider the case F3 C ®. Both ends of P; are contained in
one of the ab-subpaths of R. If P; is not contained in the boundary of F3, then
it must contain the other complete ab-subpath of R. As each of these has at least
4 H-nodes, the only possibility is that it is precisely 4 H-nodes. In this case, P,
must be exceptional and sy must be exposed. In particular, P, = rgr7rs and Ps
has ends vg and vg. The paths P, and P, are both trivial. Moreover, as P; is not
incident with F3, we must have vg = b and vg = a.

In the other case, F3 C 9. If F3 is contained in the interior of an H-quad,
then P; joins two vertices in the same quad and is not contained in the quad.
In this case, P, must have at least 5 H-nodes, which is impossible. Therefore,
F3 is not contained in the interior of an H-quad, and so is bounded by one of
[a,r9,v0]70 $1[v6, 75, b, B,a] and [a,Tg, vg] sy T4[vs, 75,b, B,a]. (Recall B = v N M)
Notice that sg is exposed.

These cases are symmetric; for sake of definiteness, we presume F3 is bounded
by [a,r9,vo]7T0 $1[v6, 75, b,5,a]. The path P; has at most 4 H-nodes and joins two
vertices on Q,. If P C @, then II[C] is contained in the closure of one of the
two (II[H] U v)-faces whose boundary is contained in I1[Q,] U ~y; thus, P Z Q,.
Therefore, P; has at least 4 H-nodes; by definition it has at most 4, so P; has
precisely 4 H-nodes. In particular, P, can only be rgr7rg and vg = a. O

Because sg is exposed, Theorem 5.23 implies that both Q5 and @5 have BOD.
Let e be any edge in s and let Dy be a 1-drawing of G — e. Since @, has BOD,
Lemma 5.9 shows @2 is crossed in Dy, S0 79 71 ' '3 CroSses 75 g I'7 r's. Lhis implies
that neither sg nor s4 is exposed in D, and, therefore, P3 cannot be in the same
(H — (s0))-bridge as sg.

Let By and B be the (H — (sp))-bridges containing sy and Ps, respectively.

These evidently overlap on (), and they both overlap M@o —e (in G—e). Therefore,
Q, has NBOD. Since Mao —e is a non-planar Q,-bridge in G —e, Lemma 5.6 implies

that @, is not clean in Ds.

As @, and @, have only s; in common and both are crossed in Ds, s; must
be exposed in Da. It follows that Dy[Ps] is in the face of Dy[H — (s2)] bounded by
S1TeTr7rgrgro.

The same arguments apply with Q5 in place of Qy, showing that D3[Ps] is in
the face of D3[H — (s3)] bounded by sqr47576777rs. These two drawings imply
that att(B) C rerrrs.

If F3 C O, then F3 is bounded by rg so75[ve, @, vg] (recall &« = v ND). Thus,
att(B) = {vg,v9} and Lemma 5.19 implies that P is just the edge vgvg. In this
case, Claim 1 implies P3 can obviously be embedded in the other face of H U~y
contained in ® and incident with both vg and vg.

If F3 C 9, then F3 is bounded by either

[a,T'Q;vO]TO 81[’06,7’5,b,5,a] or [(l,Tg,’Ug]S4T4 [7)5,7"5,[),5,04] .



6. GREEN CYCLES 33

Again, this implies that att(B) C {vg,v9}, so P5 is just the edge vgvg. In this case,
Claim 1 implies only that either vg = b or vg = a. Again these cases are symmetric,
SO we assume vg = a.

We remark that if v € AN B, then (v) is an AB-path and this is the only path
containing v that is an AB-path. We now return to the proof.

We wish to reembed vgvg in the (H U v)-face incident with vg, v7, vs, and vg.
We need only verify that there is no H-avoiding [b, 15, vg) (vs, r's, V7,77, Vs, T's, Ug)-
path. But such a path would have to appear in D3, where it can only also be in the
face of D3[H — (s3)] bounded by s474 757677 rs. But then it crosses vgvg in D3, a
contradiction completing the proof. |

We are now prepared for our analysis of H-green cycles.

LEMMA 6.6. Let G € M3, Vig= H C G, and let 11 be an H-friendly embedding
of G in RP2. Let C be an H-green cycle expressed as the composition P, P,P3P,
as in Definition 6.2. Then:

(1) P is contained in one of the two ab-subpaths of R;

(2) if C C M and s is any H-spoke contained in M that is totally disjoint
from C, then C is a (C' U (H — (s)))-prebox;

(3) if C is not contained in M and s is any H-spoke contained in M having
one end in the interior of Py, then C is a (C' U (H — (s)))-preboz;

(4) there is a C-bridge M¢ so that H C C'U M¢;

(5) C is contractible, C has BOD, and all C-bridges other than M¢ are planar;

(6) C is a (CU H)-prebox;

(7) Mc is the unique C-bridge (that is, there are no planar C-bridges);

(8) C bounds a face of 11;

(9) there are at most two H-nodes in the interior of Pi; and

(10) in any 1-drawing of H U C, C is clean.

Proof. Because II is H-friendly, there is a face F of (H U~) whose closure contains
C.

(1) This is an immediate consequence of Definition 6.4, as the boundary 9 of
any face of H U~ has each component of 9N R contained in one of the ab-subpaths
of R.

(2) and (3) Note that H — (s) contains a subdivision of V. In particular, if e
is an edge of C' not in R, then H — (s) is a non-planar subgraph of (CU(H —(s))) —e,
as required. If e € C' is in R, then we claim the cycle R' = (R — (Py)) U P, P3Py is
the rim of a V5. We see this in the two cases.

Case 1: (2) In this case, there are three H-spokes t1, o, t3 other than s contained
in M. Each t; has an end v; in R — (P;) and a maximal R’-avoiding subpath ¢/
containing v;. It is straightforward to verify that R’ Ut} Ut, Ut5 is a subdivision
of Vg, as required.

Case 2: (3) In the exceptional case P = r;7i41 Tit+2, s is different from all of s;,
Si+s, and s;14, s0 R'Us; U s;43 U 8,44 is the required V. (Note that one of s; and
Si;+3 can be the exposed spoke and part of that spoke might be in either P, or Py,
but whatever part is not in P, U P, makes the third spoke.)

In the remaining case, there are two H-spokes s; and s; 1 that are completely
disjoint from C. Any other H-spoke s', different from s, s;, and s;41, and contained
in 9, will connect to R’ to make a third spoke, either because both its ends are in



34 6. GREEN CYCLES

R’ or because one end is in R’ and the other end is in P; and one of the paths in
Py — e joins the other end of s to a vertex in R'.

(4) Let M¢c be the C-bridge containing the ab-subpath @ of R that is Pj-
avoiding. We claim H C C U M¢. Observe that the maximal P;-avoiding subpath
Q' of R containing Q) is contained in M¢ and, therefore, R C C U Mc. Note that
every H-spoke has at least one end in Q' that is not in P; and, therefore, that end
is in Nuc(M¢). Thus, if P3 is not contained in 91, it is obvious that H C C' U M.
So suppose Ps is contained in 9. The H-spokes other than those that contain P
and P, are obviously in My, and the ones containing P> and P, are in the union
of Mg and C.

(5) If either P; has at most 3 H-nodes, or sq is not exposed, or P; is neither
7179 T3 NOT T¢ T7 g, then there is an H-spoke s contained in 9 and totally disjoint
from C. The spoke s combines with the one of the two subpaths of R joining the
ends of s that is disjoint from P; to give a non-contractible cycle disjoint from C.
The claim now follows immediately from Lemma 5.20.

We now treat the case sg is exposed and P is either | r9 r3 or rg 77 rs. In this
case, F is a face of H U+~ contained in ©. Let B’ be a C-bridge other than Mq. If
B’ C cl(F), then CUB’ C cl(F) and cl(F) is a closed disc in RP2. Therefore, CUB’
has no non-contractible cycles in RP2. Otherwise, B’ is contained in the closure of
one of the H-faces bounded by @1 or Q3 or Q3. For each i € {1,2,3}, let F; be the
H-face bounded by Q;. Then cl(F;) Ncl(F) is a path and, therefore, cl(F;) U cl(F)
is a closed disc containing C'U B’ and again C'U B’ has no non-contractible cycles.
The result now follows from Corollary 5.17.

(6) In the case P; C 9, at most the H-spokes containing P> and P, meet
C. There are at least two others contained in 9t that are disjoint from C; let s
be one of these. By (2), for any edge e of C, (C'U (H — (s))) — e is not planar, so
(C'UH) — e is not planar.

Now suppose P; C ©. If some H-spoke s contained in 91 has an end in the
interior of Py, then (3) implies that, for any edge e of C, (C U (H — (s))) — e is not
planar, so (C'U H) — e is not planar.

In the alternative, no H-spoke contained in 9t has an end in the interior of P;.
If e is not in Py, then H N, which is a Vg or Vi, is contained in (CU H) — e, so
we may assume e € P;. But then (R— (P;)) U P, P3P, and the H-spokes contained
in 9 make a V3 or Vig, showing (C'U H) — e is not planar.

(7) Observe that (5) shows any other C-bridge is planar and that C' has BOD.
If B is any other C-bridge, then C is a B#-prebox by (6) and, therefore, is, by
definition, a box, contradicting Lemma 5.12.

(8) This is an immediate consequence of the facts that C' is contractible (5)
and there is only one C-bridge (7).

(9) Suppose by way of contradiction that v;_1,v;,v;41 are internal to Pj.
Notice that P; is not exceptional. We claim that @, is a box, contradicting Lemma
5.12.

For s € {s;_1,5i,8:4+1}, s is contained in one of the two faces of R (i.e., the
Mbobius band 9 and the disc ©). By (8), C is the boundary of some face F of
G. Clearly F and s are in different R-faces, so one is in 9t and the other is in
®. Therefore, all of s;,_1, s;, and s;41 are contained in the same one of Mt and ®.
Since ® contains at most one H-spoke, it must be that all three are contained in
M. Clearly, this implies F' C ® and, therefore, P,PsP, C ®.
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There is another H-spoke s contained in 90 that is totally disjoint from Q,.
As P,P3P, C®, RU P,P3P; U s contains a non-contractible cycle including both
P, P3P, and s that is totally disjoint from @,. Thus, Lemma 5.20 implies @, has
BOD and all Q,-bridges except M@i are planar.

We claim Q; is a (Q; U Mg )-prebox. Note that Q; UMg contains H — (s;) and
so the deletion of any edge in s;_1 Us;11 leaves a V5. By (3), C'isa CU(H — (s;))-
prebox, so the deletion of any edge e in r;_; U r; leaves a non-planar subgraph in
(C —e)U (H — (s;)), which is contained in (Q; —e) U Mg . Thatis, if e € ri_y Ury,
then (Q, —e) U Mg is not planar.

We must also consider an edge in 7,14 U ;45 (these indices are read modulo
10). Let R’ be the cycle made up of the following four parts: the two paths in
R— <P1> - <’I“i+4 Ti+5>, P2P3P4, and Si—1Ti—17; Si+1- To get the VY6, add to R/ both
H-spokes totally disjoint from P; and either of the two R’-avoiding subpaths of P;

whose ends are in R’. Thus, if e € r;4 4715, then (Q; —e) U M@ is not planar,
completing the proof that Q; is a (Q; U Mg )-prebox. (See Figure 6.1.)

FIGURE 6.1. The case e € r;4 4745 for Q; being a (Q; U Mg, )-
prebox. Only two of the three spokes are shown.

Since the Q;-bridge B containing s; is contained in the closed disc in RP?
bounded by Q;, B is planar and, therefore, @, is a box, the desired contradiction.

(10) Let D be a 1-drawing of H U C. Let P, P, P3P, be the decomposition of
C into paths as in Definition 6.2, so P; C R and Pj5 is H-avoiding. If C' is crossed
in D, then it is P; that is crossed, while P, P3Py, being R-avoiding, is not crossed
in D. We claim that there is an H-spoke v;v;5 disjoint from C' that is not exposed
in D. The existence of s and the fact that C' is crossed in D shows that no face of
R U s is incident with both ends of P; and, therefore, P, P3P, must cross RU s in
D, the desired contradiction.

To prove the claim, we consider two cases. If P; has at most 3 H-nodes, then
this is obvious, since only one H-spoke can be exposed. In the alternative, P is
exceptional, say P; = 7;7;+1Ti4+2. As the spoke exposed in D is incident with an
end of the H-rim branch that is crossed, we see that s;44 is not the exposed spoke
and is disjoint from P, as required. |

The next result is the main result of this section and the first of three main
steps along the way to obtaining the classification of 3-connected, 2-crossing-critical
graphs having a subdivision of Vjy. The other two major steps are, for G € M3
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containing a subdivision H of Vig: (i) G has a representativity 2 embedding in
RP? so that H C 9M; and (ii) G contains a subdivision of Vjo with additional
properties (that we call “tidiness”). It is this tidy Vi for which the partition of
the edges of the rim into the red, yellow, and green edges that allows us to find the
decomposition into tiles.

THEOREM 6.7. If G € ./\/lg’ and V1o = H C G, then no two H-green cycles have
an edge of R in common.

Proof. Suppose ey € R is in distinct H-green cycles. By Lemma 6.5 (3), there is
an H-friendly embedding IT of G in RP?. By Lemma 6.6 (8), any H-green cycle
bounds a face of TI[G]. As e is in R and R is the boundary of both the (closed)
Mobius band 9t and the (closed) disc @, one of these faces, call it Fyy, is contained
in 9, while the other, call it Fyg, is contained in ®. For n € {9, D}, let C,, be the
green cycle bounding F,, and let P'P3 P§ P} be the path decomposition of C, as
in Definition 6.2; in particular, P{* C R and P3 is H-avoiding.

Note PP PP PP is disjoint from M (except for its ends) and PP PP is
contained in M. Thus, Cp N Cop = PP N P". Lemma 6.6 (9) implies that, for
n € {IM, D}, P! has at most 4 H-nodes. We conclude that PP U P{" is not all of
R, and so Cp N Cyy is a path. Therefore, there is a unique cycle C' in Cp U Coy
not containing ey and, furthermore, C bounds a closed disc in RP? having eq in its
interior.

On the other hand, Lemma 6.6 (1) shows there is an ab-subpath A; of R that
contains PP. Since ey € PP N PP, it is also the case that P C A;. Let A be
the other ab-subpath of R, so that A is (Cp U Coy)-avoiding. In particular, there
is a C-bridge M¢ containing A. By Lemma 6.6 (7), for n € {91,9}, A is in the
unique Cy-bridge M¢, . Since M¢, (and therefore A) is not contained in the face of
G bounded by C},, we conclude that A is not in the disc bounded by C'. Therefore,
M is different from the C-bridge Be containing eg.

CLAM 1. For each H-spoke s, some H-node incident with s is not in Con UCyp.

PROOF. By Lemma 6.6 (9), there exists an i so that PP C r;7;417i12. In
particular, eg is in r; U ;41 U rj4o. Thus, le has an edge in at least one of r;,
Ti+1, and riyo.

Lemma 6.6 (8) implies that Cor bounds a face of G. Therefore, Coy is contained
in the closure cl(F) of a face F of I[[H] and F C 9. Thus, P{" is contained in
one of the two components of cI(F)) N R. Since such a component is contained in
consecutive H-rim branches, if P/ contains an edge in 7;, then P{™ is contained
in either r;_1 r; or r; r;41. From the preceding paragraph, P is contained in one
of 1,174, TiTig1, Tig1Tig2, and T o7y 3.

‘We conclude that P1© UPIim is contained in either 7;_1 r; 741 Tiqp2 OF 1 7541 Ti42
7i+3 showing that no H-spoke has both ends in PP U P, O

CLAamM 2. (1) HC CUM¢ U Be.
(2) If s is an H-spoke contained in 9% disjoint from Con, then (C' U M) — (s)
is not planar.

PRrOOF. For (1), we note that it is clear that R C C'U M¢ U Be. Now let s be
an H-spoke. Suppose first that s C 2. By Claim 1, there is an H-node v incident
with s and not in Con UCn. If sNChy is at most an end of s, then it is evident that
s C Mcg. If sNCyy is more than just an end of s, then s consists of a Cyp-avoiding
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subpath s’ joining v to a vertex in Coy, together with the path Con N's (which is by
Lemma 6.3 (1)) either P§" or P{™). But then it is again evident that s C C'U Mc.
Otherwise, s is exposed, in which case we have the same argument, but replacing
Con with Cp, completing the proof of (1).
For (2), a Vg is found whose rim is (R — (P{™)) U P" P{" P{. The spokes are
contained in the three other spokes in 91, namely they are the parts that are not
in P u P O

CrAM 3. C has BOD.

PROOF. Let S be the set of H-spokes contained in 9t and disjoint from Coyy.
As Cyn meets at most two H-spokes in 9, |S| > 2. If some s € S is also disjoint
from Cp, then R U s contains a non-contractible cycle disjoint from C, in which
case Lemma 5.20 shows C' has BOD, as claimed.

So we may assume that no element of S is also disjoint from Co. Let s be any
element of S; then s N Cp is a vertex v of PP. Let e be the edge of s incident
with v. In order to show that C has BOD, we will show that: (i) the overlap
diagrams OD¢g_.(C) and OD¢g(C) are the same; and (ii) ODg_.(C) is bipartite.
For (i), note that Cp bounds a face in RP? and that (s) is in the boundary of two
(H U v)-faces. Thus, there can be no C-bridge that overlaps M¢ in G because of
its attachment at v. That is, ODg_.(C) and OD¢g(C) are the same.

For (ii), Lemma 6.6 (2) applied to Con and (3) applied to Cp, combined with
Lemma 5.4, shows Cp and Cyy are both clean in D.. Therefore, C is clean in D..
By Claim 2 (2), (C U M¢) — e is not planar, so Lemma 5.6 shows C' has BOD in
G — e. Therefore, C' has BOD in G. ([

Cramm 4. C'is a C'U H-prebox.

ProOF. Note that Cp UCoyy € CUH. If e € C, then let i € {9, D} be
such that e € C;. Lemma 6.6 (6) says that C; is a (C; U H)-prebox and, therefore,
(C; U H) — e is not planar. Since (C;UH) —e C (CUH) — e, we conclude that C
is a (C'U H)-prebox. O

CLAIM 5. G =CUMcU Bg.

PRrROOF. By way of contradiction, suppose there is another C-bridge B’. Let
F be the (H U ~)-face containing B’. Then C'U B’ is contained in the closed disc
that is the union of the closure of F' and the disc bounded by C, showing B’ is
planar. By Claim 4 and the fact that CUH C B'#, Lemma 5.4 says that C is clean
in a 1-drawing of B'#, of which there is at least one, since G is 2-crossing-critical.
This yields a 1-drawing of C' U M¢ with C' clean. By Claim 3, C' has BOD, B¢
is planar because it is contained in the closed disc bounded by C, and above we
showed that every other C-bridge is planar; Corollary 4.7 implies er(G) < 1, a
contradiction. (]

We are now on the look-out for a box in Gj it is not true that C' is necessarily
one. Our next claim gives a sufficient condition under which we can find some box
and the following two claims show that, in all other cases, C' is a box.

CLAIM 6. Suppose all of the following;:

(1) there is an i so that P§" is in a Q;-local H-bridge;
(2) PP contains v; and is a non-trivial subpath of s;; and
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(3) wiyo is in the interior of P{.
Then G has a box.

PROOF. We note that (2) implies s; C 9.
SUBCLAIM 1. Both s;41 and s;49 are contained in 9.

PROOF. Suppose first that s, is exposed. Then (3) implies Py’ and P} are
both trivial. That is, Co = PP Py. But P is H-avoiding and overlaps s; 45 on R
(because PP has at most four H-nodes, only two of which can be in the interior of
Plg) Thus, P3© and s;49 cross in RP?2, a contradiction. Therefore, Si+2 C M.

Next, suppose s;+1 is exposed. Then, by symmetry, we may assume ¢ = 4 or
i = 9. In either case, P and P are in different ab-subpaths of R and so do not
have an edge in common, a contradiction. Hence s;41 is also contained in 9t. [

Let u be the common end of P§" and P{" and let w be the common end of P
and P™. By (2), u € (s;) and, by (1) and (2), w € r;. Observe that the edge eg
common to Cyy and Cyp is in [v;, r;, w].

Let C' be the cycle [viys, i, u, PSP, w, 74, Vig1 | Tig1 Siga Tige Tits. We note
that there are two obvious C’-bridges: the C’-interior bridge B¢ containing the
edge of s;;1 incident with v;1g; and the C’-exterior bridge M¢ for which H —
(si+1) € C"U Mg To show C' is a box, it suffices to show that C’ has BOD and
C' is a (C" U M )-prebox.

Notice that v; o is in the interior of P by hypothesis and v;;1 is in the interior
of P? because g € r;. Lemma 6.6 (9) implies that the only H-nodes in the interior
of PfD are v;4+1 and v;yo. In particular, v; and v; 43 are in R — <Pf3>, as are all the
ends of s;y3 and s;44.

To see that C’ has BOD, we produce a non-contractible cycle in Nuc(Mer).
Lemma 5.20 then implies C’ has BOD and precisely one non-planar bridge. We
start with the two paths P° PP PP and s; 4, and easily complete the required cycle
using two paths in R, one containing r; 3 and the other containing r; 9.

It remains to show that C’ is a (C’ U M¢)-prebox. Since Vs = H — (s;41) C
C’ U Mc¢r, it is obvious that, if e € C” and e ¢ R, then (C' U M¢r) — e contains a
Vs and so is not planar. So suppose ¢ € C' and e € R. There are two cases.

If e € 77541, then take (R — (PP)) U PP PP PP as the rim. We choose as
spokes Siy Si+3, and Sit+4.

If e € 74457it6, then the rim consists of the two paths Py PP PP and C’' —
(rits rite), together with the two subpaths of R joining them, one containing v; 3,
Vit4, and v;ys, and the other containing v;+7, vi+s, vit9, and v;. In this case, the
spokes are s;13, S;44, and P3". O

In the remaining case, we show that C is a box. The following simple observa-
tions get us started, the first being the essential ingredient.

CLAIM 7. Either:

(1) there is an 4 so that
e PP isin a Q;-local H-bridge;
e s; contains an edge of Cyy; and
® v; o is in the interior of P{;
or (symmetrically)
(2) there is an 4 so that
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o PP isin a Q;-local H-bridge;
e 5,1 contains an edge of Cyy; and
e v;_ is in the interior of PP;
or
(3) there are three H-spokes not having an edge in Cyyp and not having an
incident vertex in the interior of PP.

PrROOF. Lemma 6.6 (9) implies there are at most two H-nodes in the interior
of P?. Therefore, if no H-spoke contains an edge of Cyn, then (3) holds. So we
may suppose Coy has an edge in some H-spoke.

Suppose first that sg is exposed, Cop has an edge in s; and eg is in either
[a,79,v0,70,v1] or [b,75,v6]. Therefore, P has one end in either [a, g, vo, 7o, v1)
or [b,r5,ve). Lemma 6.6 (9) implies at most two H-nodes can be in the interior of
Pf", so no end of s3 can be in the interior of Pfa. We conclude that sg, s3 and sy4
are the required three spokes yielding (3).

Symmetry treats the same case on the other side.

In the remaining case, P§" is contained in a Q;-local H-bridge and both s; and
s;+1 are contained in 9. The edge eg is in either r; or r;;5. If the only H-nodes in
the interior of Pf‘) are incident with either s; or s;11, then the other three H-spokes
suffice for (3).

Thus, by symmetry we may assume an end of s;, is in the interior of P{.
This implies that an end of s;,1 is also in the interior of P?. Lemma 6.6 (9) shows
these are the only H-nodes in the interior of P{®. If s; does not contain an edge of
Con, then the three spokes other than s; ;1 and s;49 suffice for (3), while if s; does
contain an edge of Coy, then we have (1). O

Claims 6 and 7 show we need only consider the third possibility in Claim 7 to
find a box.

CrLAM 8. If there are three H-spokes not having any edge in Cyy and not
having an incident H-node in (P{ ), then C is a box.

Proor. By Claim 3 and the fact that B¢ is a planar C-bridge, it suffices to
show C is a (CUMc¢)-prebox. For each e € C, we show that (C'UM¢) — e contains
a V6.

We note that 3-connection and the fact that Coyy and Cp both bound faces
implies Con N Cp is just ey and its ends. That is, B¢ consists of just ey and its
ends. Thus, Claim 5 implies that G — eg = C U M. In particular, every spoke is
in CUMc¢.

Let w be any H-node that is not in C. There are two wC-paths in R — eg;
let them be R, with end z € C' and R, with end y € C. Thus, R consists of the
C-avoiding path R, U R,, a subpath of C, the edge eg, and another subpath of C.
The cycle C consists of two xy-paths; let them be N® containing Py’ Py PP and
N? containing P P P{". We note that N® C D and N C 0.

SuBCLAIM 2. Let s be an H-spoke with no edge in Cyy and not having an
incident H-node in <Pf">
(1) If s €9, then s N C is either empty, x, or y.
(2) If s €@ (that is, s = sq is exposed), then s N C' contains at most one of
vo and vs.
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PROOF. For (1), the alternative is that s contains a vertex u in (N™). By
hypothesis, s has no edge in Cyy and, therefore, s has no edge in C. Being in N™,
the vertex u is either in R or in P3P P,

Suppose that u is in PP PP, If w is in P®, then, since P§™" is H-avoiding,
u is an end of P, and so is in Py U P{*. Thus, if u is in PP PP, then u is
in P U PP, Since both P5" and P{™ are contained in H, are R-avoiding, and
neither has an edge of s, the one containing w is trivial and » is in R.

Thus, in every case u is in R and so is an H-node. It follows that one of
[x,Nm,u] and [u,Nim7y] contains PgnPgﬁPfﬁ and the other is contained in R.
We choose the labelling so that [w7 N u] CR.

As we follow R—eg from w to 2 and continue to u along N™, we see there is an
edge of C incident with z and not in R. That it is in N® implies it is in Py Py PP.
All the vertices in [z, N™, u) are incident with two rim edges in what we have just
traversed. In particular, eq is not incident with any of these vertices and, therefore,
[x, N7, u] is contained in C*®. More precisely, [:a N7, u] is contained in PP. As
we continue along R past u, we either find eg is incident with u or the other edge
of C' incident with u is in R. In either case, u is in <P1© >, a contradiction.

For (2), suppose vy and vy are both in C. Then P U PP contains both vy and
vs. By Definition 6.2 (1e), vg and vs are not both in the same one of P and P},
so one is in P and the other is in P°. By symmetry, we may assume v is in PP,
Because II is H-friendly, le is contained in either [a,r9, vg, 70, v1] or, if @ = vg, r9
(these being the only two faces of II[H]| U~ in 9 that can be incident with vg).

Recall that eq is in both PP and P{. If P/ C [a, o, v0, 70, v1], then eq is in ei-
ther 79 or 7o and P{® is, by Definition 6.2 (1e), contained in either [a, rg, vo|r 71 [v2,
79,v3) O 79 71 T3 [U3, 74, v4), and vy is not in C. If P C rg, then e is in rg, so PP
is contained in rg rg r7 [v7, 76, V), and again vy is not in C. [l

The case e € N is easy: the rim of the Vg is (R — (P{™)) U PP P and
we choose as spokes any three of the H-spokes that are contained in 9. (If one
intersects Cyn, then only the part of the spoke that is Cyp-avoiding will be the
actual spoke of the V.)

If e € N, then the rim R’ of the Vg is (R— (PP ))UP? PP PP and the spokes
are the three H-spokes from the hypothesis. If all three hypothesized H-spokes
are contained in 9, then it is evident from Subclaim 2 (1) that we have indeed
described a Vg in (CU M¢) —e.

So suppose that one of the H-spokes in the hypothesis is the exposed spoke sg.
From Subclaim 2 (2), either s is disjoint from C' or precisely one H-node incident
with sg is in C'. We may choose the labelling so that vy is not in C.

If v5 is not in C, then sq is disjoint from C. Subclaim 2 (1) shows the other
two hypothesized H-spokes meet C in at most = or y; it is now obvious that the
three hypothesized H-spokes combine with R’ to make a V.

Finally, suppose vs is in C. Because Cp is H-green, Pf‘) C rorgry[vs, 5,0
In particular, s; is disjoint from Cyy. If so has no edge in Cyy, then R’ U s1 U so,
together with the portion of sy from vy to Cgp is a Vg avoiding Noy. If so has an
edge in Coyy, then Coy is in the II[H]-face bounded by Q2. In this case, we may
replace so with s4 74 to obtained the desired V. O

Evidently, Claims 6, 7, and 8 show that G has a box, contradicting Lemma
5.12. |



CHAPTER 7

Exposed spoke with
additional attachment not in @),

The main result of this section is the proof of the following technical theorem,
which limits possibilities for the Vjp-bridges. This will be used in the next section
when we get our second major step by showing that there is a representativity 2
embedding of G in RP? for which all the H-spokes are contained in the Mobius
band.

THEOREM 7.1. Suppose G € M3 and Vip=H C G. Let I be an H-friendly
embedding of G in RP?, with the standard labelling. Then there is no H-bridge
having attachments in both (so) and (riryrs).

At one point in the proof of this theorem, we need the following lemma. Most
of it is used again several times.

LEMMA 7.2. Let G be a graph and let Vs = H C G. Let P be an H-avoiding path
mn G joining distinct vertices x and y of R and let P’ be one of the two xy-subpaths
of R. Let D be a 1-drawing of HU P.

1) If P" has at most two H-nodes or, for some i, P' = r;r;11, then P’ is not
( ) s +1»

crossed in D.
2) If there are only the two H-nodes vy, v;11 in the interior of P’ and P’ has
( ) Y iy Vi+1

at most one other H-node, then ;14 is not crossed in D.
(8) Suppose r;riz1 C P, P' L riripr, but P' Cririp1[Vige, Fit2, Vits)-

(a) Then r;r;11 is not crossed in D.

b) If P’ is crossed in D, then s;y3 is exposed in D and P'Nr;1o crosses
( ' N
Ti—1-

Proof. Let z and y be the ends of P and let R' = (R— (P"))UP. For (1) and (2),
we find three spokes to add to R’ to find a subdivision of Vg disjoint from P’ — or
at least some part of P’. The part of P’ disjoint from the Vg cannot be crossed in
any l-drawing of H.

For (1), if P’ contains at most one H-node, then this is easy: any three H-
spokes not having an end in P’ will suffice. If P’ = r; r;11, then the three H-spokes
Siy Sit2, and s;4+3 suffice.

In the remaining case, P’ has precisely two H-nodes. We may express P’ in
the form

Pl =[z,rj1,v5]r[vjen, mie, 9],
where either of [x,7;_1,v;] and [v41,7j41,y] might be a single vertex. In this
case, the spokes are s;19, sj4+3 and sj41[vj11, 741, y], showing that [x,r;_1,v;]r;
is not crossed in D, while replacing s;j41[vj41,741,y] with [z,7,_1,v,]s; shows
[Vj+1,7j+1,9] is not crossed in D. This completes the proof of (1).

41
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For (2), replace R’ with (R’ — (r;14)) U (s; 7; $;+1). We now need three spokes.
If there is a third H-node in P’, then symmetry allows us to assume it is v;_1. In
either case, we choose s;_1, [vi11,Ti+1,Y], and s; 42 as the three spokes for the V.
This Vi avoids 7,14, showing it is not crossed in D.

For (3), x = v; and the hypotheses imply that y € (r;;12). For (3a), we may
use the spokes $;, S;ya2[vit2,7i+2,y], and s;43 to see that r;r; 41 is not crossed in
D, as required.

For (3b), suppose P’ is crossed in D. Part (3a) shows that it must be P’ Nr;qo
that is crossed and (2) shows that 7,45 = r;_3 is not crossed in D. We need only
show that r;_o is also not crossed in D. If it were, then [v; 42,712, y] crosses r;_s.
But then the cycle r;437;147i—37i—2 ;-1 separates v; = x from y in D, showing
that P is also crossed in D, a contradiction. |

Proof of Theorem 7.1. This is obvious if no spoke is exposed in II, so we may
suppose sg is exposed.

Cramm 1. There is no H-avoiding (so) (v1,71,vs]- or (so) [vs, T3, v4)-path.

PROOF. By symmetry, it suffices to prove only one. By way of contradiction,
we suppose that there is an H-avoiding path P from x € (sg) to y € (v1,71,v9].

Let e € s3 and consider a 1-drawing D of G — e. By Lemma 5.9 and Theorem
5.23 (4), we know that @3 is crossed in D. This implies that ryror3r4 crosses
r¢ r7TgT9. This already implies neither sy nor sy is exposed in D. Furthermore,
the crossing is of two edges in R and, since P is H-avoiding, we conclude that D[P]
is not crossed in D. Therefore, the end of P in (v, 71, v2] must occur in the interval
of r1 ro r3 74 between the crossing and vs; that is, the crossing must involve an edge
of r1. In particular, ro r374 75 is not crossed in D.

Since Q5 is crossed in D and 7 is crossed in D, the other crossing edge is in
r7rg. Thus it is in rgryrg. It follows that so is exposed in D. Thus, the cycle
T4 T5 S17To 9 S4 separates x from y in D, showing P is crossed in D, a contradiction.

O

It follows from Claim 1 that, if there is an H-avoiding path P, joining = € (so)
to y € (ryrars), then y € (ry). Let K = HU Py. See Figure 7.1.

T
P
Vo U1 V2 U3 V4 Us
a b
Yy
b ° a
Ve vr vg Vg

FIGURE 7.1. The subgraph K of G in RP?.
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Let J; and J be the two cycles rg 71 [v2,72,y, Po, x, So, vo] and 4 13 [vs, T2, Yy, Po,
x, So, Us], respectively.

CrAIM 2. The cycles J; and Jy both bound faces of G in RP2.
PROOF. These cycles are both H-green, so this is just Lemma 6.6 (8). O

The following claim completes the determination of the (H N 91)-bridge con-
taining sq.

CrLAM 3. The (H — (sq))-bridge containing sq is sg U Fp.

PROOF. Suppose not and let B be the (H — (s¢))-bridge containing sg. Then
Lemma 5.19 implies that B has an attachment z other than vy, y, and vs. By
Claim 2, z € [a,r9,v0) U (vs, 75, b]; by symmetry we may assume the former. Let P
be a K-avoiding z (sp)-path.

Suppose z = wvg. Let e be the edge of sy incident with vy. We show that
cr((KUP)—e) > 2. As this is a proper subgraph of G, we contradict the fact that
G is 2-crossing-critical. In P U (sg — e) U Py, there is a claw Y with talons z = vy,
y and vs. We show cr((H — (so)) UY) > 2.

By way of contradiction, we suppose D is a 1-drawing of (H —(so))UY. As H—
(s0) = Vg, Lemma 7.2 (1) implies that (using the labelling from H) [y, r2,vs] r3rs
is not crossed in D, while (2) of the same lemma implies neither r¢ nor rg is crossed
in D. Part (3a) implies rg rg 7 is not crossed, while (3b) implies (since rg is not
crossed) that [va,72,y] is not crossed. The only remaining possibilities for crossed
(H — (s0))-rim branches are 75 and 7. But no 1-drawing of H — (s¢) has these two
rim-branches crossed, the desired contradiction.

So z # vg. But then we may replace so with the zvs-path s, in P U sg and
replace Py with the ysj-path in Py U sg to get a new subdivision H' of Vi9. We
notice that Lemma 6.5 (1) implies that II is H'-friendly. However, the analogue J{
of Ji does not bound a face, contradicting Claim 2. O

CLAIM 4. There is a unique 1-drawing of K. In this 1-drawing, sg is exposed.

The 1-drawing of K is illustrated in Figure 7.2.

PrOOF. If D is a 1-drawing of K, then Claim 2 and Lemma 6.6 (10) imply
neither J; nor Jy is crossed in D. It follows that none of rg, r1, 7o, 73, and ry is
crossed in D. Lemma 3.6 implies r7 cannot be crossed in D, so Q3 is clean in D.
Therefore, sy must be in a face of D[RU Q2] incident with 7. This is only possible
if sg is exposed, which determines D. ([

For j € {2,3}, let D; be a 1-drawing of G — (s;).

CrLAaM 5. The crossing in Do[(H — s2) U Pyl is of r5 with [y, re, vs]. Likewise,
the crossing in Ds[(H — s3) U Py] is of rg with [va,72,y].

The 1-drawings of Claim 5 are illustrated in Figure 7.3.

PRrROOF. We treat the case j = 2; the case j = 3 is very similar. By Theorem
5.23 (2), Q, has BOD, so Lemma 5.9 implies Q, is crossed in Dy. This implies that
S0 is not exposed in Dy. The H-avoiding path Py joins x € (sqg) to y € (r2), so y
must be on a face incident with sg. It follows that (9 must be crossed in Do. This
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U3

m

FI1GURE 7.2. The 1-drawing of K.

Vg Ve

FIGURE 7.3. The 1-drawings Ds[(K — (s2)) U Py] and D3[(K —
(s3)) U Pol.

U7

implies that s; is exposed. We deduce that either r5 crosses r; U ry or rg crosses
r¢ Ur7. In the latter case, Dy[Pp] must cross Da[H — s3], a contradiction, so it must
be the former.

As Ds[Py] is not crossed, y occurs between v, and the crossing in r1 Uy, as
required. O

The following claims help us obtain the structure of (M@o)#; we will use this
to find a 1-drawing of GG, which is the final contradiction.

CLAIM 6. Suppose B is a Q,-bridge having an attachment in each of rg and
r5. Then B is one of M@o’ VgV, VoV, and v5vg.

PROOF. We note that sg U Py C M@o' FEither B = M@o’ or, in the drawing
Dy, B is in a face of Dy[(H — s2) U Py] incident with both 79 and r5. There are only
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two such faces, namely F, bounded by Q4, and F’, the other face incident with
r9. Whichever face B is in, its attachments are in the intersection of @, with the
boundary of the containing face. Thus, if B is in F', then att(B) C 74 s479. In this
case, the only possibility for an attachment in r5 is vs, so vs € att(B). If, on the
other hand, B is in F’, then att(B) C r9ros1. In this case, vg € att(B). Similarly,
Ds shows either B = Mg , or att(B) C ros1rs and vg € att(B), or att(B) C
sarars and vy € att(B). Comparing these possibilities, we conclude that one of
the following four cases holds for att(B): att(B) = {vg,vs}; att(B) = {vs,v9};
v5,v9 € att(B) and att(B) C r4 U s4; and vg, vg € att(B) and att(B) C ro U s1.

We claim vgvs is not an H-bridge. For if it were, let D be a 1-drawing of
G — vgus. Then sg U Py is not crossed in D and Claim 3 says the (H — (sg))-bridge
containing sg is so U Py. In particular, so consists of the two edges vgx and xvs, and
x has degree 3 in G. Thus, we can draw vgus alongside sg, yielding a 1-drawing of
G, a contradiction.

We must show that, if v, ve € att(B) and att(B) C rg U s1, then B = vgvg.
Likewise, if vs,v9 € att(B) and att(B) C r4 U s4, then B = vsvg. We consider the
former case, the latter being completely analogous. Corollary 5.15 shows that B
can have at most one other attachment. Lemma 5.19 shows that either B = vguvg
or B is a claw with talons vy, vg, and z € {vg, 79, v1, 81, V6). Since we are trying to
show B = vgvg, we assume the latter. Let e be the edge of B incident with z and let
D be a 1-drawing of G — e. Since K C G — e, D extends the 1-drawing illustrated
in Figure 7.2. We modify D to obtain a 1-drawing of G, which is impossible.

Observe that B — z is an H-avoiding vovg-path P (having length 2); there is
only one place D[P] can occur in Figure 7.2. Notice that B is a Qg-local H-bridge
and, furthermore, P overlaps Mg, .

Theorem 5.23 shows Qo has BOD in G; let (B, M) be the bipartition of
0D(Qo), with B € B. Then Mg, € M. Every Qo-bridge is drawn in D, with
the exception that we have B — e in place of B.

Because we cannot add e back into D to get a 1-drawing of G, there must be
an H-avoiding path P’ in G — e joining the two components of [vg, 79, v1, $1, V] — 2
so that D[P’] is on the same side — henceforth, the inside — of D[Qo] as P. Let
B’ be the Qg-bridge containing P’. If B’ has just vg and vg as attachments, then
let D be a 1-drawing of G — vgvg. As we did above for vgvs, we can add vgvg
alongside P to recover a 1-drawing of G. Therefore, B’ does not have just vy and
vg as attachments.

It follows that B’ overlaps B, so it is in M. Therefore, it does not overlap Mg, ;
in particular, it cannot have an attachment in both [vg, s1,v1) and [vg, 79, v1). We
conclude that, for some g € {ro,s1} ; and (ii) att(B’) C ¢q. Let ¢’ be such that
{a,4'} = {ro,s1}.

Let By, Ba, ..., By be a path in OD(Qo) — {Mg,, B} so that B’ = By.

SuBcLAM 1. For i =1,2,...,k, att(B;) C q.

PROOF. Above, we chose ¢ to contain att(B’), which is the case ¢ = 1. Notice
that By, Bg, ... are all on the same side of D[Qq] as B’ and P, while By, By,
...are all on the other side of D[Qg]. The former are all in M, while the latter are
in B. Let i be least so that B; has an attachment outside ¢q. Then it also has an
attachment in (¢) (in order to overlap B;_1).

If B; is inside D[Qo], then B; does not overlap Mg, so it has no attachment
in ¢ — ¢q. As B; cannot cross P in D, att(B;) C ¢, a contradiction.
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If B; is outside D[Qo], then either att(B;) C s1, so ¢ = s; and we are done, or
att(B;) C roUJvo, So, x|, S0, in particular, ¢ = rg. Furthermore, B; does not overlap
B. Therefore, B; has no attachment in (vg, so, z], so att(B;) C ro. O

Let L be the component of OD(Qo) — {Mg,, B} containing B’. We can flip
the Qo-bridges in L so that they exchange sides of D[Qo], yielding a new 1-drawing
of G — e with fewer Qo-bridges in M on the same side of D[Qo] as P. Inductively,
this shows there is a 1-drawing D’ of G — e in which all Qq-bridges in the face of
D’[K U P] bounded by 7 s1 P are in B. As none of these overlaps B, we may add
e into D’ to obtain a 1-drawing of G, a contradiction. O

Let e5 be the edge in r5 that is crossed in Dy and let eg be the edge in rg that
is crossed in Ds. For i = 5,9, let u; be the end of e¢; nearer to v; in r; and let w; be
the other end of e;. See Figure 7.4. We highlight some relevant “cut” properties of
these edges in the next three claims.

Vg Ve

FIGURE 7.4. The 1-drawings Do[(K — (s2)) U Py] and D3[(K —
(s3)) U Pol.

CLAIM 7. Any rg-avoiding (s4 r4] (rg s1]-path in (M@O)# contains es. In par-
ticular, there are not two edge-disjoint rg-avoiding (s4 4] (rg s1]-paths in (MQO)#.

PROOF. Suppose P is a rg-avoiding (s4 r4] (ro s1]-path. Let e be any edge of so
and let D be any 1-drawing of G —e. By Claim 5, Dy[(H — (s2)) U Py] is illustrated
in Figure 7.3. But here we see that the cycle C = [vy, so, ] Py, T2, v3]s3 879
separates (syr4] and (rgs1]. Note that C consists of 79 and a Q,-avoiding vovg-
path in M@o' Therefore, P is disjoint from C, and so it must cross C' in Dy. As
this can only happen at the crossing in Ds, it must be that the edge of r5 crossed
in Dy is in P. O

Analogously, deleting e € s3 provides a proof of the following claim.

CLAIM 8. Any rz-avoiding [sq74) [ro $1)-path in (Mao)# contains eg. In par-

ticular, there are not two edge-disjoint rs-avoiding [s4r4) [ro s1)-paths in (MGO)#'
O
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The final claim is a central point about MQ)

CrAM 9. Let Py and P, be the two paths of Q, — {es,e9}. Then there is no
P1 P2—path in

(MQO)# —{es, €9, v6v9} .

PROOF. Assume that there is a P; Py-path P in (MQO)# —{es,e9}. Fori=1,2,
let z; be the end of P in P;.

Suppose first that z; is in (sq74). If 25 is in [vg, 75, ws], then P[zq, 75, v6] is an
ro-avoiding (s4 74] (ro s1]-path in (MQO)# that also avoids e5, contradicting Claim 7.
If z5 is not in [ve, 75, ws], then there is an rs-avoiding [sq474) [ro $1)-path in (MQO)#
that also avoids eg, contradicting Claim 8. Therefore, z; is in Py — (s474); that is
21 s in [vg, rg, ug] U [vs, 15, us]. Symmetrically, zo is in [wg, rg, vo] U [ws, 75, vg].

If 21 is in [vs, 75, us], then Claim 7 implies z5 is not in [ws, r5, v5]. Therefore,
z9 i in [wg, rg,vo]. By Claim 6, P is one of vgvg, vovg, and vsvg. Clearly, neither
z1 nor zg is vg and neither is vg, so none of these outcomes is possible.

Therefore, z; is in [vg, rg,ug]. Claim 8 implies 2o is not in [wg,rg, vg]. By
Claim 6, the only possibility is that z; = vg and z5 = vg and P is just the edge
Vglg, as required. O

We will show that there is an embedding II’ of G in RP? and a non-contractible
simple closed curve 7/ in RP? so that ' N G consists of one point in each of the
interiors of IT'[es] and II'[eg]. Standard surgery then implies that cr(G) < 1 (see,
for example, [29]).

Consider the two faces of II[K] incident with both e; and eg. Let Fig be the

one bounded by Q. Let F’ be the other; it is bounded by the cycle so 7576 77 78 79,
which we call C’. Both Q, and C’ contain both e5 and eg. What we would like to
prove is that, for each such face F' with boundary C, there is no K-avoiding path
contained in F and having an end in each of the two components of C' — {es, eg9}.
Although not necessarily true for II, it is true for an embedding obtained from IT
by possibly re-embedding the edges vgvg and vsvg.

Let us begin with the possible re-embeddings. We deal with vyvg; the argument
for vsvg is completely analogous. If vguvg is not embedded in F’, then do nothing
with it. Otherwise, it is embedded in F’ and we claim we can re-embed it in F

The embedding IT shows that vgvg is contained in one of the two faces of K U’y
into which F” is split. Therefore, vy and vg must be on the same ab-subpath of R.
This implies that either vg = a or vg = b, or both. In order not to be able to embed
vovg in Fmy X there must be a Q-avoiding path P contained in F: joining (ros1)
to (rsra sq r9>.

We first consider where D3[P] can be. There are only two possibilities: it is
either in the face of Dy[K — (s2)] bounded by [va, 79, X, 75, v6] 81 71; or in the face
incident with both r¢ and s;. The latter cannot occur, as vguvg is also in that face
and they overlap on the boundary of this face. So it must be the former.

However, in this case, both vgvg and P are in the face of D3[K — (s3)] bounded
by Qo, and they overlap on @, the final contradiction that shows that P does not
exist, so we can re-embed vgvg in F@o' Let IT' be the embedding of G obtained by
any such re-embeddings of vgvg and vsvg.
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The faces F and F” of II[K] are also faces of II'[ K] with the same boundaries;

we will continue to use these names for them, while @, and C’ are still their
boundaries.

We now show that there is no K-avoiding path in F@o joining the two paths P;
and P, of Q, — {es,e9}. Such a path is necessarily in (Mao)#. By Claim 9, such
a path is necessarily vgvg. But II is H-friendly, so vgvg is not embedded in 9t and
o, in particular, is not embedded in F@o' Thus, vgvg is also not in this face of I,
whence there is no P; P>-path in 0,0 88 required.

Now consider the possibility of a K-avoiding path in F’ having its ends in each
of the two paths in C' — {e5, eg}. Such a path is in a C’-bridge B embedded in F’.
By Claim 3, B has no attachment in (sg). Thus, B has an attachment either in
[vo, 79, wg] or in [vs, 5, us).

We claim it must also have an attachment in (rgr7rs). If not, then all its
attachments are in

[vo, T, wo] U [vs, 75, us) U [ws, 15, v6] U [vg, g, ug) -

But then B is a Q,-bridge. If it has an attachment in both r5 and rg, then Claim 6
implies B is one of vgvg, v5vg, and vgvg. The first two are not embedded in the IT'-
face F' and the last does not have attachments in both components of C’ — {es, eg}.
In the alternative, either att(B) C r5 or att(B) C r9, and then we contradict either
Claim 7 or Claim 8.

So B has an attachment in (rgr7rg). If B has an attachment in [vg, g, we],
then Ds3[B] must have a crossing, which is not possible. If B has an attachment
in [vs, 75, us], then Dy[B] must have a crossing, which is not possible. Therefore,
there is no such B, as claimed.

For each of the faces F§o and F’ of II" and any points = and y in the interiors of
IT'[e5] and IT'[eg], the preceding paragraphs show that there is a G-avoiding simple
zy-arc in the face. The union of these two arcs is a simple closed curve 7' in G that
meets IT'[G] in just the two points = and y.

In a neighbourhood of z, there are points of e5 on both sides of 7/. If " were
contractible in RP?, then {es, eg} would be an edge-cut of size 2 in the 3-connected
graph G, which is impossible. So 7/ is non-contractible. But this is also impossible,
as it meets G precisely in x and y, showing that G has a 1-drawing, the final
contradiction. |



CHAPTER 8

G embeds with all spokes in 9

In this section, we prove that if G € M3 and Vip= H C G, then G has a
representativity 2 embedding in RP? with H C 9. This is an important step as it
provides the embedding structure we need to find the tiles.

It turns out that we need something stronger than H C 971. We must also show
that, in addition to H C 9, the representativity 2 embedding of G is such that
Mg, is the only Q4-local H-bridge B for which ()4 U B contains a non-contractible
cycle. (We remind the reader that @4 is special. Each H-quad bounds a face of
II[H]. In the standard labelling, the only one of these five faces that contains an
arc of v is the one bounded by Q4.)

THEOREM 8.1. Suppose G € M3 and Vio= H C G. Then G has a representa-
tivity 2 embedding IT in RP? so that, with the standard labelling:
(1) so is not exposed in I, that is, II[H] C M; and,
(2) if B is a Qq-local H-bridge other than Mg, , then I1[Q4 U B] has no non-
contractible cycle.

In principle, these two arguments are consecutive: we first show we can arrange
H C 9, and then deal with the Q4-bridges. However, the arguments are essentially
the same. Therefore, we shall have parallel statements and arguments, one for
getting the five H-spokes in 91 and one for getting such an embedding with Q4
nicely behaved. (If we knew that G had an embedding with H not contained in 90,
then we could do both simultaneously.)

DEFINITION 8.2. A friendly, standard quadruple, denoted (G, H,II,~)), con-
sists of G € M3, Vip=2H C G, an H-friendly embedding II of G, and a non-
contractible, simple closed curve v meeting II[G] in precisely two points, used as
the reference for giving H the standard labelling relative to II. We abbreviate
friendly, standard quadruple as fsq.

Observe that Theorem 3.5 implies G has a representativity 2 embedding in RP?.
Lemma 6.5 (3) implies G has an H-friendly embedding II. Any non-contractible
simple closed curve v in RP? meeting G in precisely two points yields a standard
labelling of H relative to II and . Summarizing, we have the following observation.

LEMMA 8.3. If G € M3 and Vip= H C G, then there is an fsq (G, H,1I1,7)).
|

Let Q* be Q, if sg is exposed in IT and let Q* be Qg if so is not exposed
in II, that is, if II[H] € 9. Our first step is to show that OD(Q*) is (nearly)
bipartite. Theorem 5.23 (1) implies OD(Q4) is bipartite. For Q* = @Q,, this is
more involved. In the following statement, viv4 and vgvg are meant to be possible
Q,-bridges consisting of a single edge joining the two indicated vertices. They need
not exist in G.

49
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LEMMA 8.4. Let (G, H,IL, 7)) be an fsq. If sq is exposed in I, then OD(Q,) —
{vivy, vgv9} is bipartite.

The following observations will be needed throughout the proof of Theorem 8.1
and, in particular, the proof of Lemma 8.4.

DEFINITION 8.5. Let (G, H,II, 7)) be an fsq and let Q* be either Q, (if so is
exposed) or Q4 (otherwise). Then N — a function of (G, H,II,~)) — denotes the
set of Q*-bridges B other than Mg- for which II[Q* U B] has a non-contractible
cycle. In the case Q* = @, any of v1v4 and vevg that occurs in G is a Q,-bridge

B for which IT[Q, U B] has a non-contractible cycle, and we do not include these in

N.

We remark that, if sg is exposed in II, then Theorem 7.1 implies the (H N 9MN)-
bridge B° containing sq is distinct from Mao. In this case, B® € N. If s is not
exposed in I, then Q* = Q4. If N = &, then II satisfies the conclusions of Theorem
8.1. Therefore, in this case, we may assume N # &.

Before we can prove Lemma 8.4, we need some results common to both cases.

An easy corollary of the following lemma will be used to deal with the main
case in the proof of Lemma 8.4.

LEMMA 8.6. Let D be a 1-drawing of Vg (with the usual labelling) in which Q1
is crossed. Then:

(1) Qs bounds a face of D; and

(2) if Qq is crossed in D, then either r1 crosses r4 or r5 crosses ro.

Proof. As @ is crossed in D, either ry crosses 47576 in D or r5 crosses ro 71 o
in D. This already shows that ()3 bounds a face of D.

As @, is crossed in D, either r;rg or r3ry is crossed in D. Compare each of
these with the possible crossing of Q1. In the former case, ry crosses r5, while in
the latter case r4 crosses ry. [ |

The following is the simple corollary that we will use.

COROLLARY 8.7. Let G € M3 and Vip=H C G. Let Dy be a 1-drawing of
G — (s3). Then:
(1) Q4 bounds a face of Do[H — s3]; and
(2) if@o is crossed in Do, then either re¢ 17 crosses r1 or r1Te crosses s (see
Figure 8.1 for the possibilities for Da[H — (s3)]).
Likewise, if D3 is a 1-drawing of G — (s3) in which Q, is crossed, then
the two possibilities for Ds[H — (s3)] are illustrated in Figure 8.2.

Proof. Theorem 5.23 implies @, has BOD. Lemma 5.9 implies @, is crossed in
Dy. The results now follow immediately from Lemma 8.6. ]

Let 7* denote 79 Ut in the case Q* = Q, and 79 in the case Q* = Q4. We also
let r% 5 denote the other component of @* N R.

LEMMA 8.8. Let (G, H,I1,v)) be an fsq. If B € N, then II[B] C D, att(B) C
r*Urls, and B has an attachment in each of r* and 17 5.

Proof. IfII[B] C M, then II[Q* U B] is contained in a closed disc and, therefore,
has only contractible cycles, a contradiction. Thus, II[B] C ©. It now follows
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FI1GURE 8.1. The two possibilities for Ds.
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FIGURE 8.2. The two possibilities for Djs.
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that att(B) is contained in the intersection of @, with the boundary of D; that is,
att(B) Cr* Uris.
Suppose by way of contradiction that att(B) C r*. Let 7 be a minimal subpath
of r* containing att(B). Then there is a non-contractible cycle C contained in BUT*.
Let F be the closed (II[H]U~)-face containing II[B]. Then F contains ITI[BUT*],
so the non-contractible cycle II[C] is contained in the closed disc F', a contradiction.
So att(B) is not contained in r* and, likewise, it is not contained in 7. |

Let (G, H,II,~)) be an fsq, with so exposed in II. Suppose D is a 1-drawing
of G — (s3) in which Q) is crossed. Corollary 8.7 implies that Do[H — (s2)] is one
of the two drawings illustrated in Figure 8.1. The outside of D3[Q,] is the face of
D5[Q,] containing Ds[s3]. The inside is the other face of Dy[Q,]. Likewise, if D3
is a 1-drawing of G — (s3) in which Q) is crossed, then the outside of D3[Q,] is the

face of D3[Q,] containing Ds[ss].

LEMMA 8.9. Let (G, H,I1,7)) be an fsq, with so exposed in II. For i = 2,3, let
D; be a 1-drawing of G — (s;) in which Q, is crossed. Suppose B is a Q,-bridge in
N.
(1) If D2[B] is outside of D2[Q,], then B € {v1vs,vov6}.
(2) If D3[B] is outside of D3[Q,], then B € {vova, vsvg}.
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Proof. We prove (1); (2) is completely analogous. We remark that B # B as
Ds[so] is inside Do[Q,]. Lemma 8.8 shows that either: (i) att(B) C [b,rs,ve] U
[vg,79,a] and B has attachments in both [b, 75, vs] and [vg, rg,a]; or (ii) att(B) C
[a, 79, v0]T1Urys[vs, 75, b] and B has attachments in both [a, g, vo]r1 and r4[vs, 75, b].

Suppose first that Ds is the left-hand possibility illustrated in Figure 8.1. Con-
sidering D, we see that vy is one attachment of B and the others are in r4 75.

Now consider the possibilities for D3[B]. We see that D3[B] can be outside
Ds3[Q,] in only one of the two possible D3’s, namely the right-hand one, and then
only if att(B) = {v1,v4}. But in this case B is just the edge vjvs, which is not in
N. So D3[B] is inside D3[Q,]. It now follows from this and the previous paragraphs
that att(B) C {v1} Urs.

Putting this information into II, we see that the only possibility for B, which
is embedded in ® and not in M, is that B = vyvs.

In the case D, is the right-hand possibility in Figure 8.1, Dy shows that
att(B) C {vg} Urgro. Since vgvg ¢ N, B # vgvg, so D3[B] is not outside D3[Q,].
Therefore, D3 shows att(B) C {vg} Urp.

Again we recall that B is embedded in © in RP2. If B is embedded in the
face bounded by [a, 9, vo, S0, U5, 5, b, i, a], then b = vg and the only other possi-
ble attachment for B is vy, as required. If B is embedded in the face bounded
by [b,r5,vs] 76 77 T8[V9, 79, @, v, b], then a = vy and again this is the only possible
attachment other than vg, as required. |

Let N be the graph U B.
BeN

LEMMA 8.10. Let (G, H,IL,v) be an fsq. Then there are not disjoint (N N
) (N Nriy)-paths in N. In particular, if Q* = Q, and |[N'| > 2, then either every
B € N has only vy as an attachment in rgrg or every B € N has only vs as an
attachment in r4rs.

Proof. Suppose by way of contradiction that P, and P are disjoint r*r7 5-paths
in IV, with, for j = 1,2, P; having the end p; in 7* and the end ¢; in 77 5. Choose
the labelling so that, in r*, p; is closer to vg than ps is. There are three possibilities
for how P; and P, are embedded by II: both in the (closed) disc contained in ©
bounded by [a,r9,v0]7o 71 1273 T4[VU5, 75, b (recall that & = v ND); both in the
disc in ® bounded by [b, r5,v6]r6 77 T8[V9, 9, a]a; or one in each of these discs. In
all cases, we conclude that g is closer in 775 to vg than ¢y is. Summarizing, we
have the following.

Fact 1 Any two disjoint v*r7 5-paths in N overlap on Q*.

For Q* = Q4 we are done: Corollary 8.7 implies D3[@Q4] bounds a face of
D3[H — (s2)]. Both P; and P, have ends in both 7* and 7% 5, so both must be inside
D5[Q4], yielding the contradiction that they cross in D3[Q4].

Now suppose Q* = Q,. For i = 2,3, D;[Q,] is not self-crossing; thus Fact 1
implies that D;[P;] and D;[P,] are on different sides of D;[Q,]. If @, is clean in
D;, then we have a contradiction, as no face of D;[H — (s;)] is incident with both
r* and r 5 except the ones bounded by Q4 and Q.

Thus, Q, is crossed in D;. By Lemma 8.9, the one that is outside is one of
VU4, VoUg, V1Vs5, and vsvg. We treat in detail that this one is vgvs, as the other

cases are completely analogous. It is in D3 that vovys is outside D3[Q)y].
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Because ¢ is closer to vg than gy is, ¢; cannot be wy; it follows that it is Ps
that is vovy. Lemma 8.9 also implies that P», that is vgvy, is not outside D3[Q,)
and, therefore, it is inside D3[Qy]. Thus, P; is outside D2[Q,]. By Lemma 8.9,
P is one of vgvg and vivs. By choice of the labelling, it cannot be that v, is an
end of Pj, so P = vgug, which is not disjoint from P, = vyvy, a contradiction. We
conclude that there are not such disjoint paths.

For the “in particular”, there is a cut vertex u of N separating N N (rg 7o) and
N N (rqrs) in N, as claimed. As sg is a ([rgro]) ([ra7s])-path in N, we deduce
u € sg. If BY is not the only member of N, then any other element B of N shares
the vertex u with B, so u is an attachment of both. But u € s implies u € {vg, vs}.
]

As a final preparatory remark, we have the following.

LEMMA 8.11. Let (G, H,I1,7)) be an fsq. Let B and B’ be distinct elements of
N. Then:

(1) B and B’ do not overlap on Q*; and
(2) either B overlaps Mg+ on Q* or Q* = Q4 and B is either vyvg or vovs.

Proof. In the case Q* = Q4, Corollary 8.7 and Lemma 8.8 imply B and B’ are
both drawn inside the face of Do[H — (s2)] bounded by Q4 and, therefore, they do
not overlap, yielding (1) for Q.

For Q* = Q,, if both B and B’ are in the same face of either D5[Q,] or D3[Q],
then they obviously do not overlap on @Q,. Thus, we may assume one is outside
D5[Q,] and the other is inside D3[@Q,] and that one is outside D3[@,] and the other
is inside D3[Q]-

By Lemma 8.9, the one outside D2[Q,] is either vjvs or vgvg, while the one
outside D3[Q,] is either vgvy or vsvg. Thus, we may assume B € {v1vs,v9v6} and
B’ € {vgv4,v5v9}. But none of the four possibilities is an overlapping pair, which
is (1) for Q.

As for overlapping Mg-, we suppose first that B has an attachment x in the
interior of one of 7* and 7% 5. (The “in particular” part of Lemma 8.10 implies this
is always the case when Q* = Q,.) In this case, it is a simple exercise to see that
x, together with any attachment of B in the other one of r* and 775, are skew to
at least one of the pairs of diagonally opposite corners of @* (in the case of Q4
these pairs are {vg,vs5} and {vy,vo}; for Q,, they are {vg,vs} and {v4,v1}). Thus,
B overlaps Mg-.

In the remaining case, Q* = Q4 and att(B) C {vg, v, vs,v4}. If both vg and
vs are attachments, then B is again skew to Mg-; the same happens if both vy and
v4 are attachments. The only remaining cases are: att(B) = {vg, v9} and {vg,vs},
as claimed. |

The next result contains the essence of the proof of Lemma 8.4.

LEMMA 8.12. Let (G, H,IL, 7)) be an fsq. Suppose By € N, By, = Mg+, and
Bi1, Bs, ..., By is an induced cycle in OD(Q*). Then either
(1) Q* = Qq, k =3, and By € {v1v4,v6v9} o1
(2) k is even and Br—1 € N U {vivg,v6v9}.

Proof. Case 1. k is odd.
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Theorem 5.23 implies OD(Q,) is bipartite. Therefore, Q* = Q, and sq is
exposed in II.

For i = 2,3, let e; be the edge of s; incident with v; and let D; be a 1-drawing
of G — e;. Theorem 5.23 implies @, has BOD; Lemma 5.9 implies Q; is crossed in
D;.

If, for some i € {2,3}, Q, is clean in D;, then Lemma 5.6 implies Q, has BOD,
yielding the contradiction that k is even. Therefore, Q, is crossed in both Dy and
Ds.

CLAIM 1. If some B; is either viv4 or vgvg, then ¢ = 2 and k = 3.

PROOF. Since both vjv4 and vgvg overlap Mf07 neither is in N, B is in NV,
and the cycle is induced, it must be that i = k — 1. For sake of definiteness, we
suppose Bj_1 = v1v4; the alternative is treated completely analogously.

Because Bi_1 = wviv4, we deduce that D, is the left-hand one of the two
drawings in Figure 8.1, while D3 is the right-hand drawing in Figure 8.2; in both
drawings, By_1 is outside Q.

We note that B® overlaps vivy, so if By is BY, then k = 3, as claimed. Other-
wise, B; € N'\ {B"}. By Lemma 8.10, either the only attachment of By in 797 is
vo or the only attachment of By in r4 75 is vs. For sake of definiteness, we assume
the former; the latter is completely analogous. In order not to overlap vivy, the
only attachment for By in 7475 is vq. Therefore, either £ = 3 and we are done, or
Bj is just the edge vgvy. We show that By = vguy is not possible.

Suppose that By = vgvy. Because we know Do, we see that Dy[B1] = Ds[vguy]
is inside D3[Q,], while Da[By_1] = Da[vivy] is outside. In D3, both are outside.
But this is impossible, as By, Ba, Bs, . .., Bi_2, Br_1 alternate sides of @, in both
D2 and D3.

We conclude that By = vgvy is impossible and therefore k = 3, as claimed. [

It remains to show that no other possibility can occur with £ odd. So suppose
no B; is either vv4 or vgvg. Suppose some B; other than By isin A. As B; overlaps
Mao and the cycle By, Bs, ..., By is induced, Lemma 8.11 implies ¢ = k — 1. The
same lemma implies k > 5. Therefore, Lemma 5.16 implies By, Bs, ..., By_2, Br_1

alternate sides of II[Q,]. Since k is odd, B; and Bj_; are on different sides of

I1[Q,], contradicting the fact that both are in A/. Hence no other B; is in .

By Lemma 8.9, for at least one i € {2,3}, D;[By] is inside D;[Q,]. For the
sake of definiteness, we consider the case i = 2 and Dy is the left-hand drawing of
H — (s9) in Figure 8.1; the remaining cases are completely analogous. Thus, either
B, is B or B is either a Qo- or a Q;-bridge.

Since k is odd, By_1 is on the other side of D5[@Q,] from Bj. Therefore, By_;

is outside D2[Qg]. In order to understand how Bj_; can overlap M@O in Dy, we

analyze Ds[Mg |.

Let e be the edge of M@o that is crossed in Dy. The end w of e outside D3[Q]
is in Nuc(Mg ). If the other end u of e is not in Nuc(Mg ), then u = vg and

[x,76,v6] is the only part of Mg inside D3[Q]. Otherwise, Nuc(Mg ) —{e2, e} is
not connected. Since Nuc(Mao)feg is connected, NuC(MQ) )—{ea, e} consists of the

component inside D2[Q),] and the component O outside. In particular, M@o —{ea, e}

consists of two Q,-bridges in G — {e2, e}. Let I be the one contained inside D[Q,]
and let O be the one outside. All attachments of Mg are attachments of either I
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or O, and possibly both. In the case u = vg, we take I to be the portion of e from
X to vg.

We observe that Do shows that, except for one end of e, all the attachments of
I are in Q9. On the other hand, Theorem 7.1 implies that R and, therefore I,
has no attachment in (sg). The embedding IT shows that I has no attachment in
(ro): otherwise, I is not just [X,eg, vg] and u # vg. Thus, the simple closed curve
5171 7213 84[v9, 79, a]a[b, 75, vs] bounds a closed disc in RP? separating u from (r)
and is disjoint from Nuc(l) U (rg). Unless vg = a, the same simple closed curve
separates u from vg; thus, if vy is an attachment of I, then a = vg.

Because By_1 is outside D3[@,] and att(By_1) C Q,, there are four candidates
for the face of Dy[H — (s2)] that contains By_;. The one bounded by Q3 is not
possible: if Bj_; were in that face, it would not overlap M@o’ as all the M@o
attachments there would be in s4 and, therefore, all in O and not in I; both By_4
and O being outside D3[Q,] shows they do not overlap.

The face of Do[H — (s2)] incident with [X, ro, v1] is not a possibility for Bj_1
for exactly the same reason: the only attachment of I there can be v; and v; is not
part of a pair of attachments of Mg ~that are skew to two attachments of B;_y,
which are all contained in [x,rg, v1].

The face of Do[H —(s9)] incident with rg 79 is also not a possibility for Bx_1. To
see this, vy is the only possible attachment of I in the boundary of this face. Thus,
v is an attachment of I and By_; must have attachments in each of [vg, r9, v9) and
(vo, ro, X]. However, in II we must have a = vg and then there is no way to embed
Br_.

Therefore, By_; is in the face of Do[H — (s9)] incident with r5 s;.

By way of contradiction, suppose Bj_1 is outside D3[Q,]. Identical arguments
as those just above show that Bj_1 is in the face of D3[H — (s2)] incident with rg s4.
Because the previous paragraph shows att(By_1) C 7475 81, it cannot overlap M@o

using an attachment of the portion of Mg that is inside Ds [Qo] and, therefore, it

cannot overlap M@O at all, a contradiction. Therefore, By_1 is inside D3[Q,]. This
implies By_1 is either a Qp- or QQ4-bridge.

If Bi_1 is a Q4-bridge, then att(Byx_1) C r4 (because of Dy). Letting 7 denote
the minimal subpath of r4 containing att(By_1), D2 shows that no attachment of I
is in (7) and, because O and By,_; do not overlap (in D5), O also has no attachment
in (7). Consequently, By_; does not overlap Mfo, a contradiction. Therefore, By _1
is a Qp-bridge.

Because Bj,_» is inside D3[@Q,], has no attachments in sg, and overlaps By_1
as Q,-bridges, we see that By_» is also a Qo-bridge. Continuing back, we see that
each of By_3, ..., By is a Qo-bridge and that B is outside D3[Q,]. By Lemma
8.9, By is either vgvy or vsvg. But neither of these overlaps Bs. This contradiction
shows that, except for the case described in Claim 1, k is even.

Case 2. k is even.

For eachi = 2,3,...,k—2, B;UQ* has no non-contractible cycle in RP%. Thus,
Lemma 5.16 implies B; and Bj,_; are on the same side of Q* in RP?; since B; is Q*-
exterior, we have that Bj_; is Q*-exterior. If II[Q* U Bj_1] has no non-contractible
cycle, then Lemma 5.16 shows that it cannot overlap Mg+, a contradiction. In the
case Q* = Qg, this implies that By_; is in N, while if Q* = Q,, then Bj_; is in
N @] {’U1U4, ’U({Ug}. |
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Proof of Lemma 8.4. We show that any odd cycle C in OD(Q,) contains either
v104 OF vgvg. Theorem 5.23 (3) implies that OD(Q,) — @ is bipartite. Therefore,
C' contains Mg . Lemma 8.12 shows that any odd cycle in OD(Q,) containing Mg

and an element of N has length 3 and contains one of v1v4 and vgvg, as requlred

Thus, we may suppose C avoids NU{v1vs, vgvg }; let C = (By, Ba, . .., Bag, MQO)'

For each i = 1,2,..., 2k, II[B; UQ,] has no non-contractible cycles in RP?. Lemma
5.16 implies B; and B;;; are on different sides of I1[Q,]. From this, parity implies
that By and By, are on opposite sides of I1[Q,]. On the other hand, they are both
on the side of TI[Q,] not containing M ,» & contradiction. |

We are now prepared for the proof of Theorem 8.1.

Proof of Theorem 8.1. By Theorem 3.5, G has a representativity 2 embedding
IT in RP2. For (1), if no spoke is exposed in II, then we are done; thus, with the
standard labelling, we may suppose that sy is exposed in II. From Theorem 7.1,
we know that the Q,-bridge B° containing s is different from M@O. From Lemma

8.4, we know that OD(Q,) — {v1v4,v6ve} is bipartite and from Theorem 5.23 (3),
we know that (M@O)# is planar.

We need to modify II so that the set ' (Definition 8.5) becomes empty. We
start with terminology that will be useful for the next claims.

DEFINITION 8.13. Let L be a graph. A path (v1,vs,...,v) in L is chordless
in L if there is no edge v;v; of L that is not in P except possibly vvy.

The following is a simple consequence of Lemma 8.12.

Cramm 1. (1) If Q* = Q,, then every NMQO—path in OD(Q,) of length
at least two contains one of viv4 and vgvg.
(2) If Q* = Qu, then every chordless N'Mg,-path in OD(Q4) of length at
least two has length exactly two, one end is either v4vg or vgus, and that
end does not overlap My,.

PROOF. Suppose first that Q* = Q,. Let P be any NMao—path in OD(Q,)
that has length at least 2. We may assume P is chordless: otherwise there is a
shorter ./\/M@o—path P’ of length at least 2 and V(P’) C V(P); if P’ contains either
V104 OT Ugg, then so does P. By Lemma 8.11 (2), the ends of P are adjacent in
OD(Q,). Thus, P together with this edge of OD(Q,) makes an induced cycle. As
this cycle has only one vertex in A/, Lemma 8.12 implies the cycle has length 3 and
contains one of v1v4 and vgvg.

Now suppose that Q* = Q4 and P = (Bi,Ba,...,B, Mg,) is a chordless
N Mg,-path in OD(Q4) of length at least 2. Then By € N. Since P is chordless and
By ¢ N, Lemma 8.12 (2) implies By does not overlap Mg,. Now Lemma 8.11 (2)
implies B is either vqvg or vous. Thus, By is skew to By. Since att(B;) C att(Mg, ),
By is also skew to Mg,. Since P is chordless, k = 2, as required. ([l

If Q* = @Q,, then set M to be the set {Mfo, V104, Vg }, while if @* = @4, then
set M to be the set {Mgq,,v4vg, vous}. In either case, let M~ = M\ {Mg-}.

Let Nt be the set of Q*-bridges B so that there is an A B-path in OD(Q*)
that is disjoint from M. The next lemma shows that /7 consists of the members
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of NV, which have attachments in both r* and 7%, and other Q*-bridges B that
simply extend out along either r* or r};. This structure is what will allow us to
find natural “breaking points” a’ and b’ in r* and 7 5, respectively, to allow us to
“flip” the members of A into M, yielding the embedding with H C 9t and N = @.

Cramv 2. If B € Nt then att(B) C r* Ur% ;. Furthermore, if B € N7\ WV,
then either att(B) C r* or att(B) C ri;.

PROOF. Let P be a shortest N B-path in OD(Q*) that is disjoint from M. We
proceed by induction on the length of P.

If B € N, then the result follows from Lemma 8.8. Otherwise, B ¢ A/. The
neighbour B’ of B in P is closer to N than B is, so att(B’) C r* Ur.

If B overlaps Mg~ , then P extends to a chordless N'Mg--path in OD(Q*)— M~
of length at least 2. This contradicts Claim 1, showing B does not overlap Mg-.

Suppose by way of contradiction that B has an attachment x in the interior
of some H-spoke s contained in Q*. As B overlaps B’ and att(B’) C r* U,
not all attachments of B can be in [s]. But any attachment y of B in Q* — [s]
combines with z to show that B is skew to the ends of s and, therefore, overlaps
Mg-. Therefore, att(B) C r* U7 ;.

Next suppose that B has an attachment in (r*). If B also has an attachment
in @* — [r*], then B overlaps Mg~ (the two identified attachments of B are skew
to the two ends of r*). Thus, if B has an attachment in (r*), then att(B) C r*.
Likewise, if B has an attachment in <ri5>, then att(B) C 1% 5.

If B has an attachment in each of r* and 7% 5, then the preceding paragraph
shows that att(B) consists of some of the four H-nodes that comprise the ends of
r* and ri 5. Because B overlaps B’', att(B) cannot be just the two ends of one of
the two H-spokes in Q*. In the remaining case, B is skew to Mg+, a contradiction.
Thus, either att(B) C r* or att(B) C ris. O

Let ODi(éo) = OD(@O) — {1)11)471}61)9} and let ODi(Q4) = OD(Q4) By
Lemma 8.4 or Theorem 5.23 (1), OD~(Q*) is bipartite; let (S,T) be a bipartition
of OD~(Q*), with Mg« € T. We briefly treat separately the cases Q* = @, and
Q" = Qu.

For the former, every element of A overlaps M@o and so NV C S. There is
an embedding ® of (G — {viv4,vev9}) — NuC(M@)) in the plane so that all the

Qo-bridges in N are on the same side of ®[Q,].

In the case of Q@* = Qq, N\ {v4vg,vous} C S. There is an embedding ® of
G —Nuc(Mg,) in the plane so that all the Q4-bridges in N\ {v4vg, vovs} are on the
same side of ®[Q4]. Any of vyvg and vovs that is also in S can also be embedded
on that same side of ®[Qy].

Among the attachments of the elements of N'*, let ag be the one in r* nearest
vg and let a4 be the one in 77 5 nearest vy.

CrLAamM 3. No Q*-bridge not in M is skew to {a4,a9}.

PROOF. It is clear that, in the case Q* = @4, neither v4vg nor vous is skew to
{a4, ag}. We show that a Q*-bridge not in M that is skew to {a4, ag} must overlap
some @Q*-bridge in N'*; this implies the contradiction that it is in N/ T.

By the Ordering Lemma 4.8, the elements of N'N S occur in order on Q* in
®. Thus, there is one element B’ of N'N S that has both an attachment nearest
to vy (relative to r*) and an attachment nearest to vy (relative to 77%;). Let 2’
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and g’ be the attachments of B’ nearest vy in 7* and vy in 7%, respectively. In
the case Q* = @, B® is a candidate for B’, so, even in this case, we have that
a’ € [vg,rq,v5] and y' € [vg, 19, Vo).

Suppose by way of contradiction that some @Q*-bridge B” not in M has at-
tachments =’/ and y” in the two components of Q* — {a4,aq}. We note that, when
Q* = Q4, B” % V4 Vg and B” 7£ VoVs.

If one of " and y” is in the component of Q* — {z’,y'} that is disjoint from
sq — {2',y'}, then B” overlaps B’. Since B’ € N, Lemma 8.11 implies B"” ¢ N
and, therefore, B” € N'*. But this contradicts the definition of either a4 or ag
and, therefore, both 2’/ and y” are contained in the component of Q* —{z’, 3’} that
contains sy — {a’,y’}. In particular, we may assume y" € (a4, r4,2'] U {(ag,r9,y].
For the sake of definiteness, we assume y”’ € (ag,79,v’].

Some Q*-bridge B* in N'* has ag as an attachment; since y” is in {(ag, r9, 3],
y' # ag and, therefore, BT is not in A/. There is a shortest path P = (B’, By, ..., B,)
in OD~(Q*) — Mg~ from B’ to some element B,, of N so that B,, has an attach-
ment y, in [ag, 9, y”"); choose y,, so that it is as close to ag in [ag, 9, 3"} as possible.

The Q*-bridge B,,_; is in A" and so, by minimality of n, does not have an
attachment in [ag,r9,y”). Since B, overlaps B,_1, there is an attachment z, of
B, in (y",rg,2']. Since B” is skew to {a4, a9}, there is an attachment z” of B” in
(ag, r9,v9] S4[V4, r4,a4). But now z,, y”, yn, and z” show B" overlaps B,. Since
B" ¢ M, B"” is in NT. But this contradicts the definition of a4 or ag. O

The following is immediate from Claim 3.

CrLAM 4. Each @Q*-bridge not in M has all its attachments in one of the two
agag-subpaths of Q*. O

The proof now bifurcates into the two cases. We consider first the case Q* = Q,
and that sg is exposed in II. The following is immediate from Claim 4.

Cram 5. The planar embedding @ of (G — {vivs,veve}) — Nuc(Mg ) has
the property that there is a simple closed curve in the plane that meets ®[(G —
{v1v4, v6v9}) — Nuc(Mg-+)] precisely at as and ag. O

We are now prepared to describe a representativity 2 embedding of G in RP?
so that all H-spokes are in 9.

Let ¥ be an embedding of H in RP? so that all H-spokes are contained in
the M6bius band Mg bounded by ¥[R] and let g be a non-contractible, simple,
closed curve that meets H in precisely the points a4 and ag. The claim is that this
embedding extends to an embedding of G so that vy meets G only at a4 and ag.

Claim 4 implies that we can add all the Q,-bridges other than vivy, veve, and
M@o to ¥ so that there is no additional intersection with ~g. It remains to show

that we may also add the at most three remaining Q,-bridges.
CLAIM 6. At most one of vjv4 and vgvg is in G.

PROOF. Suppose both are in G. We consider a 1-drawing Dy of G—(s3). As Q,
must be crossed in Dy (it has BOD and s5 is contained in a planar Q,-bridge; apply
Lemma 5.9), we conclude that rry ro 73 crosses r5 76 77 s in Do. In particular, sg
and s4 cannot be exposed.

In order for vyvy to be not crossed in Do, we must have the crossing in 7q.
Likewise, vgvg implies the crossing is in r5. But then neither riry nor rgry is
crossed, so Q5 is not crossed in Dy, a contradiction. [
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We note that v,v4 and vgvg are not symmetric: the embedding II of G in RP?
distinguishes these two cases. However, it is easy to add either of these to ¥ so
that the newly added edge is in the closed disc D¢ bounded by ¥[R] in ¥.

Finally, it remains to show that we may also add Mf to W. Here the argument
depends slightly on which of vyv4 and vgvg occurs in G We will assume, for the
sake of definiteness, that it is vyvs that occurs; the argument in the other case is
completely analogous. We shall simply import H[MQO] in RP? as its embedding in
v,

To this end, let B be any H-bridge contained in Mg so that II[B] € D. We
show that either att(B) C rorq ror3 [vs, 74, aq] or att(B) C r5 16 17 13 [Vg, T9, Qg].

We begin by observing that such a B cannot overlap vvs (as R-bridges), as
both are are embedded in ® by II. An analogous discussion applies if vivy is
replaced by wvgvg.

The embedding IT shows B cannot have an attachment in each of (rq o r3) and
(rsreryrsre). Likewise, B cannot have an attachment in each of (rgr7rs) and
ror1 T2 T3 74. The next claim treats the remaining possibilities.

CrLAM 7. The H-bridge B does not have an attachment in each of (rirer3)
and (a4, r4,vs5]. Likewise, B does not have an attachment in each of (rgr7rs) and
either r5 or (ag, g, vg].

PROOF. Suppose by way of contradiction that B has an attachment x in
(aq,74,v5] and an attachment y € (ryryrs). Let P be an H-avoiding zy-path
in B. Since a4 is an attachment of some element of AT, there is a shortest path S
in OD(Q,) — {v1v4, vevo, Mg } joining some By in N to a Q-bridge Byr+ so that
B+ has an attachment in [vg, 74, 2).

If Byr+ € N, then Byr+ € ®. Lemma 8.8 shows B+ has an attachment in each
of r* and r7 5; therefore, Byr+ is not contained in the closed disc bounded by P and
a subpath of r1 79374, B+ and P must cross in II. Therefore, By+ € N\ N.

The neighbour B).. of By+ in S does not have an attachment in [v4, 74, x).
Since Br+ overlaps B}\H’ it follows that B+ has another attachment in (z, r4, vs,
r5,b]. In particular, the edge e of [v4, 74, 2] incident with = is H-green because of
B+

On the other hand, if either  # vs or y ¢ (r1), then P combines with the
xy-subpath of ry ror3fvy, r4, 2] to make another H-green cycle containing e, con-
tradicting Theorem 6.7. Therefore, * = vy and y € (r1). But then att(B) C Q,,
contradicting the fact that B C MQ)

The “likewise” statement has an analogous proof. O

We now sce that ¥ may be extended to include II[Mg |, completing the proof
when Q* = Q,.

The proof will be completed by now considering the case Q* = Q4. The only
difference in how we proceed is to note that the H-bridges vqvg and vgus, if they
exist, may be transferred to 9 at the start. To see this, first observe that v4v9 and
vous overlap on R and so cannot both be embedded in ®. If v4vg is not contained
in 91, then we may consider H' to be (H — (s4)) 4+ v4v9, relabel H' so that vgvg —
the exposed spoke — is sg and proceed as above to move v4v9 into 9. |

The following notions will be helpful for the duration of the work.
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DEFINITION 8.14. Let G be a graph, Vo= H C G and let B be an H-bridge
in G.
(1) If there is an 7 € {0,1,2, 3,4} so that att(B) C Q;, then B is both a local
H-bridge and a Q;-local H-bridge.
(2) Otherwise, B is a global H-bridge.

_ COROLLARY 8.15. Let G € M3 and Vip=2 H C G. Then there is no i so that
Q; has BOD and each edge of r;_or;_17; 141 1S in an H-green cycle consisting of
a global H-bridge and a path in R having at most two H-nodes other than v;.

Proof. By way of contradiction, suppose there is such an ¢. By Theorem 8.1,
G has a representativity 2 embedding in RP? so that H C 9. Thus, s; is in a
Q;-bridge other than Mg .

By Lemma 6.6 (10), no edge of r;_or;_17; ;141 can be crossed in any 1-drawing
D of G — (s;). By hypothesis, Q; has BOD, so Lemma 5.9 implies Q, is crossed
in D, which further implies that some edge of r;_o7;_17;7;41 is crossed in D, a
contradiction. |



CHAPTER 9

Parallel edges

In this very short chapter, we present some observations on how parallel edges
can occur in 2-crossing-critical graphs. This will be used in later sections, especially
Section 15, where we determine all the 3-connected, 2-crossing-critical graphs that
do not have a subdivision of V5. There are easy generalizations to k-crossing-critical
graphs.

DEFINITION 9.1. For an edge e of a graph G, u(e) denotes the number of edges
parallel to e (including e itself).

OBSERVATION 9.2. Let G be a 2-crossing-critical graph and let e and €' be

parallel edges of G. Then:

(1) if G is the underlying simple graph, then G is not planar;

(2) the edge €' is crossed in any 1-drawing of G — e;

(5) ule) <2

(4) if € is an edge parallel to e, then G — {e, €'} is planar;

(5) if cv(G) > 2, then G is simple; and

(6) if n >4 and Vo, 2 H C G, then one of e and €' is in the H-rim.

PROOF. For (1), a planar embedding of G allows us to introduce all the parallel
edges of G with no crossings, showing G is planar, a contradiction.

For (2)—(5), let D be a 1-drawing of G — e and suppose €’ is not crossed in D
Then we may add e alongside Dle’] to obtain a 1-drawing of G, a contradiction.
Since D has at most one crossing, it must be of ¢/, which is (2). Adding e alongside
Dle'] yields a 2-drawing of G. Thus we have (4) and (5). Also, (3) follows, since
any other edge €’ parallel to e does not cross e’ in D,.. Thus, €’ is not crossed in
D,., which contradicts the second sentence, with ¢ in place of ¢’

Finally, for (6), we may suppose e is not in H. Lemma 3.6 shows that the
only edges that are in every non-planar subgraph of G — e are those in the H-rim.
Therefore, €’ is in the H-rim. ]
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CHAPTER 10

Tidiness and global H-bridges

In this section, we show that, if G € M3 and V3= H C G, then there is a
Vip= H' C G with many useful additional characteristics that we call “tidiness”.
The main result is that a tidy subdivision of Vjy has only very particular global
bridges, each of which is an edge. We start with a slightly milder version of tidiness.

DEFINITION 10.1. Let II be a representativity 2 embedding of G in RP? and
let Vip= H C G. Then H is Il-pretidy if:
(1) all H-spokes are embedded in 2t; and
(2) for every H-quad @ and for every Q-bridge B other than Mg, Q U B has
no non-contractible cycle in II.

The first step in this section is to find an embedding with a pretidy subdivision
of Vm.

LEMMA 10.2. Let G € M3 and Vio= H C G. Then G has a representativity 2
embedding I1 in RP? so that H is H-pretidy.

Proof. By Theorem 8.1, G has a representativity 2 embedding II in RP? so that
all the H-spokes are contained in 9 and so that, for any Q4-bridge B other than
Mg,, II[Q4 U B] has no non-contractible cycle. We note that every global H-bridge
is contained in ®. We describe a particular representativity 2 embedding IT* of
G in RP? for which H is II*-pretidy. Let v be the non-contractible simple closed
curve that meets II(G) at just the two points a and b.

The embedding II* is obtained by adjusting the local H-bridges; we do not
adjust those that are Q4-local. We start with IT* being the same as IT on H and all
the QQ4-bridges other than Mg,. Let Q be an H-quad other than Q4. By Theorem
5.23, @ has BOD and all Q-bridges other than Mq are planar. Let (S,T) be a
bipartition of OD(Q) labelled so that Mg € T. Let IIg be a planar embedding of
@ and all the Q-bridges other than Mg so that all the Q-bridges in T\ {Mg} are
on one side of IIg[Q] and all the @Q-bridges in S are on the other side of IIg[Q)].

Extend IT* to include all the @-bridges other than Mg by placing the Q-bridges
in S into the H-face in II* bounded by II*[Q], using IIg. As every Q-bridge in
T\ {Mg} does not overlap Mg, each of these has all its attachments on one of the
four H-branches in ) and these may be embedded in IT* on the other side of II*[Q)],
and without crossing Mg U~y.

The only concern here is that a local H-bridge can be local for distinct H-
quads. Such an H-bridge B must have all its attachments on the same H-spoke s;.
We claim it is in T for one of Q);_1 and @Q); and in S for the other one of ();_; and
Qi

As G is 3-connected, OD(Q);) is connected (see [6, Thm. 1], where this is
proved for binary matroids). There is a shortest Mg, B-path P = (By, B1,...,By)
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in OD(Q;) (thus, By = Mg, and B, = B). Let k be least so that By has an
attachment in (s;).

CramM 1. For j >k, att(B;) C s;, and k < 1.

Proor. If, for some j > k, B; has an attachment not in s;, then j < n. If B,
has an attachment in (s;), then B; is skew to Mg, and P is not a shortest Mg, B-
path, a contradiction. Thus, there is a least j' > j so that Bj has an attachment
n (s;j). Since Bj overlaps Bj_; and Bj/_; has no attachment in (s;), Bj has an
attachment not in s;. Again, B;: is skew to Mg, , so P is not a shortest Mg, B-path,
a contradiction. Thus, for all j > k, att(B;) C s;.

If £ = 0, then obviously & < 1, so we may assume k > 1. As By has an
attachment in (s;) and By_1 does not, it follows that By has an attachment not in
s;. But then By, is skew to Mg,. Because P is a shortest Mg, B-path, we deduce
that k& < 1. O

The claim shows that the @Q;-bridges Bx+1, Bik+2, ..., By are also Q;_1-bridges
and, therefore, (Bk41, Bgt2,--.,Byr) is a path in OD(Q,;_1). Suppose first that k =
0. Then Mg, contains a vertex z in (s;) so that « and v, 11 are skew to By. There
is a shortest @Q;-avoiding path P in Mg, joining x to a vertex in Nuc(Mg,) N H.
Since P is not in the face of II[Q;] contained in M, we deduce that P is contained
in the face of II[Q;_1] contained in M. But then we conclude that P is contained
in a Q;_1-local H-bridge B’, showing that B’ is skew to both Mg, , and to Bj.
We deduce that, in OD(Q;), Mg, and By are on opposite sides of the bipartition of
0OD(Q;), while Mg, , and B; are on the same side of the bipartition of OD(Q;_1).
Since B; and B = B,, have not changed their relative positions, we see that in
one of OD(Q;) and OD(Q;—1), B is on the same side of the bipartition as the
corresponding Mobius bridge, while in the other B and the other corresponding
Mobius bridge are on opposite sides of the bipartition.

The argument works exactly in reverse when k£ = 1. In this case, B; is skew to
Mg, and By. Since By € Mg, ,, we conclude that Bs is skew to Mg, ,, and the
result follows analogously to the argument in the preceding paragraph.

Finally, suppose B is a global H-bridge. Then, for each H-quad Q, B € Mg,
so B does not overlap any of the @-local H-bridges already embedded in ®y+~ and,
since II[B] C D, B can also be added to IT*. |

We are now ready to move to tidiness.

DEFINITION 10.3. Let V19 = H C G and let II be a representativity 2 embedding
of G. Then H is Il-tidy if:
1) HC M,
2) every local H-bridge is contained in 91,
3) for each H-quad @, no two Q-local H-bridges overlap; and
4) there is no H-avoiding path P in ® and an index ¢ € {0,1,2,...,9} so
that P has both its ends in (v;, 7, Vi1, Ti41, Vit2, Tit2, Vit3)-
If Vip=2 H C G, then H is tidy if there is a representativity 2 embedding IT of G so
that H is II-tidy.

(
(
(
(

Our aim is the following result.

THEOREM 10.4. Let G € M3 have a subdivision of Vig. Then there exists a
representativity 2 embedding I1 in RP? of G with a II-tidy subdivision of Vig.
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The following concept is central to the proof.

DEFINITION 10.5. Let Vio = H C G. Then Loc(H) denotes the union of H and
all the local H-bridges in G.

Proof of Theorem 10.4. For any V3= H C G, Lemma 10.2 implies there is a
representativity 2 embedding II of G in RP? so that H is II-pretidy. Among all H
for which Loc(H) is maximal and all IT so that H is II-pretidy, we consider the pairs
(H,II) so that G NMyy(gry is maximal. Among all these pairs (H, IT), we choose one
for which the number of edges of G in H-spokes in minimized. We claim that this
H is TI-tidy. We note that (1) is satisfied by the fact that H is I-pretidy.

If H and II fail to satisfy either (2) or (4), then either there is an H-quad @ so
that some @-local H-bridge B is not embedded in My, or there is an H-avoiding
path P contained in D and an index ¢ € {0,1,2,...,9} so that P has both ends
in (r; 7i41 i42). In the first case, as Q U B has no non-contractible cycles, the only
possibility is that B has all its attachments in one of the H-rim branches of Q.
Thus, the first case is a special case of the second; we now consider the second case.

Let P’ be the subpath of (r; r; 11 7;12) joining the ends u and w of P, with the
labelling chosen so that u is nearer to v; in P’ than w is. Note that the cycle PU P’
is an H-green cycle and, therefore, bounds a face of G.

We construct a new subdivision H' of Vjo in G. The H’-rim is obtained from the
H-rim by replacing P’ with P. The spokes s;, s;+3, and s;+4 of H' are also spokes
of H'. The H-spokes s;;1 and s;;2 might need extension, using the subpaths of
T; Ti+1 Ti+2 joining u and/or w to either v; 1 or v; 42 as necessary, to become spokes
of H'. Evidently all H'-spokes are contained in My, so H C GNM g C Loc(H').
Furthermore, if F is the (closed) face of G bounded by PUP’, then My = My UF.

Cram 1. Loc(H) C Loc(H').

PROOF. Let e be an edge of Loc(H). If e € My, then e € Loc(H'), so we may
assume e ¢ My . Let B be the local H-bridge containing e. Since e ¢ My and
My C My, we deduce that B C Dy, and so all attachments of B are in some
H-rim branch (recall H is ITI-pretidy). Thus, Corollary 5.15 implies B has precisely
two attachments and therefore is just the edge e. Consequently, B is disjoint from
P (it is not in Mpy), and so B is an H'-bridge, whence e € Loc(H’). O

If P is not contained in a local H-bridge, then, since P C Loc(H"), we contradict
maximality of Loc(H). Therefore, P is contained in, and therefore is, a local H-
bridge B. But this implies that H' is II-pretidy and that G has one more edge in
My than it has in My, contradicting the maximality of G N M y. Therefore, (2)
and (4) hold for (H,1II).

It follows that, if H is not II-tidy, then (3) is violated: there exists an H-quad
Q and two Q-bridges B and B’ in (Mg)# that overlap. As both B and B’ are
contained in 9, one, say B, is Q-interior in II, while B’ is Q-exterior. This implies
that att(B’) C s, for some H-spoke s C Q. Corollary 5.15 implies that B’ is just
an edge vw. We note that B has an attachment z in (u, s, w) and an attachment
y not in [u, s, w).

Let H” be the subdivision of Vi obtained from H by replacing s with (s —
(u, s,w))UB’. We note that H” is -pretidy, Loc(H') = Loc(H), and My = My,
so G N My~ is maximal. However, the H”-spokes have in total at least one fewer
edge than the H-spokes, contradicting the choice of H. |
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We now turn our attention to the global H-bridges of a tidy H.

THEOREM 10.6. Let G € M3 and Vio=H C G. If H is tidy, then any global
H-bridge is just an edge, and, in particular, has one of the forms v;v;12, V;V;13, or
has v; as one end and the other end is in (r;_3) U (ri12).

Proof. Let II be a representativity 2 embedding of G for which H is II-tidy.
In particular, all H-spokes and all local H-bridges are in 991, and, for each i =
0,1,2...,9, no global H-bridge has two attachments in {r; 7;+1 7i12).

Let B be a global H-bridge. We note that B C ®.

CrAamm 1. If there is an ¢ so that att(B) C r; r;41 7it2, then either B = v;v;49
or B = ;110,43 or B = v;v;43 or B has v; as one end and the other end is in (r; o)
or B has v;43 as one end and the other end is in (r;).

PROOF. Because H is tidy, no two attachments of B are in (r; 711 7;42). Thus,
at least one of v; and v; ;3 is an attachment of B; for the sake of definiteness, let
it be v;. Then tidiness implies no attachment of B can be in (r; r;+1). As tidiness
also implies ;42 has at most one, and therefore exactly one, attachment of B, the
result follows. O

CrAmM 2. If there is no i so that att(B) C r; ;411 rit2, then either att(B) =
{vo, vs, 2}, with z € (re) U (r7) or att(B) = {v4,v9, 2}, with z € (r1) U (rg).

PROOF. We may assume that B is embedded in the (H U ~y)-face contained in
® and incident with vy, vy, ..., v4. As H is tidy and B is H-global, there exist
1,7 €{9,0,1,2,3,4} so that (taking 9 to be equal to —1) i < j, B has attachments
2z in r; —v;41 and y in r; — vy, and j — 4 > 3; choose such 7, j so that j — ¢ is as
small as possible. By tidiness, there is no other attachment of B in

[7‘1;1 T Ti+1> U <7‘j,1 rj ’I‘j+1] .
SuBcLAIM 1. Either ¢ = —1 or j = 4.

PrROOF. In the alternative, ¢ > 0 and j < 3. As j — i > 3, we conclude that
i =0 and j = 3, so the six H-rim branches r;_1, 7y, 7441, 7j—1, 1;, and r;4; are all
distinct and cover the entire ab-subpath in the boundary of (H U~y)-face containing
B, with the possible exception of vs, in which case both x = vg and y = v4.

Let e be an edge in so and let D be a 1-drawing of G —e. Theorem 5.23 implies
Q5 has BOD; now Lemma 5.9 implies @, is crossed in D. In particular, 7o ry ro 73
crosses 1517 7 g in D.

In the case vy is an attachment of B, let P and P’ be H-avoiding vgvs- and
vouy-paths in B, respectively. Then the cycles rqry[va, P,vg] and ro r3fvg, P, vs]
are both H-green. Lemma 7.2 (1) implies neither is crossed in D, yielding the
contradiction that rg 7y 79 r3 is not crossed in D.

Thus, B is the edge zy. Note that B is not a local H-bridge and, therefore,
not both vy and vy are attachments of B. As B is not crossed in D, we deduce that
the zy-subpath of rqryro 73 is also not crossed in D. Therefore, either rg or r3 is
crossed in D. From this, we conclude that, since @, is crossed in D, 76 77 is crossed
in D. Moreover, either s; or s3 is exposed in D. By symmetry, we may assume s
is exposed in D.

If x # v, then the cycle 1791383137980 7581 is clean in D and separates
x € (r1) from y € (vs, T3, v4], S0 B must be crossed in D, a contradiction. If y # vy,
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then the cycle r1 1o s378 47475 81 is clean in D and separates x € [vg, 71, v1) from
y € (r3), and again B is crossed in D, a contradiction. O

Recall that —1 is equal to 9. The following is immediate from tidiness.

SUBCLAIM 2. (1) Ifz € [a,rg, vo), then there is no attachment in [vg, o, v1).
(2) If y € (v4,74,b], then there is no attachment in (vs, 73, v4). O

The next two subclaims are rather less trivial.

SUBCLAIM 3. (1) Ifx € [a, rg,vp), then there is no attachment in [vg, r9, v3).
(2) If y € (vq,74,b], then there is no attachment in (vq,r1,vs].

ProOF. We prove (1); (2) is symmetric. For (1), suppose there is an at-
tachment y’ in [ve,r2,v3). By tidiness, there is no attachment other than y’ in
(rom rars), and so minimality of j — ¢ implies y' = y.

The only other possible attachment is in [vy, r4, b]. If there is an attachment z
in [vg,74,b], then either y = vy or z = b = v5. Thus, either z does not exist and B
is the edge xy, or z exists, B has exactly three attachments, namely x, y, and z,
and Lemma 5.19 shows B is a K7 3. Let P and P’ be the zy- and yz-paths (the
latter only if z exists) in B.

Suppose first that y # va. Then 2 = vy, as otherwise [y, P, z, 19, vg| 7o 712, 72, Y]
is an H-green cycle with the three H-nodes vg, v1, v in its interior, contradicting
Lemma 6.6 (9).

Theorem 5.23 (6a) does not apply, as x = vg = a implies vy # a. If Theorem
5.23 (6b) applies, then there is a second H-bridge B’ attaching at b = v5 and in
ror1. But then B and B’ must cross in II, a contradiction. Therefore, Theorem
5.23 (6) shows @, has BOD.

Let e be an edge of s; and let D be a 1-drawing of G — e. Lemma 5.9 implies
@, is crossed in D. On the other hand, the presence of P and Lemma 7.2 (3a) and
(2) imply @, cannot be crossed in D, the desired contradiction.

Therefore, y = vy. Since x,y € rgrory, the hypothesis of the claim implies
z must exist. The cycles [z, P, vs]ry ro[vo, 9, ] and [z, P, va|ra r3[vg, 74, 2] are H-
green. Let e be an edge in se and let D be a 1-drawing of G — e. Theorem 5.23
implies @, has BOD, so Lemma 5.9 implies @, is crossed in D. However, Lemma
7.2 (1) shows that rg and r3 are not crossed. If x # vg, then the same result shows
r1 is not crossed and likewise if z # vs, then 79 is not crossed. If, say, = vg, then
Lemma 7.2 (3b) implies r; can only cross rs. However, if z # vy, then (2) shows g
cannot be crossed.

In the remaining case, * = vg and z = vy. In this case, a = z = vg. If Q,
does not have BOD, then Theorem 5.23 (6) implies b = v and there is a Q;-bridge
B’ different from M@ﬁ having attachments at b and in r¢ 71, and embedded in ©.
But then B’ is an H-bridge different from B that overlaps B on R, while both are
embedded in ®, a contradiction. O

SUBCLAIM 4. (1) Ifx € [a,rg, vo), then there is no attachment in [vs, r3, v4).
(2) If y € (v4,74,b], then there is no attachment in (vo, 7o, v1].

PROOF. We prove (1); (2) is symmetric. For (1), suppose there is an attach-
ment in [v3,73,v4). By minimality of j—i, Subclaim 3 and tidiness, this attachment
is y. Also by tidiness, there is no other attachment in (ry rorsry).
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Suppose there is also an attachment z in [vy,71,v2). The preceding paragraph
shows z = v;. Tidiness now implies that z is vg and, since a € rg and x € [a, rg, vg),
a = vg. Let P and P’ be H-avoiding x2- and yz-paths in B, respectively.

Theorem 5.23 (6) implies Q; has BOD. If D; is any 1-drawing of G'— (s1), then
Lemma 5.9 implies @, is crossed in D;. But Lemma 7.2 implies (recall z = v;)
the two H-green cycles [z, P,x, 19, vg, 70, 2] and [y, P’, z,71,v2, T2, V3,73, Y] are not
crossed in Dj. Thus, r9rgryre is not crossed in Dy (since = vg), so @1 is not
crossed in Dy, a contradiction.

Therefore, there is no attachment in [vq,r1,v2). Thus, we may assume that the
only attachments in [a, 79, vo|7o 1 T2 T3 are © € [a, 79, vy) and y € [vs,r3,vys). Tidi-
ness further shows there is no attachment in [vy, 74, v5), so the only other possible
attachment of B is vs, in which case y = vs.

In each of the two cases x # vy and x = vg, we show that @, has NBOD by
showing that B, o and the @ -bridge By containing s, are mutually overlapping.
We remark that B and By are in different faces of II[H], so B # B,. Obviously,

By, is skew to M§4.
Case 1. = # vg.

The attachments x and y of B are skew to vy and vg, so B and By overlap.
Also, z and y are skew to vg and vy, so B and M§4 overlap, as required.

Case 2. © = vg.

As z,y € Q3 and B is not @3-local, there is another attachment z of B. Our
earlier remarks imply z = v; and y = v3. Now y and z show B and B, are skew,
while z and y show B and M@4 are skew.

We now resume our general discussion. Let P, be the zy-path in B. Since
x € [a,r9,v0), Vo # a. Suppose some Q,-bridge B’ has an attachment at b = vs
and an attachment in 797r;. Since B is not a Q;-bridge and both B and B’ are
H-bridges, B # B’. Then P,, and a vs [ro ri]-path in B’ would cross in II, which
is impossible. Therefore, Theorem 5.23 shows @; has BOD.

Let D; be a 1-drawing of G — (s1). Because @, has NBOD, Lemma 5.6 implies
D1[Q,] is not clean in D;. Since @, has BOD and s; is contained in a planar
Q;-bridge, Lemma 5.9 implies @, is crossed in D;. Therefore, s is exposed in
D;. Thus D1[H — (s1)] is one of two possible 1-drawings, depending on whether rg
CrOSSes 7’5 7'g OF T'y CTOSSES I'g7T1.

If © # vy, then P, cannot be added to D;[H — (s1)] without introducing a
second crossing, which is impossible. If x = wvg, then the three attachments of B
are not all on the same face of Dy[H — (s1)], so B cannot be added to D1[H — (s1)]
without introducing a second crossing, the final contradiction. O

We can now complete the proof of Claim 2. Subclaim 1 implies either x €
[a,79,v0) Or y € (v4,74,b]. By symmetry, we may assume the former. Subclaims
3 and 4 imply y € [v4,74,b]. If y # vy, then Subclaims 2, 3 and 4 (all six state-
ments) show that there is no other attachment of B. But then B is Q4-local, a
contradiction. Therefore, y = v4, and, furthermore, there is an attachment z of B
in [’Ul, 1, ’U2>.

If x # vg, then both x and z are in (rgrgr1), contradicting tidiness. Thus,
T = Vg.
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The claim will be proved once we know z # wv;. By way of contradiction,
suppose z = v1. Consider any 1-drawing Dy of G — (s3). By Theorem 5.23, Q,
has BOD. Thus, Lemma 5.9 implies @2 is crossed in Ds. That is, rg r1 2 73 crosses
r5 76 T7Ts in Do. In particular, neither sg nor sy4 is exposed in Ds.

Since B is global and has attachments at v4 and vg, it must be that Dy[B]
is in the face of Do[R U sg U 4] incident with s4 and the crossing. Since vy is
an attachment of B, v; must be in the subpath of rg 71 ro 73 between the crossing
and vy. But then sz is not exposed in D, implying B must cross s3 in Dy, a
contradiction that shows vy is not an attachment of B, completing the proof of the
claim. (I

To complete the proof of the theorem, by way of contradiction assume there is
no i so that att(B) C r; riy1 mir2. Claim 2 shows either att(B) = {vg, vs, 2}, with
z € (ro) U (ry) or att(B) = {vg,vg, 2}, with z € (r1) U (rg). These are all the same
up to the labelling of H, a, and b, so we may assume att(B) = {vg,vs, 2z}, with
z € (r2). Let H' be the subdivision of Vi consisting of H — (sg), together with the
vous-path in B.

In order to apply Theorem 7.1, we show that IT is H'-friendly. If II is not H'-
friendly, then Lemma 6.5 (1) implies (since H and H’ have the same nodes) vgvg
is an edge and II[vgvg| is contained in My, which is the same as M. But vg and
vg are not incident with the same H-face in 9y and, therefore, this is impossible.
Thus, IT is H'-friendly. However, H' violates Theorem 7.1, a contradiction.

Therefore, there is an i so that att(B) C r; r;41 7i42. Claim 1 implies B has
one of the three desired forms. |

We can go somewhat further in our analysis of the global H-bridges of a tidy
Vio=2H CG.

DEeFINITION 10.7. Let G € ./\/l% and Vo2 H C G, with H tidy. Let B be a
global H-bridge with attachments = and y.

(1) The span of B is the xy-subpath R with the fewest H-nodes.

(2) An edge or subpath of R is spanned by B if it is in the span of B.

(3) B is: a 2-jump if, for some i, its attachments are v; and v;42; a 3-jump if,
for some i, its attachments are v; and v;3; or else is a 2.5-jump.

We remark that Theorem 10.6 implies that, in the case of a 2.5-jump, there is
an i so that v; is one attachment and the other attachment is in (r;_3) U (ri42).
Theorem 10.6 further implies a global H-bridge has precisely two attachments and
its span has at most four H-nodes. It follows from Definition 6.2 that every global
H-bridge combines with its span to form an H-green cycle.

LEMMA 10.8. Lgt G € M3 and Vip=H C G, with H tidy. For each i €
{0,1,2,3,4}, either Q, has BOD or one of v;—1v;—4 and v;11v;14 is a global H-
bridge.

Proof. Let II be an embedding of G in RP? so that H is II-tidy. Suppose neither
of the edges v;_1v;_4 and v;+1v;44 occurs in G. The @i—bridges that are @i—exterior
consist of Ma7 those that are contained in 90t and, therefore, attach along either
Si—1 O Siy1, and those that are contained in ®. Since H is II-tidy, these latter
must be global. By Theorem 10.6 they are 2-, 2.5-, and 3-jumps.
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Consider any global H-bridge. It is embedded in ® so that it, together with
its spanned path in R, bounds a face of G. In particular, if we are considering a
2-jump B that is a @i—bridge, the 2-jump is either v;_1v;41 or v;4+4v;4¢. In this
case, @, U B has no non-contractible cycle in RP? and so, by Lemma 5.16, B does
not overlap any other Q,-exterior @,-bridge.

It is not possible for a 2.5-jump to be a @,-bridge. The only 3-jumps that can
be a @i—bridge are v; 410,44 and v;_4v;_1, and these are assumed not to be in G.
We conclude that the Q,-exterior @,-bridges do not overlap and, therefore, @, has
BOD. ]

LEMMA 10.9. Let G € M3 and Vip= H C G, with H tidy. Then:

(1) no two global H-bridges have an H-node in common;

(2) at most one global H-bridge is a 3-jump;

(3) there is no i so that v;v;43 is a 3-jump and some 2.5-jump has an end in
<vi71774i71>vi];

(4) if By and By are global H-bridges, then, for every i € {0,1,2,3,4}, there
is some edge of Q, N R that is not spanned by either By or By; and

(5) for each i € {0,1,2,3,4}, at most one of {r;) and (r;y5) can contain an
end of a 2.5-jump.

Proof. We start with (1).
CrLAM 1. No two global H-bridges have an H-node in common.

PROOF. suppose by way of contradiction that the two global H-bridges B
and By have the H-node v; in common. For j = 1,2, let P; be the subpath of
R spanned by B;. Then each of B; U P; is a green cycle; therefore, Theorem 6.7
implies P; and P, are edge disjoint. We choose the labelling so that r; Ur;11 C Py
and r;_s Ur;_1 C P,. We treat various cases.

SUBCLAIM 1. At least one of By and Bs is not a 3-jump.

PRrROOF. Suppose to the contrary that B; and By are both 3-jumps, so B; =
v;;+3 and By = v;_3v;, respectively. Then there is a 1-drawing D; of (H — s;) U
Bi U By; Lemma 10.8 implies @, has BOD, so Lemma 5.9 implies @, is crossed in
D;.

Because of By, Lemma 7.2 (3a) implies r;; and r; 12 are not crossed in D,
while (3b) of the same lemma implies that if r; were crossed, it would cross r;y3.
However, (2) shows ;43 is not crossed. Therefore, no edge of r; r;4+1 r;y2 is crossed
in D;. Analogously, no edge of r;_31;_o7;_1 is crossed in D;. These two assertions
show @, cannot be crossed in D;, a contradiction. O

SUBCLAIM 2. Neither By nor By is a 3-jump.

PrOOF. By Claim 1, not both B; and By are 3-jumps. So suppose for sake of
definiteness that Bj is the 3-jump v;v;43 and Bs is a global H-bridge with one end
at v; and one end in (v;_3,7;_3, Vi_2).

The embedding in RP? shows that Vi+20i15 is not an edge of G (it would cross
Bj1) and Claim 1 shows v;_3v; is not an edge of G. Therefore, Lemma 10.8 implies
Qi—i-l has BOD. Thus, in any 1-drawing D;;1 of G — (s;41), Lemma 5.9 implies
Q;41 is crossed in D .
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By Lemma 7.2 (3a) (when By is a 2.5-jump) or (1) (when By is a 2-jump), 7;_1
is not crossed in Qi+1. Likewise, (1) shows that none of r;, 7,41, and r; 4o is crossed
in D. But then @, is not crossed in D41, a contradiction. O

By Claim 2, we know that neither B; nor Bj is a 3-jump. By Theorem 6.7,
neither v;_1v;,_4 nor v;4+1v;44 can occur in G; Lemma 10.8 implies @l has BOD.
Let D; be a 1-drawing of G — (s;). By Lemma 5.9, Q; is crossed in D;.

Lemma 7.2 (1) shows that P; and P are both not crossed in D;. This implies
that r;_or;_1 7; 7,41 is not crossed in D and, therefore, @l is not crossed in D;, a

contradiction that completes the proof of the claim. O

We move on to (2).
CLAIM 2. There is at most one global H-bridge that is a 3-jump.

PRrROOF. Suppose there are distinct 3-jumps. Claim 1 implies that, up to rela-
belling, they are either v;v;y3 and v;44v;47 or v;v;4+3 and v;45v;48. Theorem 6.7
and Claim 1 imply that there cannot be a third 3-jump. Thus, Lemma 10.8 implies
Q;41 has BOD.

Let C7 and C5 be the two H-green cycles containing these 3-jumps. Lemma
5.9 implies @, 4 is crossed in a 1-drawing D; 41 of G — (s;+1). But Lemma 7.2 (1)
implies that neither r; r;41 nor r; 457,46 is crossed in D, 1, a contradiction proving
the claim. ([l

We next turn to (3).

CrAIM 3. There is no i so that v;v;13 is a 3-jump and some 2.5-jump has an
end in (v;_1,7i—1, V.

PROOF. Suppose to the contrary that there is such an i. From Claim 1, the
2.5-jump has an end w € (v;_1,7r;—1,v;). Its other end is v;_5. Lemma 10.8 and
Claim 2 imply that @, , has BOD. Let D; 5 be a 1-drawing of G — (s;42). Lemma
5.9 implies @, ,, is crossed in D o.

By Lemma 7.2 (2), 743 is not crossed in D;;5. The same lemma (1) implies

T; Ti41Tiy2 iS not crossed in D;;o. Consequently, @;, o is not crossed in D;yo,
contradicting the preceding paragraph and proving the claim. O

Now we prove (4).

CrAamM 4. If By and By are global H-bridges, then, for every ¢ € {0, 1,2, 3,4},
some edge of @, N R is not spanned by either B; or Bs.

PROOF. Suppose by way of contradiction that the global H-bridge B; spans
the side r; U r;y1 of @iﬂ and a second global H-bridge Bs spans ;45 U rj+6. 10
see that Qi-s-l has BOD, by Lemma 10.8 it suffices to show that neither of the
3-jumps v;v;—3 and v;42v;45 is in G. For the former, Theorem 6.7 implies v; is an
attachment of Bj, contradicting Claim 1. For the latter, v;12 is an attachment of
Bs, with the same contradiction. Therefore @, ; has BOD.

Lemma 5.9 implies that, for any 1-drawing D; ;1 of G—(s;41), @Z-H is crossed in
D;;1. However, Lemma 7.2 (1) implies that neither r; ;41 nor r;45r;y¢ is crossed
in D; 1, showing Q,; 11 is not crossed in D; 1, a contradiction proving the claim. [
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Finally, we prove (5). Suppose, for j € {i,i + 5}, (r;) contains an end of the
2.5-jump B;. We may use the symmetry to assume that B; = wv;_o. If B;y5 has
vi+3 as an end, then we contradict Claim 4. Therefore, B; 5 has v;1gs = v;_2 as an
end, contradicting Claim 1. |

We conclude this section with two observations about local bridges of a tidy
subdivision of Vig.

LEMMA 10.10. Let G € M3 and Vio= H C G, with H tidy. Then no H-bridge
has all its attachments in one H-spoke.

Proof. By way of contradiction, suppose B is an H-bridge and s is an H-spoke
so that att(B) C s. By Corollary 5.15, B has precisely two attachments, so B is
just an edge uw. Choose B so that no other H-bridge has all its attachments in a
proper subpath of [u, s, w]. If [u,s,w] has no interior vertex, then B and [u, s, w]
are parallel edges not in the H-rim, contradicting Observation 9.2 (6). Thus, some
H-bridge B’ has an attachment x in (u, s, w).

Let I be an embedding of G in RP? for which H is II-tidy. Since H C 9, B’
is a local H-bridge. Moreover, Corollary 5.15 and the choice of B show that not all
attachments of B’ can be in [u, s, w], so B has an attachment y not in [u, s, w]. But
then, for at least one of the two H-quads () containing s, B and B’ are overlapping
Q@-bridges, contradicting the definition of tidiness. |

LEMMA 10.11. Let G € M3, Vi~ H C G, with H tidy. For any H-spoke s, if
B is an H-bridge having an attachment in (s), then B has no other attachment in

[s].

Proof. Suppose B is an H-bridge and s an H-spoke so that B has attachments
x,y in s, with « € (s). Let I be an embedding of G in RP? for which H is II-
tidy. Then II shows B is not a global H-bridge. By Lemma 10.10, B has a third
attachment z not in [s]. Let @ be the unique H-quad containing all of z, y, and z.

If y is not an H-node, then let » be an H-rim branch of @ not containing z.
Then z, y, and z are all contained in @ — [r], contradicting Corollary 5.15. Thus,
y is an H-node v;. We choose the labelling so that r; C @. Corollary 5.15 shows
that z is not in @ — [r;45] and, therefore, z is in r;;5. Furthermore, Corollary
5.15 now shows that B can have no other attachment, so Theorem 8.2 implies B is
isomorphic to K7 3. Let w be the vertex in Nuc(B).

Cram 1. The cycles [y, B,w, B, z, s,y] and [z, B,w, B, z,Q — y, z] bound faces
of TI[G].

PRrROOF. For the latter, [z, B,w, B, x,Q — y, z] is an H-green cycle, so the result
follows from Lemma 6.6. The former, call it C, has just one vertex in R, so Lemma
5.20 implies it has BOD and every one of its bridges other than the one containing
H — (s) is planar. If it has a second bridge B’, then C' is clean in any 1-drawing of
B'# contradicting Lemma 5.9. O

The chosen labelling shows that (;_1 is the other H-quad containing s.

CLAIM 2. There is no Q;_;-local H-bridge that has an attachment in (s).
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PROOF. Suppose B” is a Q;_1-local H-bridge having an attachment z’ in (s).
Lemma 10.10 implies B” has an attachment 2z’ not in [s]. If 2’ is in the same H-rim
branch r;_; contained in Q;_1 as y, then [2/, B”, 2, r,y, B,w,z,s,a'] is an H-green
cycle C. As the edge of s incident with y is C-interior, C' does not bound a face of
I[G]. If 2’ is not in r;_y, then |2/, B", ', s,x, B,w,B,z,Q; —y, 2| is a non-facial
H-green cycle. Both conclusions contradict Lemma 6.6 (8). O

We conclude that s has length 2 and that B is the only H-bridge attaching in
(s). Let D be a 1-drawing of G — wy. Then D[sU (B — wy)] is clean in D and we
may extend D to a 1-drawing of G by adding in wy alongside [w, B, z, s, y]. |



CHAPTER 11

Every rim edge has a colour

In this section we introduce, for a tidy subdivision H of Vig in G, H-yellow
edges. The main result is that every H-rim edge has a colour: H-green, H-yellow,
or red. This is a major step on the route. In the next section, we will analyze red
edges, with the main result being that there are red edges.

DEFINITION 11.1. Let H be a subdivision of Vjq in a graph G.

(1) A 3-rim path is a path contained in the union of three consecutive H-rim
branches.
(2) The closure cl(Q) of an H-quad Q is the union of @ and all Q-local H-
bridges.
(3) Let H be tidy in G. A cycle C in G is H-yellow if C may be expressed
as the composition P; P, P3P, of four paths so that:
(a) P, and Py are R-avoiding (recall R is the H-rim) and have length at
least 1;
(b) P, and P; are 3-rim paths and P; U Ps is not contained in a 3-rim
path; and
(c) there is an H-green cycle C’ so that P; C (C' N R).
(4) An H-rim edge e is H-yellow if it is not H-green and is in an H-yellow
cycle.

We remark that the H-rim edges that are H-yellow are those in P5;. The next
result elucidates the nature of an H-yellow cycle.

LEMMA 11.2. Let G € M3, Vip= H C G, with H tidy. Let C be an H-yellow
cycle, with decomposition Py Py P3Py into paths as in Definition 11.1, and let C' be
the witnessing H-green cycle. Then:

(1) C"—{(C'" N R) is a global H-bridge;

(2) fori € {2,4}, P, is either H-avoiding or decomposes as P} P?, where P}
is contained in some H-spoke, including an incident H-node, and P? is
H-avoiding;

(3) there is only one C-bridge in G; and

(4) there is an i € {0,1,2,3,4} so that C C cl(Q;).

Proof. Let II be an embedding of G in RP? for which H is II-tidy; in particular,
every H-green cycle bounds a face of II[G].

For (1), the alternative is that C” is contained in ¢l(Q), for some H-quad Q.
Lemma 6.6 (8) shows that C’ bounds a face of G'in RP?, so P, and P, are contained
in global H-bridges. Each of P, and P is in an H-green cycle (as is every global
H-bridge) and, since P has an end in (C' N R), some edge of C' N R is in two
H-green cycles, contradicting Theorem 6.7.

73
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For (2), let i € {2,4}. Since P; has positive length, the end u; of P; in Pj is
distinct from the end w; of P; in P3. Because C’ bounds a face of G and is contained
in ©, we see that the edges of P; incident with w; is in 90t. Since P; is R-avoiding,
P; is contained in 91, with only its ends in R.

Now suppose P; has an edge e not in H. Choose e to be as close to u; in P; as
possible. As w; is in H, there is a first vertex y of P; after e that isin H. If y = w;,
then we are done, so we may assume y # w;. Since P; is R-avoiding, we see that y
must be in the interior of some spoke s. Let z be the vertex of P; incident to e so
that e is in [z, P;, ).

As P; is contained in 9, we see that [u;, P;, y] is contained in a closed II[H]-face
bounded by some H-quad Q. Also, [z, P;,y] is H-avoiding and so is contained in
some @-local H-bridge B;. By Lemma 10.11, y is the only attachment of B; in [s].
Since z # y and both are attachments of B;, we have that z ¢ [s].

The path [u;, P;, 2] is R-avoiding and contained in H. Therefore, either it is
trivial or it is contained in some H-spoke s’. In the latter case, z # y implies s’ # s.
In the former case, u; = z, so u; ¢ s. In both cases, [u;, P;,y] U@ contains an H-
green cycle that contains an H-rim edge incident with u;, contradicting Theorem
6.7 and completing the proof of (2).

For (3), we start by noting that there exist ¢ and j so that Py C ryriqq,...,75
and i — 1 < j < i+ 2; we assume P; has one end in [v;,7;,v;41), one end in
(vj,75,vj41), and that j = ¢ — 1 only if P, is just the single H-node v;. Item 2
implies P, is contained in cl(Q;—1) U cl(Q;) and that P, is contained in cl(Q;) U
cl(Qj4+1). It follows that P; has its ends in 744745 and 7,45 7;46. There are at
most (j +6) — (¢ +3) < 5 H-rim branches rj447iy5 ... 7j46, S0 P, being a 3-rim
path, must be contained in this path. It follows that C' is disjoint from either s;_o
Oor Sij42.

Let s be an H-spoke disjoint from C' and let M denote the C-bridge containing
s.

Set ¥ = (R—(C'NR)) U (C"—{(C'"'NR)). Then R’ U s contains a non-
contractible cycle C” disjoint from C. Lemma 5.20 shows C' is contractible, has
BOD, and every C-bridge other than M¢ is planar.

Suppose there is a C-bridge B other than Mc; let D be a 1-drawing of B#.
Lemma 5.9 implies D[C] is crossed. Let s, s’, and s” be the three H-spokes disjoint
from (C' N R). Then RUsUs'Us" is a subdivision of Vg in B that is edge-disjoint
from both P, and Pj; this shows that some edge of P; U P is crossed in D.

But now R’ UsUs' Us” is another subdivision of Vg in B#. Therefore, the
crossing in D must involve two edges of R’ Us U s Us”. In particular it does not
involve an edge of C' N R, and, since P; € C’' N R, no edge of P is crossed in D.

Likewise, let R” be obtained from R’ by replacing P; with P,P,Py;. Now
R" UsUs'Us" is a third subdivision of V4 in B# that is disjoint from P3. Thus,
the crossing in D does not involve an edge of P3. Thus, none of P, P, P3, and
Py is crossed in D, contradicting the fact that C' is crossed in D. We conclude that
there is no C-bridge other than Mg, as claimed.

Finally, for (4), suppose first that P; is not contained in a single H-rim branch.
Then there is an H-node v; in the interior of P;. However, P; is incident on one side
with the face bounded by C’, so the edge of s; incident with v; is on the other side
of P;. Since C' is contractible, we conclude that there are at least two C-bridges,
contradicting (3). Therefore, there is an i € {0, 1,2, 3,4} so that P; C r;.
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If both P, and Py are contained in cl(Q;), then so is Ps, as it is a 3-rim path.
Therefore, by symmetry, we may assume that P, has some edge not in cl(Q;). As
we traverse P from its end in P;, we come to a first edge e that is not in cl(Q;).
One end of e is the vertex u that is in either s; or s;41; for the sake of definiteness,
we assume the former. Then (2) implies [v;,s;,u] C P, and that the remainder
of P, consists of an H-avoiding uw-path, with w an end of P5. It follows that
w € r;+4. Let é be the edge of s; incident with « and not in Ps.

Switching paths, we know that Py has an end = in r;. If © # v;11, then (2)
implies P, C cl(Q;). In this case, é is in a C-bridge other than M¢, contradicting
(3). Otherwise & = v; 41, in which case Py Pa[w, 744, Vit5,Tit5, Vit6s Sit1,Vit1]
is an H-yellow cycle C. There is a 5—bridge other than Mg containing ¢, also
contradicting (3) for C. |

We now turn our attention to the all-important red edges. We comment that,
if n >4 and V5, 2 H C G, then any red edge of G is in the H-rim.
The remainder of this section is devoted to proving the following.

THEOREM 11.3. Let G € M3 and let Vip=H C G. If H is tidy, then every
H-rim edge is one of H-green, H-yellow, and red.

We start with an easy observation.

LEMMA 11.4. Let G € M3 and let Vip=H C G. If H is tidy and the H-rim
edge e is either H-green or H-yellow, then e is not red.

Proof. Suppose first that e is H-green and let C' be the H-green cycle containing e.
There are three H-spokes s, ', and s” disjoint from (C' N R). Thus, (R—(C N R))U
(C —(C N R)) together with s, s’, and s” is a subdivision of Vg contained in G — e,
showing e is not red.

Now suppose e is H-yellow and let C' be the H-yellow cycle containing e. Let
C’ be the H-green cycle and PP, P3P, the decomposition of C as in Definition
11.1. Then e is in P3 and there are three H-spokes s, s’, and s” disjoint from
C U {C'NR). In this case, (R — ((C'NR) U (P5))) U (C" — (C'"NR)) U PP, Py,
together with s, s’, and s” is a subdivision of Vg contained in G — e, showing e is
not red. |

The following concepts and lemma play a central role in the proof of Theorem
11.3.

DEFINITION 11.5. Let Vip= H C G. Let e and f be two edges of the H-rim
R. Then e and f are R-separated in G if G has a subdivision H' of Vg so that the
H'-rim is R and e and f are in disjoint H'-quads.

The following two observations are immediate from the definition.

OBSERVATION 11.6. Let V1o =2 H C G and suppose e and f are two edges of the
H-rim R that are R-separated in G.
(1) If D is a 1-drawing of G, then e and f do not cross each other in D.
(2) If H' is a Vg in G witnessing the R-separation of e and f, then there are

two H'-spokes that have all their ends in the same component of R—{e, f}.
|

The following is a kind of converse of Observation 11.6 (1).
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LEMMA 11.7. Let Go € M3 be a graph and let Vig=H C Gy, with H tidy.
Suppose G C Go with H C G. Lete € ry and f € 144 Urips Uripe be edges that
are both neither H-green nor H-yellow. If e and f are not R-separated in G, then
there is a 1-drawing of G in which e crosses f.

Proof. Let II be an embedding of G in RP? so that H is II-tidy.
We may write r; = [v, ..., Te, €, Ye, - - -, Vi+1] and, by symmetry, we may assume
fisin
Ti+5 U Ti+6 = [’Ui+5,7’7;+5, e ,:ZZf, f, yf, e ,Ti+6,’Ui+7] .
If f € riys, then let Jo; = cl(Q;) and Q@ = @Q;, while if f € r;yq, then let
Je.g = cl(Qi) Ucl(Q;41) and Q@ = @, 1. The two H-spokes contained in Q are s;
and s¢, ¢, which is either s;41 or s; 0.

CrLAIM 1. There are not totally disjoint s;s. ¢-paths in Je ¢ — e.

PRrROOF. Because H is II-tidy, II[J. ;] is contained in the closed disc bounded
by II[Q]. Therefore, one of a pair of totally disjoint s;s. g-paths in J. y would be
disjoint from ;45 r;4¢ and it, together with a subpath of @ — r;45 ;46 yields the
contradiction that e is H-green. |

Let w. be a cut-vertex in J. s — e separating s; from s, ¢. Then J. ; — e has
a separation (H., K.) with s; C H., the other H-spoke s, ; contained in @ is
contained in K., and H, N K, = ||we]||. Clearly, we € riy57it6.

There is also a separation (Hy, Kf) of Je s — f, so that Hy N K is a single
vertex wy, s; € Hy, and s. s € Ky. For « € {e, f}, there is a face F, of II[.J, ]
incident with both x and w,. If F, = FY, then any vertex of 7; ;11 in the bound-
ary cycle C' of F. may be selected as wy. Similarly, w. may be any vertex of
Ti4+5 Ti+e that is in C. We choose w, and w; so that they are in different com-
ponents of C' — {e, f}. Thus, whether F, = F or not, the cycle @ has the form
[We,...,€...,wf, ..., f,...]. In particular, e and w, are in the same component
of @ — {wy, f}, while f and wy are in the same component of @ — {w,,e}. By
interchanging the roles of e and f and exchanging the labels of v; and v;5, for
7=0,1,2,3,4, we may assume ) has the form

[Wey oy Vig 5,85, Vi ey €50 s Why ooy Sefyens fyond]

For technical reasons, we choose w, as close as possible to f in r;y57;46 and wy
as close as possible to e in r;457;16, While respecting the ordering that was just
described of these four elements of Q.

Set N =K.NHy. Then J.;—{e,f} = HHUNUK;, H.NN = |w,||, and
K;NN = ||wy||. See Figure 11.1.

CLAIM 2. N does not have disjoint paths both with ends in the two components
of NNR.

PRrROOF. Such paths, together with the H-rim and the H-spokes s;_1 and s;43,
would show e and f are R-separated. [

Let w be a cut-vertex in N separating the two components of N N R, and let
(N;, Nits5) be a separation of N so that, for j € {i,7 + 5}, N; N R is contained in
r; Urjyr and N; N Nips = ||lw]|. We proceed to describe a new 2-representative
embedding of G in RP? that shows that G has a 1-drawing.
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e wy

H, N Ky

W, f
FIGURE 11.1. The locations of e, f, we, wy, He, N, and Kj.

Let G’ be the subgraph of G obtained by deleting all the vertices and edges of
N that are not in NN R. There is a face of II[G’] contained in 9 and incident with
both e and f.

CLAIM 3. No global H-bridge has a vertex in (N; N R)U(N,+5 N R) in its span.

PRroOF. For sake of definiteness, suppose some vertex of (N; N R) is in the span
of the global H-bridge B. If the H-node v, ¢ in r; 711 incident with s, ; is in the
interior of the span of B, then the cycle bounding F; is H-yellow, contradicting
the fact that f is not H-yellow. Letting z be the vertex of N; nearest e in r; 741,
we conclude that B has an attachment in (z,7; 7i41, ve, ], and B does not span any
edge of r;4a.

By Theorem 10.6, B is either a 2-, 2.5-, or 3-jump. It follows from the preceding
paragraph that e is contained in the span of B, yielding the contradiction that e is
H-green. (]

We can now easily complete the proof of the lemma. By Claim 3, we can
separately embed N; and N, 5 in the face outside of 9. As no global H-bridge can
attach on both paths in R— {e, f} without making at least one of e and f H-green,
we can join the two copies of w together to obtain a representativity 2 embedding
I’ of G in RP? having a non-contractible simple closed curve meeting IT'[G] only
in the interiors of e and f. This implies that G has a 1-drawing, as required. W

We further investigate the detailed structure of H-rim edges.

LEMMA 11.8. Let G € M3 and Vio = H C G, with H tidy. If v;v;13 is a global
H-bridge, then, forj € {i—1,i+3} there is an edge e; € r; that is neither H-yellow
nor H-green.

Proof. The two sides are symmetric, so it suffices to prove the existence of e; .
Lemmas 10.8 and 10.9 (2) imply that Q,,; has BOD. Let D be a 1-drawing of
G — (si+1). Lemma 5.9 implies @, 4 is crossed in D.

However, the cycle C' consisting of v;v;43 and the path it spans is H;-close, for
Hy = RUs;—1 Us; Us;ys. Therefore, Lemmas 5.3 and 5.4 imply that C is not
crossed in D. We conclude from the nature of 1-drawings of Vg that r;_; crosses

ri+5 UTite; let e be the edge in ;1 that is crossed in D.
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Suppose, by way of contradiction, that there is a global H-bridge B spanning e.
Theorem 10.6 implies B is either a 2-, 2.5- or 3-jump, while Theorem 6.7 implies B
does not span any edge of r; (such an edge is already spanned by v;v;43). Lemma
10.9 (1) implies v; is not an attachment of B, so B must be a 2.5-jump with one
end in (r;_1), contradicting Lemma 10.9 (3). Thus, e is not spanned by a global
H-bridge.

It follows that, if e is in an H-green cycle C’, then C’ C cl(Q;—1). But such a
C' is Ha-close, for Hy = RU s; U s;42 U s;1.3. By Lemmas 5.3 and 5.4, C’ is not
crossed in any 1-drawing of G — (s;41). This contradicts the fact that e is crossed
in D. We conclude that e is not H-green.

So now we suppose € is in the H-yellow cycle C’ and that C” is a witnessing
H-green cycle. Then ¢’ C cl(Q;—1) and C” contains a global H-bridge B that
spans an edge in ;4. This implies B # v;v;43, so Lemma 10.9 (2) shows that B
is not a 3-jump.

Moreover, (3) of the same lemma shows B cannot have an attachment in
[Vi43, Tit3, Vita), While (4) shows B cannot have v;;7 as an attachment. There-
fore, B is a 2- or 2.5-jump v; 4w, with w € [viy6, rite, Vitr)-

The cycle (R —{(C"” N R))U B, together with the H-spokes s;_1, $;+2, and s;13
is a subdivision H3 of Vg for which C’ is Hs-close, showing that e is not crossed in
any 1-drawing of G — (s;41). This contradicts the fact that e is crossed in D and,
therefore, e is not H-yellow. ]

The proof of Theorem 11.3 will also depend on the following new concepts.

DEFINITION 11.9. Let G be a graph and let V3o = H C G, with H tidy. Let II
be an embedding of G in RP? so that H is II-tidy and has the standard labelling
relative to v. For i € {0,1,2,...,9}:

— —
(1) Pi=riari1, Pi=ritariva, Pi = riga iy, and Py = Tige it

(2) the spines J; and ;C of Q; consist of the paths ?’i Us; U 5’ and 731 U
Si+1 U P;, respectively (see Figure 11.2);

(3) the scoZe K; of Q; consists of cl(@;) U J; U,;C U B;, where B; consists
of all global H-bridges having both attachments either in ng U 132 or in
fi U Iji; and

(4) the complement Kf of K; is obtained from Mg, by deleting the edges (but
not their incident vertices) that comprise the H-bridges in B;.

(5) The two vertices v;_o and v;y3 are the trivial J;;C-paths in K;. Any
other 1, ;C-path in K; is non-trivial.

We note that J; N;C is equal to ||[{vi—2,vi+3}|. For our purposes, these are
not “useful” J; ;C-paths.

We observe that, for each i € {0,1,2,3,4}, G = K; U KE

The following lemma plays an important role in the rest of this section.

LEMMA 11.10. Let G € Mg and Vip =2 H C G, with H tidy. Let e be an edge
of R and let © be such that e € r;. Then G — e has a subdivision of Vg if and only
if there are disjoint non-trivial J; ;C-paths in K; — e.
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— —
Py Py
B E—
70 4! T2 3 T4
a - --¢-——--—-6—&--—-¢----@---0
leg 51[
b ---@----6— ¢ ---@----0---2a
Ts T6 r7 T8 T9
B S
Py Py
— —

— —
FIGURE 11.2. The paths with small dashes are Py, Py, P1, and
—

P;. The spine Ty is the path rg g s1 75 74, while 1T is r3 19 s2 77 18-
.

There is some subtlety here; 2-criticality is important. Suppose we have a
subdivision H of Vig embedded in RP? with representativity 2 so that all the H-
spokes are in 9. Give H the usual labelling relative to 7. Now delete (r1) and
(rg), and then add the 2.5-jump avy and the 3-jump vgvg. Then there are disjoint
non-trivial Jy; C-paths in the union H' of (H — (r1)) — (rg) and the two jumps,
but H' is planar.

We shall need the following.

LEMMA 11.11. Let G € M3 and Vip=H C G, with H tidy. Let e be an edge
of R and let i be such that e € r;. If there are disjoint non-trivial J; ; C-paths in
K; — e, then there are two such paths so that at least one of them is contained in
cl(Q;) and the other contains at most one global H-bridge.

In the proof, we consider many possibilities for the two disjoint 1; ; C-paths.
For a given 4, some possibilities might not occur because of limitations imposed by
II. In principle, for ¢ = 2, all of the considered possibilities can occur, while for
1 = 4, several of the considered possibilities cannot occur.

Proof. Let P; and P, be the hypothesized disjoint paths.

Cramm 1. If there is a 1;; C-path in K; — e disjoint from r;;5, then there
are disjoint J; ;C-paths so that one of them is contained in cl(Q;) and the other
contains at most one global H-bridge.

PROOF. Suppose that P and r;y5 are disjoint paths. If P contains two (or
more) global H-bridges, then they must be 2.5-jumps having an end in (r;). By
Theorem 6.7, they must be of the form v;_ow; and wov; 3, with wy being no further
from v; in r; than we is. By symmetry, we may assume e is not in [v;, 7;, w1]. Now
[vi, 75, w1 ] (P — v;—2) and ;15 are the desired disjoint 1; ;C-paths in K; — e. O

Thus, we may assume both P, and P» intersect 7;45.

CLAIM 2. If either of P; and P, contains two global H-bridges, then there are
disjoint 1; ;C-paths in K; — e so that one of them is contained in cl(Q;) and the
other contains at most one global H-bridge.

PrROOF. We may assume P; contains two global H-bridges B; and By. Both
B and Bj are 2.5-jumps. Both have ends in (r;) U (r;1+5). By Lemma 10.9 (5), they



80 11. EVERY RIM EDGE HAS A COLOUR

both have an end in the same one of (r;) and (r;;15). We choose the labelling so
that (B, Ba) is either (v;—ow1, wav;y3) or (viyswi, wav;tg). We treat these cases
separately.

Suppose (B, B2) = (v;—aw1, wav;43). Assume first that e ¢ [wy, 71, ws]. Then
By U[wy, 1, w3] U By is disjoint from 7;45, and we are done by Claim 1. Therefore,
we may assume e € [wy, 11, wa].

In this case, P; consists of By, Bs, and a wjws-path P contained in cl(Q;).
We know that Pj contains a vertex in r;45. Lemma 10.9 (5) implies that P,
consists of a global H-bridge with no vertex in (r;;5). Therefore, we may choose
[vi, 75, w1 U Py U [wa, 7, v;41] and Py as the desired paths.

We conclude the proof of this claim by considering the case (B1, Ba) = (Vi+3wW1, WaVits).
First, by way of contradiction suppose P; is not contained in cl(Q;). Lemma 10.9

— =

(5) implies that P» consists of a global H-bridge having both ends in P; U P;. But
then Ps is disjoint from 7;;5 and we are done by Claim 1. Thus, we may assume
Py € l(Qi).

If P, is disjoint from either [v;is5, 745, w1) or (wa,Tits5,vire], then we may
replace either By with the former or Bs with the latter, and we are done again.
Otherwise, there is a [v; 45, 745, w1) (w2, 7it5, Vite]-path Pj contained in P, that is
ri+s-avoiding; let its ends be ws € [viys, rits, w1) and wy € (Wa, 745, Vite)-

If P} is r;-avoiding, then Pj U [ws,r;y5,w4] is an H-green cycle. Since By
together with the subpath of R it spans is also H-green, the edge of [v;15, 745, w1]
incident with w; is in two H-green cycles, contradicting Theorem 6.7.

Therefore, Py is not r;-avoiding and so contains two subpaths, one being a w3zr;-
path Pj! and the other being an r;w,s-path Py2. For k = 1,2, let u, be the vertex
of Pi¥ in r;. If e € [v;, 7, u1], then the paths [v; 15, 715, w3]U Py Ulug, 7, vt 1] and
By U [wy,7i45,vi46] constitute the required disjoint paths. Otherwise, [v;, 7, u1] U
[u1, Py, wa,Tiv5, Vitve] and [vi4s5, 1545, we|UBs constitute the required disjoint paths.

O

To complete the proof of the lemma, we may now assume that, for each j =1, 2,
P; contains a unique global H-bridge B;.

We first suppose, by way of contradiction, that both B; and Bs have an end
in (r;) U (r;45). Lemma 10.9 (5) shows that such ends are in the same one of (r;)
and (ri4s5); let ¢ € {i,i + 5} be such that, for j = 1,2, B; has an end w; € (ry).
We may assume By = vy _swy and By = wav;/ 3.

Theorem 6.7 implies w; is closer to v; in r;; than ws is. The paths Py — v _o
and P — vy 43 are both in cl(Q;); the former is a wj s;41-path, with end z; € s;41,
and the latter is a wos;-path, with end x5 € s;.

Recall that IT[cl(Q;)] is a planar embedding of cl(Q;) with @; bounding a face.
The vertices wy,ws, 1, T3 occur in this cyclic order in @;, so the disjoint paths
Py —vy_o and P — vy 43 must cross in H[cl(Q;)], a contradiction. Therefore, at
most one of By and B has an end in (r;) U (r;y5), while the other is equal to the
path among P; and P, that contains it.

We may choose the labelling so that P, consists only of Bs. Theorem 6.7
implies no edge of r; Ur; 5 is spanned by both By and Bs; since By spans one of r;
and 7,45 completely, one of By and By spans edges in 7; and the other spans edges
in r;15. If either B; spans all of 7;, then, as it is disjoint from r;;5, we are done by
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Claim 1. In particular, By spans r;15, edges spanned by Bj are in r;, and B; does
not span all of ;.

Therefore, By is a 2.5-jump with one end w; in (r;). We may assume the other
end of By is v;13. If € & [v;, 75, w1], then [v;,7;,w1] U By is disjoint from r;15, and
we are done by Claim 1. If e € [v;, r;, w1], then (P, —v;43) [w1,7i,vi+1] and P are
the desired paths. [ ]

Proof of Lemma 11.10. The following claim settles one direction.

CLAIM 1. If there are not disjoint non-trivial J; ;C-paths in K; —e, then G—e
is planar.

PROOF. For this proof, we need to apply Menger’s Theorem; in order to do
so, we treat the copies of v;_o and v;43 in J; as different from their copies in ;C.

-

Let u be a cut-vertex of K; — e separating J; and ;. Let K; be the union of
—

the [Ju||-bridges in K; — e that have an edge in J; and let K; be the union of the

remaining ||u||-bridges in K; —e. Then K; —e = I?l U I—(il and I(_{l N I—(>'l is just [Jull.

Let IT be an embedding of G in RP? so that H is II-tidy. Since 7,15 C K; — e,
u € r;y5. Because K; — {e,u} is not connected, there is a non-contractible, simple
closed curve in RP? that meets 1[G —e] only at u. Thus, there is no non-contractible
cycle in G — {e,u}, showing that G — e is planar. O

For the converse, Lemma 11.11 shows there are disjoint non-trivial J; ;_-paths
P, and Py in K; — e so that P, C cl(Q;). In particular, Py is an s;s;y1-path. It
follows from the embedding II[K;] that P, is disjoint from either r; or r;15.

In every case, we find our Vi by adding three spokes to the cycle contained in
(R—({r;) U(rirs)))UPUPyUs;Us; 41 and containing (R— ((r;)U{riy5)))UP UP,.

If P, contains no global H-bridges, then s; s, s;1+3, and s;.4 may be chosen as
the spokes.

If P, contains precisely one global H-bridge Bs, then Bs is one of:

) Vie1Vig2;
) vi—ow and w is in {r;) (symmetrically, wv;;3);
) wv;p1 and w is in (r;_9) (symmetrically, v;w, with w € (r;12));
) vi—1w and w is in {r;y1) (symmetrically, wv; 2, with w € (r;_1));
) Vi—1vip1 (symmetrically, v;v;12);
) and the comparable jumps with ends in 713 714 7445 16 Tit7-
We choose, in all cases, s;_92 and s;12 as two of the spokes, with third spoke (taking
the cases in the same order):

(1) the Py Ps-subpath of s,11 (symmetrically, the Py Po-subpath of s;);
) Si—1;
) the P Py-subpath of s;11 (symmetrically, the Py Py-subpath of s;);
) the P; Py-subpath of s;11 (symmetrically, the Py Po-subpath of s;);
) si—1 (symmetrically, the same);
) si—1 (symmetrically, the same); and
(7) these cases are symmetric to the preceding ones.

In every case, we have found a Vg in G — e, as required. |
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We conclude this section by proving that every rim edge is either red, H-green,
or H-yellow.

Proof of Theorem 11.3. Let e be an edge in the H-rim. There is an ¢ so that
e € ;. By Lemma 11.10, G is red if and only if there are no disjoint non-trivial
7, ;C-paths in K; — e.

Now suppose there are disjoint non-trivial J; ;C_-paths P, and P in K; —e. By
Lemma 11.11, we may assume P; is contained in cl(Q;), while P> contains at most
one global H-bridge. If P; is disjoint from r;;5, then every maximal r;-avoiding
subpath of P; is contained in an H-green cycle. The edge e is in one of these
H-green cycles, as required.

Thus, we may assume P; contains a vertex in r;y5. If P» C cl(Q;), then
the planar embedding of cl(Q;) shows P; is disjoint from 7;y5 and the preceding
paragraph, with P, in place of Pj, shows e is H-green. Consequently, we may
further assume P, contains a global H- brldge Bs.

Case 1: By has its ends in P Ur; U P

In this case, if e is spanned by Bs, then there is an H-green cycle containing
e, namely the cycle consisting of By and the subpath of R that it spans. The only
other possibility in this case is that Bs is a 2.5-jump with an end ws in (r;) and
that e is in the one of [v;, 7;, ws] and [wa, 7;, v;41] not spanned by Bsy. For the sake
of definiteness, we suppose By = v;_sws and that e is in [wa, 74, viy1].

Since Py C cl(Q;), we see that, in this case, P is disjoint from r;;5 and,
therefore, we may assume P; = r;15. We replace Py with [v;, 7, wa] (P2 — v;—2) so
that there are disjoint J; ;C-paths contained in ¢l(Q;) — e; a situation resolved in
the paragraph preceding this case.

Case 2: By has its ends in ]:Z Urits U El

In this case, either P, is Bg or, up to symmetry, Bs is a 2.5-jump wv;4g, with
w € (ri15), and Py is [v;45, 715, w] U Ba. On the other hand, P; is an s;s,11-path
in cl(Q;) intersecting ;5.

Let  be the first vertex in r; 45 as we traverse P; from s; and let P| be the
siz-subpath of P;. We note that P, prevents z from being in [v;45, 745, W], S0 T €
(w, 15, Vi+6]- Let y bethe end of P in s;. The cycle Pj [x, 715, Vit6] Sit17i [Viy Sy Y]
is H-yellow, as witnessed by the H-green cycle containing Bs. Therefore, e is either
H-yellow or H-green (in Definition 11.1, an H-yellow edge is not H-green). |



CHAPTER 12

Existence of a red edge and its structure

In this section, we prove that if G is a 3-connected, 2-crossing-critical graph
containing a tidy subdivision H of Vi, then some edge of the H-rim is red. Fur-
thermore, we prove that each red edge e has an associated special cycle we call A,.
These “deltas” will be the glue that hold successive tiles together and so form a
vital element of the tile structure.

The argument for proving the existence of a red edge depends on whether or
not there is a global H-bridge that is either a 2.5- or 3-jump. Once these cases are
disposed of, matters become simple. However, with the knowledge of the A’s, it
turns out we can show that there is no 3-jump. This will be our first aim and so,
since we need the A’s to complete the elimination of 3-jumps, we shall begin by
determining the structure of the A of a red edge.

THEOREM 12.1. Let G € M3, Vio= H C G, with H tidy. Let e = uw be a red
edge of G and let i € {0,1,2,...,9} be such that e € r;. Then there exists a vertex
Te € [rivs] and internally disjoint x.u- and xow-paths A, and A, respectively, in
cl(@;) so that, letting A, = (A, U Ay) +e:

(1) there are at most two A.-bridges in G;

(2) there is a Ag-bridge Ma, so that H C Ma, U A., while the other A.-
bridge, if it exists, is one of two edges in a digon incident with x.; and

(3) when there are two A.-bridges, let u® and we be the attachments of the
one-edge A.-bridge, labelled so that u® € A, and w® € A,,; otherwise let
u® = w® = x.. In both cases, A, — e contains unique wu®- and wwe-paths
P, and P,, each containing at most one H-rim edge, which, if it exists,
is in the span of a global H-bridge and, therefore, is H-green.

Proof. Let II be an embedding of G in RP? for which H is II-tidy. We may
assume r; = [v;, 75, u, €, w, T, v;+1]. Lemma 11.10 implies K; — e has a cut vertex
x. separating J; and ; C (again adopting the perspective that v;_o and v;y3 are
split into different copies in J; and ;C). As r;15 is a J; ;C-path in K; — e, x. is in
Ti+5-

Because cl(Q;) is 2-connected and II[cl(Q;)] has Q; bounding the exterior face,
there is a face F, of G in RP? that is in the interior of Q; and incident with both
e and x.. As G is 3-connected and non-planar, F, is bounded by a cycle C, and
C. — e consists of a uz.-path A, and a wx.-path A, .

For (1) and (2), we begin by noticing that C. C cl(Q;). Thus, there is a
Ce-bridge Mc, containing the three H-spokes not in ;.

Cram 1. Each of C.Ns;, C.Ns;y1, and C. Nr; is connected. Either Ce N1;45
is connected or it has two components that are joined by an edge ¢’ of r;15 and
C, has an edge parallel to €¢/. In particular, each of s;, s;11, 7, and r;15 — €' is
contained in C, U Mc¢, .

83
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PRrROOF. Suppose by way of contradiction that C, N s; is not connected. As
C. bounds a face of II, it follows that there is a @);-local H-bridge having all its
attachments in s;, contradicting Lemma 10.10. Thus, C, N s; is connected.

It follows that any part of s; that is not in C, is in the same C,-bridge as either
ri—1 Or r;14. That is, it is in M¢,, and therefore, s; C M¢, U Ck.

Symmetry shows that this also holds for s;41.

Now suppose C, N r; is not connected. Then there is a @Q;-local H-bridge B
having all attachments in r;. Corollary 5.15 implies B has precisely two attachments
x and y, and so Lemma 5.19 implies B is just the edge zy. Thus, [z,r;,y] B is an
H-green cycle C. Lemma 6.6 (8) shows C' bounds a face of II[G].

By symmetry, we may assume that 2 and y are both in [v;, 7;, u]. Suppose that
z is any vertex in (z,7;, u].

Suppose first that z # u. As G is 3-connected, z has a neighbour 2z’ not in
[z,7;,y]. If 22’ is in the interior of Q;, it must be parallel to an edge in 7;, as any
other edge would go into one of the faces of II[G] bounded by C, and C. Therefore,
27’ is outside M and, so is an edge of another H-green cycle. But then one of the
edges of [z,7;,y] incident with z is in two H-green cycles, contradicting Theorem
6.7.

This same argument, however, also applies if z = u, with the small variation
that, by Lemma 11.4, 22’ cannot span the red edge e, giving the contradiction that
the edge of [z,7;,u] incident with w is in two H-green cycles. Thus, C. Nr; is
connected. As it did for s;, this implies that r; C Mg, U C.

Finally, we consider C, Nr;y5. Proceeding as we did for r;, if C. N7;15 is not
connected, there is (up to symmetry) a Q;-local H-bridge B having all attachments
in [viys,Tits5, Ze); B is a single edge and is in an H-green cycle. One end of B is
T, and the H-green cycle containing B consists of two parallel edges.

Thus, there are at most two such H-bridges B, each of which is an edge parallel
to an edge in r;45. If they both exist, then the 3-connection of G implies z. has
another neighbour, which, as above, is adjacent to . by an edge not in 91, showing
one of the edges of r;;5 incident with z. is in two H-green cycles, contradicting
Theorem 6.7. (I

We can now define A.. If C. Nr;15 is connected, then A, = C.. Otherwise,
A, is obtained from C¢ by replacing the edge of C¢ incident with z. and not in
ri+5 with its parallel mate that is in ;5. Notice that the A.- and C.-bridges are
the same, except for these exchanged edges incident with z.. Set Ma_ to be M¢,.
The following is evident from what has just preceded.

Cramm 2. H C Ma, UA, and A, N 7,45 is connected. O

Consider again r; N A.. It is connected, so if it is more than just [u,e,w],
the symmetry shows we may assume it contains an edge xu other than e. The
3-connection of G implies that u is adjacent with a vertex y other than x and w.
The edge uy is not interior to Q;, as then it would be in the face of G bounded by
Ce.

Thus, uy is not in M, and, as ww is red, Lemma 11.4 implies uy spans xu. The
vertex x is seen to be H-green by the H-green cycle C) containing uy. Since x
has at least three neighbours in G, there is a neighbour of x different from the two
neighbours of z in r;_q r;. Because Cyy bounds a face of G (Lemma 6.6 (8)), every
edge incident with  and not in r;_1 r; is in 9. There is a unique neighbour z of
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x so that z is not in ;1 r; and xz is an edge of A,.. This shows that z is one end
of r; N A,. These observations easily yield the following claim.

Cram 3. Each of A, Nr; and A, Nr; has at most one edge. O
We now turn our attention to 7;45.

CLAIM 4. (1) No edge of r;45 N A, is H-yellow.
(2) No global H-bridge has x. in the interior of its span.

Proor. For (1), suppose by way of contradiction there were an H-yellow edge
in 745 N A.. Then Lemma 11.2 (3) shows the witnessing H-yellow cycle must be
A.. However, the witnessing H-green cycle must have A, Nr; in the interior of its
span, yielding the contradiction that e is H-green.

For (2), suppose by way of contradiction that there is a global H-bridge xy with
Z. in the interior of the span of zy. Then xy U (r;+5 — =) contains a J; ;C-path in
K; — {e, z.}, contradicting Lemma 11.10. O

CLAIM 5. (1) If [vit5, Tits, Te] VA, contains three vertices z, y, and z. of
ri+5, then (choosing the labelling of z and y appropriately) [v;y5, Ti+5, Te]N
A, = [z,2y,Y,YZe, x|, y and z, are joined by a digon, and y is incident
with a global H-bridge that spans z.

(2) If [vig5, Tits, Te) N A does not contain three consecutive vertices of 75,
but has a vertex x other than x., then either x and z. are joined by a
digon, or . is incident with a global H-bridge that spans x.

The symmetric statements also hold for [z, 745, vite] N Ae.

PROOF. For (1), the fact that A.Nr;45 is connected implies that there are ver-
tices x and y so that [z, zy, y, yze, xe] C [its, Tits5, Te|. Because G is 3-connected,
y is adjacent to a vertex z other than = and z.. The edge yz cannot be in M, as
then it would be in the face of G bounded by C., a contradiction. Therefore, it is
a 2.5-jump. Claim 4 (2) shows yz does not span z..

As G is 3-connected,  has a neighbour z’ different from the two neighbours of
z in R. If the edge xx’ is in ®, then it is in the face bounded by the H-green cycle
containing yz, a contradiction. Therefore, zz’ is in 9 and, in particular, for that
2’ giving the edge nearest to zy in the cyclic rotation about z, zz’ is in A, and,
therefore, no other vertex of [v; 5,745, %] is in A..

Since yzx. is not R-separated from e in G, Lemma 11.7 implies yx. is either
H-yellow or H-green. Claim 4 (1) implies it is not H-yellow; we conclude that yx.
is H-green and let Cy;_ be the witnessing H-green cycle.

As pointed out in the first paragraph of the proof, C,,, cannot contain a global
H-bridge that spans z.. On the other hand, xy is H-green by the global H-bridge
yz. By Theorem 6.7, this is the only H-green cycle containing xy. Thus, the only
H-rim edge contained in Cy,, is yx.. It follows that C,,, is contained in cl(Q;).
Claim 1 implies Cy, is a digon.

For (2), the fact that [vi45, 745, Te]NA, is connected implies that [v;y5, 745, Te]N
A, = [z, 22, z]. Lemma 11.7 implies that zz, is either H-yellow or H-green, and
Claim 4 (1) shows it is not H-yellow. Therefore, it is H-green.

Claim 4 (2) shows any global H-bridge spanning xz. has x. as an attachment.
Otherwise, the H-green cycle C,,, containing zz. is contained in cl(Q;). Again,
Claim 1 shows Cy,, is a digon. O
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There is one more observation to make before we complete the proof of the
theorem. From Claim 5 (1), it seems possible that both [vits,7rit5, Ze] N A, and
[Vits, Tits, Te] N A have three vertices. However, this is not possible, as z, must
have a neighbour z different from its neighbours in R. But now z.z cannot be in
M, as then it would be in the face bounded by C., and it cannot be in ®, as then
it is a global H-bridge and one of the digons incident with z. is also spanned by
Zez, contradicting Theorem 6.7. Therefore, 7,45 N A, has at most three edges, and
all such edges are H-green.

If there are no edges, then ;15 N A, is just .. If no edge of r;y5 N A, is in
a digon, then u® and w® are defined in (3) of the statement to be .. In this case,
Claim 5 (1) implies there can be at most one edge of r;15 N A, on each side of x.,
but any such edge is spanned by a global H-bridge. If there is a digon, then it is
ufw*®, each of u¢ and we is incident with at most one other edge in 7,15 N A., and
any such edge is spanned by a global H-bridge.

Finally, By Lemma 10.9 (4), not both u and u®, for example, can be incident
with such global H-bridges, so P, has at most one H-rim edge. |

DEFINITION 12.2. Let G € M3, Vip=2 H C G, with H tidy, and e a red edge
of G with ends v and w. With ©® and w® as in the statement of Theorem 12.1, the
peak of A, is the subgraph of GG induced by u® and w¢. If the peak has just one
vertex, then A, is sharp.

The following observations are given to summarize important points from The-
orem 12.1.

COROLLARY 12.3. Let G € M3, Vip= H C G, with H tidy, and e a red edge
of G. Then the peak of A, is either a single vertex or a digon and no edge of the
peak is in the interior of the span of a global H-bridge.

Proof. That the peak is either a single vertex or a digon is a rephrasing of Theorem
12.1 (2) and (3). In the case the peak is a digon, neither u® nor w® can be in the
interior of the span of a global H-bridge, since then the H-rim edge in the digon is
in two H-green cycles, contradicting Theorem 6.7.

So suppose the peak is just the vertex u® = w®, let B be a global H-bridge
with «® in the interior of its span, and let i be such that e € r;. If A, Nr;45 has
an edge €/, then €’ is incident with u® and, moreover, is H-green by a global H-
bridge B’ incident with «®. But then B provides a second H-green cycle containing
€', contradicting Theorem 6.7. So A, N ;45 is just u®, in which case B provides
a witnessing H-green cycle that shows A, is H-yellow. But then e is H-yellow,
contradicting Lemma 11.4. |

Our next goal is to eliminate 3-jumps. For this the next two lemmas are helpful.

LEMMA 12.4. Let G € M3 and Vip=H C G, with H tidy. Suppose C is an
H-yellow cycle and C' is the witnessing H-green cycle. Let e be an edge of G not
m C'UC"UR. Suppose either C' does not contain a 3-jump or e is in one of the
four spokes containing an H-node spanned by C'. Then no H-yellow edge in C is
crossed in any I-drawing of G — e.

PROOF. There are at least four H-spokes contained in G — e. By hypothesis,
at least one of these has no end in C’ and, therefore, no end in C' U C’. Therefore,
Lemma 7.2 (2) applies. O
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FIGURE 12.1. One of several examples of a A.

LEMMA 12.5. Let G € M3 and Vip=H C G, with H tidy. Suppose C is an
H-green cycle in G. Suppose that C does not contain a 3-jump, e is an edge of G
not in RUC and D is a I-drawing of G —e. If an edge €' of C is crossed in D,
then C contains a 2.5-jump with an end in (r;), for some i, and €' is in r;.

Proof. This is a straightforward consequence of Lemma 7.2 (3a and 3b). u

THEOREM 12.6. Let G € M3 and Vip=H C G, with H tidy. Then no global
H-bridge is a 3-jump.

Proof. The proof begins by showing that if v;_sv; is a global H-bridge that is
a 3-jump, then there is a red edge in r;. The next step is to show that the edge
of r; incident with v; is red. The final step is to show that, if e* is the edge of s;
incident with v;, then cr(G — e*) > 2, contradicting the criticality of G. Let II be
an embedding of G in RP? so that H is II-tidy.

CLAIM 1. There is a red edge of G in ;.

PROOF. Lemma 10.9 (2) implies neither v;15v;_2 nor v;v;43 is in G. Thus,
Lemma 10.8 implies ;_; has BOD.

Let D;_1 be a l-drawing of G — (s;_1). Lemma 5.9 implies Q,_; is crossed in
D;_1. Let H' be the subdivision of Vg consisting of the H-rim R and the three
spokes $;, $;_3, and $;41. Lemma 7.2 implies the cycle r;_g 1o r;—1 [Us, Vi—30;, Vi—3]
is clean in D;_;. In particular, the crossing must be of an edge in 7,13 Ur;14 and
an edge e in r;.

We prove e is red in G by proving it is neither H-green nor H-yellow. Lemma
10.9 (1) and (3) imply that no global H-bridge other than v;_3v; has an end in
[vi, 73, vi41). Therefore, no H-green cycle containing e can contain a global H-
bridge. Thus, any H-green cycle C containing e is contained in cl(Q;). Lemma
12.5 implies C is not crossed in D;_1, contradicting the fact that the edge e is in
C and is crossed in D;_;. We conclude that e is not H-green.

So suppose C' is an H-yellow cycle containing e and let P, P, P3P, be the de-
composition of C' into paths as in Definition 11.1. By Lemma 11.2, there is a global
H-bridge B so that the interior of the span of B contains P;. Lemma 10.9 (2) says
there is at most one 3-jump in G, so B is either a 2- or 2.5-jump.

That e is not H-yellow is an immediate consequence of Lemma 12.4. [



88 12. EXISTENCE OF A RED EDGE AND ITS STRUCTURE

We now aim to show that the edge of r; incident with v; is red. By Claim 1,
there is a red edge in r;; let e; be the red edge nearest to v; in r;. Let r; be the
component of r; — e; containing v; and let u be the end of e; in 7}.

Cram 2. No edge of r} is H-yellow.

PROOF. Suppose some edge e’ of r} is H-yellow and let C' and C’ be the
witnessing H-yellow and H-green cycles, respectively. Lemma 11.2 (1) implies C”
contains a global H-bridge B. We note that Lemma 10.9 (1) and (3) imply (because
v;—3v; is present and v;_3 = v;17) that B has no vertex in (vi16, 7i+6, Vi47]. On
the other hand, to make C' H-yellow, B must have one end in (v;15, 715, V1]

Due to the presence of v;_3v;, Lemma 10.9 (4) implies v;43 is not in B.
Therefore, Theorem 10.6 implies B has v;;¢ as one end and its other end is in
(Vi43,Ti+3, Vita]. Theorem 12.1 (3) implies the edge e of A., — e; incident with u
is not in H; by Theorem 12.1, it is in cl(Q;).

Let D be a 1-drawing of G — e. By Theorem 5.23, @; has BOD, so Lemma 5.9
implies @; is crossed in D. Lemma 7.2 implies no edge in r;44 ;15 is crossed in D,
so the crossing in D is of r; with r;,¢.

Lemmas 12.4 and 12.5 combine with Theorem 11.3 to show that the edge €” of
rive crossed in D is red in G. Lemma 11.7 implies ¢” and e; are R-separated in G
and we conclude that they are also R-separated in G —¢€'; in fact, €/’ is R-separated
from 7}[u, e1,w]. It follows that the edge f of r; crossed in D is in [w, r;, vit1].

Lemmas 12.4 and 12.5 combine with Theorem 11.3 to show that f is red in G;
however, e; and f are not R-separated in G — e’ and, therefore, not separated in G,
contradicting Lemma 11.7. It follows that no edge of r; is H-yellow, as required. O

CLAIM 3. u = v;.

PROOF. By way of contradiction, suppose that u # v;. By definition of ey, no
edge of 7} is red, and Claim 2 shows no edge of r; is H-yellow. Theorem 11.3 shows
that every edge of r; is H-green. Because of v;_3v;, Lemma 10.9 (1) and (3) shows
no edge of r} is H-green by a global H-bridge.

Let e be the edge of A., — €1 incident with u; Theorem 12.1 and the fact that
e1 is not incident with v; imply that e is not in H. Let D be a 1-drawing of G — e.
Note that e is in a @;-local H-bridge. Since @; has BOD (Theorem 5.23), it is
crossed in D (Lemma 5.9). Every edge of r;_1 is H-green in G — e; thus, Lemma
6.6 (10) implies the following.

SUBCLAIM 1. No edge in r;_1 is crossed in D. O
We next rule out another possibility.
SUBCLAIM 2. No edge in ;41 is crossed in D.

PROOF. Suppose some edge e of r;; is crossed in D. Since Q; is crossed
in D, the other crossed edge e’ZD is in ;5. By Lemma 12.4, no H-yellow edge in
ri41 UTiys can be crossed in D. Since H C G — e, Lemma 6.6 (10) implies no
H-green cycle not containing e can be crossed in D; in particular, no H-green edge

in ;41 Ur;15 can be crossed in D. Now Theorem 11.3 implies eiD and e’zp are both
red in G.
Suppose first that ¢/’ is in [vi4s5, 7145, u¢']. (Recall that u®* is the vertex in the

peak of A., nearest u in A., —e;.) Lemma 11.7 implies e’iD and e; are R-separated
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in G this implies that A,/p is disjoint from A.,. One of the r;r;;5-paths in A, b,

Si+1, Si+2, and s;43 combine with R to show that e’ZD is R-separated in G — e from
every edge in 7;41, a contradiction.

If, on the other hand, e’zp is not in [v;45, 545, uc], then Lemma 11.7 shows eZD
and e ZD are R-separated in G and there is a subdivision of Vg that both witnesses
this separation and does not contain e (the spokes are s;12, $;13, and the “nearer”
(ri7iv1)(rizs Tive)-paths in A_p and A, p). This shows that e and ¢'P are R-
separated in G — e, a contradiction. ' ([

Since Q; is crossed in D, Subclaims 1 and 2 imply that some edge eP of r; is
crossed in D.

SUBCLAIM 3. e el

Proor. If eD is not in 7, then let e’; D be the edge of r;y47r;45746 that is

crossed in D. Then e” and e are not R—separated in G —e. Observe that A,
shows no H-green or H -yellow cycle containing eP can also contain e. Therefore,

el

7 is red in G and, consequently is R-separated from e’ f) in G. In particular, e
is in every subdivision of Vg that contains R and witnesses the R-separation of e
and e . This 1mphes that e is in [vi45, Tits, utt].

As er and ei are both red in G, by Lemma 11.7 there is a subdivision K
of V3 containing R and witnessing the R-separation of e; and €’ D. There is an
ririys-path P in K that is disjoint from A.,. Moreover, P C cl(Q ). But now, P
together with the r;r;;5-path in A, — u, s;12, and s;3 make the four spokes of a
subdivision of Vg containing R and witnessing the R-separation of eP and e’ iD in
G — e, a contradiction. ([

We now locate the edge e . To this end, let € be the edge of s;_1 incident with
v;_y and let D be a l—drawmg of G — é. By Lemmas 10.8, 10.9 (2), and 5.9, Q,
must be crossed in D. However, Lemma 7.2 shows that none of r;_37;_s7;_1 can
be crossed in D. Since the edges in 7} are all H-green and none of the witnessing
H-green cycles contains a global H- brldge Lemma 12.5 implies that no edge of r}
is crossed in D. Thus, some edge of ;43714 crosses an edge of r; — (r}) in D.

SuBCLAIM 4. Every edge in 7,14 is H-green in G and no edge in r;44 is crossed
in D.

Proor. If ¢’ € r; 4 is H-yellow, then v;_3v; is in the witnessing H-green cycle
and, therefore, the edge of s;_1 incident with v;;4 is in the interior of an H-yellow
cycle containing s;_o; this contradicts Lemma 11.2, so €’ is not H-yellow.

Now we eliminate the possibility that e’ is red. To do this, it will be helpful
to know that no H-green edge in ;44 is crossed in D: fortunately, this is just
Lemma 12.5, combined with Lemma 10.9 (1) and (4) to eliminate the possibility of
a 2.5-jump.

Choose €’ to be the red (in G) edge in r;y4 that is nearest in r;44 to v;45.
Lemma 11.7 implies €’ is R-separated from e; in G; we may choose the witnessing
subdivision K of Vg to contain s;_o and s;49; in particular, K avoids é. Therefore,
¢’ is R-separated from e; in G — é. Since the edges in 7;14 between ¢’ and v;15
are neither red (choice of €’) nor H-yellow (two paragraphs preceding), they are
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H-green (Theorem 11.3), we know they are not crossed in D (preceding paragraph).
The subgraph K shows that none of the rest of ;43714 can be crossed in 13, which
is a contradiction. Therefore, no edge of r;44 is red in G; since none is H-yellow
by the preceding paragraph, Theorem 11.3 shows they are all H-green. (]

It follows that an edge of 7,13 is crossed in D and it must cross some edge in
[, 7;,v;+1]. This further implies that the uu®t-subpath P, of A., — ey intersects s;
as otherwise each edge of [u,7;,v;y1] is R-separated from 7;;3 in G — é.

We now return to consideration of D. No edge in 7;44 is red in G and, because
P, intersects s;, every edge (if there are any) of [v;y5, 745, ut] is H-green. This
combines with Lemma 10.9 (1) and (4) to show that no edge in r;y4[vits, 7its5, u®]
is in the span of a global H-bridge; therefore, Lemmas 12.4 and 12.5 imply that no
edge of 71 4[vi15, 745, ut] is crossed in D. Thus, the edge e’? that crosses e in
D isin [u®, riq5, Vite] Tite-

Because of v;_3v;, no edge in [u®!, 7,15, v;t6|7i+6 1s in the span of a global H-
bridge. Therefore, Lemmas 12.4 and 12.5 imply e'ZD is red in G. But now Lemma
11.7 implies €’ Z—D is R-separated in G from e;; there is a witnessing subdivision K
of Vg that contains s;_1, s;, and the nearer (r;7;41)(riy57ite)-paths in A., and
A p. Note that the path taken from A, does not contain e. Therefore, K is also
contained in G — e; Observation 11.6 (1) shows that these edges cannot be crossed
in D, the final contradiction that proves the claim. (Il

We now move into the final phase of the proof that there is no 3-jump. Let e*
be the edge of s; incident with v; and let D* be a 1-drawing of G — e*. Lemma
10.9 (2) implies v;_zv; is the only 3-jump of G, so Lemma 10.8 implies @, has
BOD. Lemma 5.9 implies @, is crossed in D*. In particular, there is an edge e in
Ti+3 Tit+d Tits Ti+e that is crossed in D*. Lemma 7.2 shows that r; ;3 is not crossed
in D*.

CLAIM 4. eisred in G.

PROOF. If e is H-yellow in GG, then Lemma 12.4 shows that e is not crossed in
D*. Thus, e is not H-yellow.

Suppose e is H-green in GG, and let C be the witnessing H-green cycle. Lemma
10.9 (2) implies C' does not contain a 3-jump and Lemma 7.2 implies both that it
does not contain a 2-jump and is not contained in the union of some Q); together
with a @j-local H-bridge. Therefore, C' contains a 2.5-jump b and Lemma 7.2
implies e is in the H-rim branch that contains the end x of b that is not an H-node.

The edge e has already been shown to be in r;44 745 7:16. Suppose e is in
Tiya. If b = v;40x, then we contradict Lemma 10.9 (4) — v;_3v; and b span the
opposite sides of @), ,, a contradiction. The other alternative is that b = xv;_3,
which violates Lemma 10.9 (1). Thus, e ¢ 714.

If e € r;45, then either b = xv;_5 or b = zv; 3. The former does not occur, as
otherwise the edges of r;,_3 are all in two H-green cycles, contradicting Theorem
6.7. If the latter occurs, then we contradict Lemma 10.9 (4) — v;_3v; and b span
the opposite sides of Q;_;. Thus, e & ;5.

So e € r;1¢. In this case b is either xv;_1 or xv; 4. For the former, the edges of
r;—31;—o are all in two H-green cycles, contradicting Theorem 6.7. For the latter,
the edge e; of r; incident with v; is red by Claim 3. The existence of b shows @Q; is
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H-yellow, contradicting the fact that e; is red. This is the final contradiction that
shows e is red. d

Recall that the edge e is in ;43744 7i+5 ri+6, since it is involved in a crossing
with Q;. We have already observed that e is not in ;3.

Suppose first that e € r;14. Lemma 11.7 implies e and e; are R-separated in
G; in particular, v; is not in A.. But then v;_3v; shows A, C cl(Q;—1) — v; to be
an H-yellow cycle, contradicting the fact that e is red.

Therefore, e € r;457r;46. Let é be the edge crossed by e in D*. Since Lemma
7.2 implies r;_o is not crossed in D*, é ¢ r;_5. Since e and e; are both red in G,
Lemma 11.7 implies they are R-separated in Gj; there is a witnessing subdivision K
of Vg that contains s;_1 and s;_5. This K does not contain e*, and so is contained
in G — e*. Therefore, K separates e from r;_; in G — e*, and so, in D*, e does not
cross r;_1. Thus, é is not in r;_.

Therefore, é € r; ;1. Lemma 10.9 (4) implies there is no 2.5-jump xv; 44 —
it and v;_3v; would span the opposite sides of Q;_,. Also, Lemma 10.9 (3) implies
there is no 2.5-jump zv; 3 with = € (r;).

It follows from Lemmas 12.4 and 12.5 (the preceding pararaph is used here)
that the edge é crossed by e in D* is red in G. This implies that e and é are
R-separated in G and this in turn implies that e and é are R-separated in G — e*,
the final contradiction. |

COROLLARY 12.7. Let G € Mg and Vip =2 H C G, with H tidy. Then every
H-hyperquad has BOD.

Proof. By Theorem 12.6, no global H-bridge is a 3-jump. By Lemma 10.8, every
H-hyperquad has BOD. |

We are now prepared for the main result of this section.

THEOREM 12.8. Let G € ./\/lg and Vio=2 H C G, with H tidy. Then there is a
red edge in the H-rim.

Proof. We prove this by first considering the case there is a global H-bridge. By
Theorem 12.6, there is no 3-jump. By Theorem 10.6, a global H-bridge is either a
2.5- or a 2-jump.

CrAM 1. If G has a 2.5-jump, then G has a red edge.

PROOF. By symmetry, we may assume wv;ys is a 2.5-jump with w € (r;_1).
By way of contradiction, we assume that G has no red edge. We first treat two
special cases.

Case 1: there is a 2.5-jump v;_zw’, with w' € {r;_1).

In this case, let D be a 1-drawing of G — (s;42). Corollary 12.7 and Lemma 5.9
show that Q, 49 is crossed in D. Lemma 7.2 implies each of the cycles consisting of
one of these two 2.5-jumps and the subpath of R it spans is clean in D. The same
lemma implies that neither r;;3 nor ;.5 is crossed in D. The combination of facts
imply that some edge ey in 7,49 crosses some edge eg in 7,46

Since G has no red edge, Theorem 11.3 implies each of es and eg is either
H-yellow or H-green in GG. There is complete symmetry between them (relative
to the two 2.5-jumps), so we treat eg. If eg is H-yellow in G, then it is in some
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witnessing H-yellow cycle C for which there is a witnessing H-green cycle C’. The
only possibility is that C’ contains wv;s.

We have that C' C cl(Qi+1) — viy2. Let C = Py P2 P3Py be the composition of
paths showing C' is H-yellow, as in Definition 11.1. Since P; C (C’ N R), we have
P; Criy1 —v;12. Choose the labelling of P, and Py so the r;;11-end of P is nearer
Vi+2 in Ti+1 than the ri_,_l—end of P4 is.

If P is not disjoint from (s;42), then the edge of ;41 incident with v; 45 is in
two H-green cycles, contradicting Theorem 6.7. Therefore, C' U C’ is disjoint from
(8i+2). But then Lemma 12.4 implies eg is not crossed in D and, therefore, eg is
not H-yellow. Likewise, es is not H-yellow.

Therefore, eg is H-green, so Lemma 12.5 implies eg is spanned by some 2.5-jump
Je and, moreover, is not in either H-rim branch fully contained in the span of Js. By
Theorem 6.7, no H-rim edge is in two H-green cycles. Thus, the only possibility for
the 2.5-jump Jg spanning eg is v;y4we, with wg € (r;1¢). An analogous argument
applies to ea, so e is spanned by the 2.5-jump Jo wav;ts, with we € (r;y2). But
now we have that every edge of ;4 is in the distinct H-green cycles containing J,
and Jg, contradicting Theorem 6.7, completing the proof in Case 1.

Case 2: There is a 2.5-jump v;_sw’, with w' € r;_s.

Let Dy be a 1-drawing of G — (s;41). Corollary 12.7 and Lemma 5.9 imply
@iﬂ is crossed in D. Lemma 7.2 (1) shows none of [w,r;_1v;], i, rit1, and ri1¢
is crossed in D, while (2) of the same lemma shows 7,15 is not crossed. It follows
that some edge e5 € ;15 crosses an edge eg € [v;19,Tit9, W]

Since eg is not red, Theorem 11.3 shows it is either H-yellow or H-green. If
eg is H-yellow as witnessed by the H-yellow cycle C' and the H-green cycle C’,
then the global H-bridge J in C’ is a 2- or 2.5-jump (Theorems 10.6 and 12.6) and
C Ccl(Q-1) (Lemma 11.2 (4)). Lemma 12.4 implies that eg is not crossed in D, a
contradiction.

Likewise, if eg is H-green, the Lemma 12.5 shows it is not crossed in D, the
final contradiction completing the proof in Case 2.

Case 3: All the remaining cases.

Let e; be the edge of s; incident with v; and let D; be a 1-drawing of G — e;.
Corollary 12.7 and Lemma 5.9 imply @, is crossed in D;.

Since G (in particular, r;_5) has no red edge, Lemma 12.4 shows any H-yellow
edge in 7;_o is not crossed in D;, while Lemma 12.5 implies that, as we are not in
Case 2, no H-green edge of r;_5 is crossed in D;. Lemma 7.2 (1) implies no edge
of [w,r;_1,v;]r; 141 is crossed in D;. Therefore, it must be that some edge e;_1 of
[Vi—1,7i—1,w)] is crossed in D;.

As e;_1 is not red in G, Theorem 11.3 implies e;_; is either H-green or H-
yellow. If it is H-green, then, because we are not in Case 1, Lemma 12.5 implies
e;—1 is in an H-green cycle C' contained in cl(Q;—1) and e; € C. But then every
edge in [w,r;—1,v;] is in two H-green cycles, contradicting Theorem 6.7.

We conclude that e;_; is H-yellow. Let C' and C’ be the witnessing H-yellow
and H-green cycles, respectively, and let B be the global H-bridge contained in C’.
Lemma 12.4 implies e; € C. Moreover, v;15 is in the span of B, as otherwise B
attaches at v;42, contradicting Lemma 10.9 (1). By Lemma 10.9 (4), v;47 is not in
the span of B.
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If B has an end in (r;y2), then the other end of B is v;45. The R-avoiding
path (one of P; and Py in the decomposition of the H-yellow cycle as in Definition
11.1) in C containing e; contains a positive-length H-avoiding subpath joining a
vertex of (s;) to a vertex of [vit4,7it5,Vit5). This yields the contradiction that
the edge of 7; 4 incident with v;45 is in two H-green cycles. Therefore, B has one
attachment in [r;157;416) and one attachment in r; 3.

Let D;11 be a 1-drawing of G — (s;4+1). Lemma 12.4 implies no H-yellow edge
in either r;_1 or r; 4 is crossed in D;11. An H-green edge of r;1o is not spanned
by a global H-bridge (there is no room for such a jump between B and wv;;2), so
Lemma 12.5 implies no H-green edge of r;49 is crossed in D;;1. Because we are not
in Case 1 and there is no 3-jump, Lemma 12.5 implies no H-green edge of either
T5—1 OT T;49 is crossed in D; 1.

Lemma 7.2 (1) implies no edge of r; r; 41 is crossed in D;y1. Thus, none of
T5—1 75 541 Tigo is crossed in D;41, and therefore @i—&-l cannot be crossed in D;1.
However, Corollary 12.7 and Lemma 5.9 imply that Q, 41 is crossed in D;yq. This
contradiction completes the proof that G has a red edge when there is a 2.5-jump.

O

At this point, we may assume G has no 2.5-jump and no 3-jump.
CrAM 2. If G has a 2-jump v;v;2, then either r;_; or r;;9 has a red edge.

PROOF. In this case, let D;11 be a l-drawing of G — (s;11). Corollary 12.7
and Lemma 5.9 imply that @; , is crossed in D;;;. Lemma 7.2 (1) shows no
edge of r;r;y1 is crossed in D;;1. Therefore, some edge of r;—1 U r;12 must be
crossed in D;;1. Lemmas 12.4 and 12.5 imply that no H-yellow or H-green edge
in 7,_1 Ur;4o is crossed in D;yy. Therefore, Theorem 11.3 shows some edge in
ri—1 UTiqo is red. O

In the final case, there are no global H-bridges. Therefore, there are no H-
yellow cycles and every H-green cycle is contained in cl(Q;), for some i. For j €
{0,1,2,3,4}, let e; be the edge in s; incident with v; and let D; be a 1-drawing of
G —e;. Corollary 12.7 and Lemma 5.9 imply that @j is crossed in D, so some edge
in rj137j447j457j46 is crossed in D;. Since e; cannot be in any H-green cycle
containing an edge in 743744745 7j+6, Lemma 12.5 implies no H-green edge in
Tj4+37Tj+4Tj+5 Tj+c can be crossed in D;. Therefore the edge in 713744715746
crossed in Dj is red in G.

We conclude this section with the technical lemma (12.14) below that will be
used in the next section. We start with four lemmas leading to a more refined un-
derstanding of R-separation in cases of interest for us. The first three are primarily
used in the proof of the fourth. (Recall that an RR-path is an R-avoiding path
with both ends in R.)

LEMMA 12.9. Let G € M3 and let Vio= H C G, with H tidy, witnessed by the
embedding I1. Let P be an RR-path in G. If B is a global H-bridge so that one
end of P is in the interior of the span of B, then there is an H-quad @ so that
P C cl(Q) and the two cycles in RU P containing P are non-contractible in RP2.

Proof. As P is R-avoiding, Theorem 6.7 implies P is not contained in ©. If P is
just an H-spoke, then both conclusions are obvious. Otherwise, as we traverse P
from an end wu in the interior of the span of B, there is a first edge e that is not in
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H. Since P C M, there is an H-quad @ so that e € cl(Q). Let P’ be the H-bridge
in H U P containing e. Then P’ is an H-avoiding path with both ends in H, so
P Ccl(Q).

Since P is R-avoiding, if both ends of P’ are in R, then P’ = P and P C cl(Q),
as claimed. Otherwise, one end w of P’ is in the interior of some H-spoke s;. Our
two claims eliminate many possibilities for the other end z of P’. We choose the
labelling so that w € r;_; r;.

CLAM 1. x is not in ($;_1 ri—1 7 Sit1)-

PROOF. Suppose first that v is an end of P’. The choice of e implies P’ =
[u, P,w] is just the edge e. If u is an end of s;, then e is an H-bridge having all its
attachments in s;, contradicting Lemma 10.10. If u is not an end of s;, then there
is an H-green cycle that contains an edge f of R incident with u. But then f is in
two H-green cycles, contradicting Theorem 6.7. Thus, u is not an end of P’.

If 2 € ($i-17i—17i Si+1) — u, then v = v; and P’ = [w, P, ] is contained in
either cl(@;—1) —7i+4 or cl(Q;) —7;+5. In this case, we again have the contradiction
that some edge of R incident with » is in two H-green cycles. O

Claim 1 implies u = v; and [u, P,w] C s;. Moreover, z is in Q;—1 U @; and
either P’ C cl(Q;—1) or P’ C cl(Q;). The next claim eliminates another possibility
for z.

CLAIM 2. z ¢ (s;).

PROOF. Suppose by way of contradiction that x € (s;). Let B’ be the H-bridge
containing P’. Observe that B’ is H-local and that w and x are both attachments
of B’ in (s;). Corollary 5.15 implies that these are the only attachments of B’,
contradicting Lemma 10.10. (]

We conclude from Claims 1 and 2 that x is in r;447;45. Evidently, P is in
cl(Qi—1) or cl(Q;), respectively, as required for the first conclusion. Furthermore,
both cycles in II[R U P] that contain P are non-contractible in RP2. |

LEMMA 12.10. Let G € ./\/lg and let Vip= H C G, with H tidy, witnessed by
the embedding I1. For i € {0,1,2,3,4} and j € {i +3,i +4,i+ 5}, let e € r; and
f €rj be edges that are not H-green. Suppose P is an RR-path in I having both
ends in the component R’ of R — {e, f} containing r;16riy77its riro and so that
the cycle in TI[R' U P] is non-contractible. Then

PcC <c1(Qj)[vj,sj,vj_5>) ul U @) |u (d(Qi)<vi+6,si+1,m+1}>.

j—b<k<i

Proof. Choose the labelling v and w of the ends of P so that v is nearer in R’ to
the end incident with f than w is.

Let v be a non-contractible curve meeting II[G] in just the two points a and b;
we note that v and w are on different ab-subpaths of R (allowing a or b to be an
end of P). We may choose the labelling of a and b so that a € R/, and if both a
and b are in R’, then a is closer to the end of R’ incident with f than b is.

Cram 1. (1) If v; and w are on the same ab-subpath of R, then PN (s;)
is empty.
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(2) If v;y1 and u are in the same ab-subpath of R, then P N (s;11) is empty.

PRrROOF. The statements are symmetric, so it suffices to prove the first. Suppose
to the contrary that PN (s;) is not empty. As we traverse P from w (which is not
incident with s;), let « be the first vertex in (s;) and let P’ denote the wz-subpath
of P. Evidently, P’ is contained in one component M’ of M\ (yUs;). On the other
hand, f is between v; and w, and so f is in M. If w € r;, then P’ and f are in an
H-green cycle, a contradiction.

Otherwise, vj11 € M’ and P’ intersects (sj;1). In this case, some (s;41) (s;)-
subpath of P’ is in an H-green cycle with f, also a contradiction. O

If both v;41 and w are in the same ab-subpath of R and both v; ;4 and u are in
the same ab-subpath of R, then Claim 1 implies P is trapped between s; and s;1,
as required. By symmetry, we may assume that v;4; is not in the same ab-subpath
of R as w. Let R, denote the ab-subpath of R containing w and let R;;; denote
the other ab-subpath of R, so v;41 € R;y1.

This implies that viy1, vit2, ..., v; are all in R;1;. We noted above that
u ¢ Ry, so uis also in R;11. From Claim 1 (1), we conclude that P is disjoint from
(sj). Thus, P is contained in the component of M — s; disjoint from v; 2.

It follows from the fact that all the H-spokes are in 9t that v;_s is on the same
ab-subpath as w. This combines with the fact that v;;1 is not in that ab-subpath
and the fact that P meets v at most in a to tell us that

Pe(a@)-en)ul U deu)u(da@)- ).

j—b<k<i

as required.
The additional fact that P cannot include v; and v;41 follows from the knowl-
edge that these vertices are not in R'. |

In a similar vein, we have the following.

LEMMA 12.11. Let G € ./\/lg and let Vip= H C G, with H tidy as witnessed
by the embedding I1. Suppose e € r;, [ € rip37i4a and P is an RR-path with both
ends in the component of R —{e, f} containing r;y17iy2. If e is not H-green, then
both cycles in II[R U P| containing P are contractible.

Proof. Let R’ be the component of R—{e, f} containing 7;11 ;12 and let C be the
cycle in RU P that contains P and is contained in R’ U P. Since R is contractible,
the other cycle in RU P containing P is homotopic to C; thus, it suffices to show
C is contractible.

Let u, be the end of R’ incident with e. Suppose there is a ([ue, 74, Vit1] Sit1)Si-
path P’ in P contained in cl(Q;). Since C is disjoint from r;,1, P’ is contained in
an H-green cycle containing e, a contradiction.

Thus, there is no ([ue,7;, vi+1] Si+1)s;-path in P contained in cl(Q;). Since C
is disjoint from r;45, there is an arc in the disc bounded by II[Q;] joining a point
of [v;, 7, ue) to 745 that is disjoint from C'; this shows that C' is contractible, as
required. |

Our next lemma takes us one step closer to the useful description of R-separation.
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LEMMA 12.12. Let G € M3 and let Vig= H C G, with H tidy. Suppose e € 1;
and [ € rii3rira are R-separated as witnessed by the subdivision H' of Vs. If e
is not H-green, then the component of R — {e, f} containing both ends of some
H'-spoke is the one containing 115 716 17 'it8 V'it9-

Proof. Let II be an embedding of G in RP? so that H is II-tidy. Recall that R
is also the H'-rim. Observation 11.6 (2) shows that two of the four H' spokes have
all their ends in the same component of R — {e, f}. Of the four H’'-spokes, at most
one can be in D. Thus, of the two that have both ends in the same component R’
of R — {e, f}, there is at least one, call it s, that is in 91.

In particular, the two cycles in R U s containing s are non-contractible. Now
Lemma 12.11 shows the two ends of the RR-path s are not in the component
of R — {e, f} containing r; 1 7;+2 and so must be in the component containing
Ti+5Ti46 --- Tit9, as claimed. |

Our next lemma in the series gives a quite refined description of R-separation.

LEMMA 12.13. Let G € M3 and let Vio= H C G, with H tidy. Let e € r; and
f € rizariys be edges that are both not H-green. If e and f are R-separated in G,
then there is a witnessing subdivision H' of Vg having s;1o and s;13 as H'-spokes
and the other two H'-spokes are in cl(Q;—1) U cl(Q;).

Proof. Let II be an embedding of G in RP? for which H is II-tidy. Let Hy be
a subdivision of V3 witnessing the R-separation of e and f. Let s be an H; spoke
having both ends in the same component R’ of R — {e, f}.

CrAm 1. The cycles in II[R U s] containing s are non-contractible.

PROOF. Suppose first by way of contradiction that II[s] in not contained in 9.
Since H is II-tidy, s is a global H-bridge. Theorems 10.6 and 12.6 show s is either
a 2- or a 2.5-jump. By hypothesis, it is not possible for both e and f to be in the
span of s and, therefore, neither is. On the other hand, each of the other three
H;i-spokes has precisely 1 end in the span of s, and is contained in 9. Let these
spokes appear in the order t¢q,to,t3 in the span of s.

We claim that the ¢; imply the existence of an H-yellow cycle that does not
bound a face of II[G], contradicting Lemma 11.2 (3). Let P be the span of s and,
for i = 1,2,3, let u; be the end of ¢; that is not in P. Because II[s U P] bounds a
closed disc, both cycles in II[RUt;] containing ¢; are non-contractible. Thus, ¢; has
an end in each of the ab-subpaths of R.

Lemma 12.9 implies that each t; is contained in an H-quad. Thus t; Uty Uts
is contained the the union of the closures of the H-quads that have an edge in
P. In particular, u;, us, and us occur in a 3-rim path P; having w; and ugz as
ends. Letting P3 be the minimal subpath of P containing the ends of the t;, we see
that Pyt Psts is an H-yellow cycle C. However, II[C] bounds a face of II[G]; the
contradiction is that ¢ and s are on different sides of IT[C].

Thus, s is contained in 91. Since s is one of four Hi-spokes, the two cycles in
IT[R U s] that contain s are non-contractible. O

In particular, s has an end in each of the two ab-subpaths of R determined by
the standard labelling of II[G].

In the case f € r;15, we may, if necessary, use the reflective symmetry j <> 4—j
(for 0 < j < 4), to arrange that the end sy of s is, in II[R'], between the end uy
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of f in R’ and a, say, while the other end s, of s is between a and the end u, of
e. In particular, vi11, viy2, vits, and v;44 are not in R’. Lemma 12.12 shows this
always holds when f € r; 4.

Let s’ be the other H'-spoke having both ends in R’. The arguments above for
s apply equally well to s’. Lemma 12.10 shows that (sUs’) C cl(Q;—1) Ucl(Q;). In
particular, s and s’ are disjoint from s;42 and s;13, so these H-spokes may replace
the two H;p-spokes having ends in both components of R — {e, f}, as required. W

The final technical lemma of this section will be used in the next.

LEMMA 12.14. Let G € M3 and Vo= H C G, with H tidy. If e and €' are red
edges in the same H-rim branch, then A, and Ag are disjoint.

Proof. We may choose the labelling of e and €’ so that e = uw and e’ = xy are
such that r; = [v;, 5, u, w, 74, @, y, 73, v;41]. As we follow A, — e from w, there is a
first edge f that is not in R. In fact, Theorem 12.1 (3) implies f is incident with
w, as there can be no global H-bridge spanning ¢’.

Observe that f is not in H, so H C G — f. Moreover, if f is in an H-yellow
cycle, then either e or €’ is H-yellow, a contradiction. Thus, Lemmas 12.4 and 12.5
imply the colours of an edge of R are the same in G and G — f, unless the edge is
in an H-green cycle in G that contains f. Such an edge is necessarily in [w,r;, z].

Let D be a 1-drawing of G — f and let e; and es be the edges of G — f crossed in
D. Since f is incident with w € (r;), Theorem 5.23 and Lemma 5.9 imply that Q; is
crossed in D, so we may assume e € 7,1 7; 741 and €a € 144745 rip6. Moreover,
no H-green cycle containing e; contains f, so es is red in G. In particular, Lemma
11.7 implies e, is R-separated from both e and ¢’.

Let u® and w® be the first vertices in r;45 as we traverse A, — e from v and w,
respectively. Likewise, we have 2¢ and ye/ in s N (Ae —€').

CLAIM 1. eq € [ue,m%,ye/]

PROOF. Suppose by way of contradiction that es € 7,4 [Vit5, Tits5, u¢]; & sim-
ilar argument will treat the case es € {ye/,ri%, Vit6| Tit6-

If e1 € ri_q[vi,r;,u], then e is red in G, so e; and eg are R-separated in G.
Note that either e; € r; or es € 7;45. Lemma 12.13 implies there is a witnessing
subdivision H’ of V3 that contains s;1 o and s;y3, while the other two spokes are
in cl(Q;—1) Ucl(Q;). Furthermore, A, shows that f ¢ H'; therefore, H C G — f
shows that e; and e, are R-separated in G — f, and therefore cannot cross in D, a
contradiction.

The other possibility is that e; € [u, r;, vi+1] rit1. Since e and es are both red
in G, Lemma 11.7 implies es is R-separated from e in G — f. As in the preceding
paragraph, we may choose the witnessing subdivision H' of Vg to contain s; 12 and
Si+3, while the other two spokes are in cl(Q;—1) U (cl(Q;) — f). Again H’' witnesses
the R-separation of e; and e; in G — f, a contradiction. O

Theorem 12.1 (2) shows that any edge in either A, N5 or Aer Nryys isin a

’

digon in G and so is not es. Thus, e is further restricted to be in {we, Tits5,T° }

Lemma 11.7 implies A, and A, are disjoint, as are A., and A/, which further
implies that A, and A, are disjoint, as required. |



CHAPTER 13

The next red edge and the tile structure

We now know that there are red edges and every red edge comes equipped
with a A. The tiles are determined by what is between “consecutive” red edges. In
this section, we explain what “consecutive” means, show that consecutive red edges
determine one of the tiles, and complete the proof of our main result, Theorem 2.14,
by demonstrating that every red edge has a consecutive red edge on each side.

DEFINITION 13.1. Let G € M3 and Vo= H C G, with H tidy. Let e = uw
be a red edge in r;, labelled so that r; = [v;, 7, u, e, w, 4, vi41]. A red edge e, is
w-consecutive for e if:

(1) ew € [w®, Tits, Vite]Tite ritr (recall that w® is the vertex in the peak of
A, nearest w in A, — e);

(2) there is no red edge in [w®, 745, Vit6]Tit6 ritr Detween w® and ey;

(3) there is no red edge in [w,7;,v;41]7i41 ir2 between w and the peak of

Ew )

(4) if e™ is the edge of P, nearest w that is not in R, then there is a 1-drawing
D of G — e% in which e crosses e,.

(5) There is an analogous definition for u-consecutive.

Our first main goal is, therefore, the following.

THEOREM 13.2. Let G € M3 and Vip= H C G, with H tidy. Let e = uw be
red in G. Then there is a w-consecutive red edge and a u-consecutive red edge for
e.

The next lemma will be helpful in the proof.

LEMMA 13.3. Let G € M3 and Vigp= H C G, with H tidy. Let e = uw and é be
red edges in G, with e € r; and the labelling chosen so that r; = [v;, 7, u, €, W, 74, V;iy1]
and é € (W, riys5,Vive)Tite Titr. If €V is the w-nearest edge of P, that is not in R
and e and € are not R-separated in G — €™, then e has a w-consecutive red edge.

Proof. Suppose there is a red edge €’ in r; 7,41 7,42 between w and the peak of
Ag. Then €' is R-separated from é in both G and G — ¢¥, showing that e and é are
R-separated in G — e, a contradiction. Thus, no such red edge exists.

Let & be the w®-nearest red edge in [w®, riys5,Vit6]rite Titr. Lemma 11.7
implies é’ is R-separated from e in G; if ¢’ were also R-separated from e in G — e%,
then so would é, which contradicts the hypothesis. But now Lemma 11.7 implies
there is a 1-drawing of G — €% in which e crosses &, as required. |

And now the final major proof needed to prove Theorem 2.14.

98
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Proof of Theorem 13.2. It obviously suffices to prove the existence of a w-
consecutive red edge for e. Let r; be the H-rimbranch containing e. Let e be the
edge of P, nearest w and not in R. There are two principal cases.

Case 1: ev is incident with w.

We note that e is contained in a @Hl—bridge that is not M@-H' Let D be a

1-drawing of G — €. Corollary 12.7 and Lemma 5.9 show that QHI is crossed in
D.
Let

e f be the edge of r;44 715746 7i+7 that is crossed in D and
e f’ be the other edge crossed in D; thus, f' € 717 741 it

CrAM 1. If f is not red in G, then there is a w-consecutive red edge for e.

PrROOF. Because we are in Case 1, no global H-bridge has w in the interior
of its span and, therefore, e” is not in any H-yellow cycle that could witness the
H-yellowness of any edge in 7,14 715716 7it7, (In particular, the H-yellowness of
f). Therefore, Lemma 12.4 shows f is not H-yellow. Since f is not red, Theorem
11.3 implies f is H-green. Lemma 12.5 implies there is a 2.5-jump J that spans f
and so that f is in the H-rim branch whose interior contains an end of J. We note
that if v;1¢ is in the span of J, then Lemma 7.2 (1) shows no edge in the span of J
is crossed in D. Therefore, v;1¢ is not in the span of J. Furthermore, if " is not in
Si+1, then H C G —e™ and, therefore Lemma 6.6 (10) implies f is not crossed in D,
a contradiction. This implies w = v;41. We summarize these remarks as follows.

SUBCLAIM 1. e w=wv;41 and
e there is a 2.5-jump J so that:
— f is spanned by J;
— fis in the H-rim branch whose interior contains an end of J; and
— V46 is not in the span of J. O

SuBCLAIM 2. Let j € {i+4,i+5,i+6,i+ 7} so that f is in the H-rim branch
r;. Then no edge of r; is H-yellow.

PROOF. Suppose some edge e’ of r; is H-yellow. This implies e’ is not H-green
and, therefore, is not spanned by J. Let C and C’ be the witnessing H-yellow and
H-green cycles, respectively.

Suppose first that j € {i+4,i+5}. Thenr; = [v;,r;, f,rj,€ ,r;,vj41]. Because
e € r; is not H-green, vj15 € {v;_1,v;} is in the interior of C’ N R. This implies
there is an H-yellow cycle containing s; and the portion of 7; from v; to €. By
Lemma 11.2 (3), this H-yellow cycle must be C' and, therefore, f € C'. Now the fact
that f is crossed in D contradicts Lemma 12.4. A completely analogous argument
holds for j € {i+ 6,7+ 7}. O

Let w be the vertex in r;15 that is nearest w in P,. Observe that @ is not
necessarily in the peak of A.. (See Figure 12.1, where @ is the vertex of A, at the
top right hand corner of A..) The following claim will be helpful in completing the
proof of Case 1.

SUBCLAIM 3. If @ # vj;4¢, then [@, 745, v;1¢6] is in an H-green cycle contained

in cl(Q;).



100 13. THE NEXT RED EDGE AND THE TILE STRUCTURE

PROOF. Let P/ be the ws;1-subpath of P,. Since ¥ € s;41, P, C P, — w.
Let w® be the end of P/ in s;41. Since w ¢ s;41 and @W° € s;41, W # w°. By
definition of w, P, — @ is disjoint from r;11. Therefore, P! [W°, S; 11, Vit6, Tits, W)

is an H-green cycle containing [@, 745, v;+¢], as required. ([l

The proof of Claim 1 is completed now by treating separately each of the four
possibilities for f: f € riy4, f € rivs, f € rige, and f € riy7.

Subcase 1: f € ;4.

In this case, J has an end 2’ € (r;;4) and the other end of J is v;42. Lemma
7.2 (3b) implies f' € r;r;y1. We claim that if f/ € 7;41, then there is another
1-drawing of G — e€® in which f crosses e.

Since f € ;44 and f’ € 7,41, we see that s; is exposed in the 1-drawing D of
G —e". Note that D[Q;_1] consists of a simple closed curve crossed by D[f’], with
DIr;] on one side (the inside of D[Q;—1]) and most of D[H] on the other side (this
is the outside of D[Q;—_1]).

We claim that we may reroute f inside D[Q;_1] so that it crosses e instead
of f'. If this fails, then there is an (H — (s;11))-avoiding path P having one end
in the component of r;1; — f’ that contains v;y;, and having its other end in
Qi—l @] [UZ‘, T, ’UJ}

We note that D[s;+1 — v;+1] (which is possibly just v; 1) is completely outside
D[Q;_1]. Therefore, P is H-avoiding. In RP?, we conclude that P cannot start
inside Q;4+1. Thus, P is contained in a global H-bridge. Therefore, P is a global
H-bridge; we note that P has one end in the component of r;11 — f containing v; 1.
No edge of r;49 can be spanned by P, as such an edge is already spanned by J and
therefore would contradict Theorem 6.7. In the other direction, P cannot span e,
as e is red and not H-green. This contradiction shows that f may be redrawn as
claimed. Consequently, we may assume f’ € r;.

Observe that no global H-bridge can have an end y in (r;), since yv;43 shows
e is H-green, a contradiction, and yv;_o shows f is H-yellow and, therefore, by
Lemma 12.4 cannot be crossed in D. It follows from this, using Lemmas 12.4 and
12.5 and Theorem 11.3, that f’ is red in G.

Suppose first that some edge e’ of [2/,r;y4,v;15] is red in G. Then A, and
A, are R-separated in G as witnessed by a subdivision H’ of Vg consisting of R,
Si—3, Si—2, and two RR-paths P; and Ps, contained in A, and A/, respectively.
The paths P; and P, are disjoint from s;41 except that, possibly P; contains v;y¢.
Thus, H' and Lemma 7.2 show that f cannot be crossed in D, a contradiction.
Therefore, there is no red edge in [z, 714, viy5)].

Furthermore, no global H-bridge other than J has an end in [/, 714, V;y5), as
otherwise either e is H-yellow, or f is in two H-green cycles, both contradictions,
the latter of Theorem 6.7. We conclude that each edge of [/, 714, vi45] is either
H-yellow or contained in an H-green cycle in cl(Q;—1). Subclaim 2 shows the
following.

Subcase 1 Observation: Fach edge of [x',7i14,vi15] is in an H-green cycle
contained in cl(Q;—1).

Suppose there is a red edge €’ in r; 5. By Lemma 11.7, ¢’ is R-separated from
e in G. Therefore, P, is disjoint from s; and now we see that G — e" contains
the subdivision H' of Vy¢ consisting of (H — (s;4+1)) U P,. But J is in an H'-green



13. THE NEXT RED EDGE AND THE TILE STRUCTURE 101

cycle C and so, by Lemma 6.6 (10), C, and in particular, f, is not crossed in D, a
contradiction.

Thus, no edge of r;y5 is red in G. We consider next a 1-drawing D;_; of G —
(si—1). By Corollary 12.7 and Lemma 5.9, Q,_; is crossed in D;_1. From Lemmas
12.4, 12.5, and 7.2 (1), no edge in r;1or;137;+4 is crossed in D;_;. Therefore, it
is some edge f” in r;y5 that is crossed in D;_;. Since no edge of r;,5 is red in G,
Lemmas 12.4 and 12.5 imply that f” is spanned by a 2.5-jump J” = 2"v;_o, with
" e <’I"i+5>.

Now consider a 1-drawing D;.3 of G — (s;43). As for Q,_; in the preceding
paragraph, Q; 13 is crossed in D;;3. In this case, ;11 is contained in the H-yellow
cycle Q41 (with witnessing H-green cycle containing J”). Therefore, r;11 is not
crossed in D;y3. Lemma 7.2 (1) implies no edge in the span of J is crossed in
D;15. Subcase 1 Observation combines with Lemma 12.5 to show that no edge in
[2/, 7544, vi45] is crossed in D;y3. But now we see that Q4 cannot be crossed in
D; 43, a contradiction that shows Subcase 1 cannot occur.

Subcase 2: f € ;5.

In this case, J has an end =’ € (r;y5). Subclaim 1 implies that v;y¢ is not
spanned by J, so the other end of J is v;y3. Lemma 7.2 implies the edge f’
(crossed by f in D) is in ;9.

We first show that there is no global H-bridge spanning any edge in r; 7,41 rj+2-
For if J’ is a global H-bridge that spans such an edge, then J’' does not span e,
while Lemma 10.9 (1) shows it cannot be the 2-jump v;11v;43. Theorem 6.7 shows
J' cannot span any edge in 7,13, so no edge of r;11 7,12 is spanned by a global
H-bridge. On the other side, J’ would have to span r;_sr;_1. In that case, J and
J' contradict Lemma 10.9 (4).

We also conclude that no edge of 7,45 146 747 is H-yellow.

Our next principal aim is to show that each edge of [2/,r; 15, vit6] is H-green,
witnessed by a cycle in cl(Q;). We have already seen that none of the edges in
[/, 745, vite] is H-yellow; to see they are H-green, it suffices by Theorem 11.3 to
show none is red.

If ¢’ is one of these edges that is red, then Lemma 11.7 implies it is R-separated
from e. We note that A. and A,/ are disjoint, both are in cl(Q;), and w = v;41.
Therefore, ¢’ is in 715, between 2’ and the peak of A.. However, this shows ¢’ and
e are R-separated in G — e¥ and, therefore, f and r; o are R-separated in G — ¢/,
showing that f cannot cross anything in D, a contradiction. Therefore, no edge of
[/, 7i45,vit6] is red, and so they are all H-green.

We next show they are not spanned by a global H-bridge. Recall that @ is the
vertex in 7; 15 that is nearest w in P,,.

If @ # vit6, then (P, —€¥) U (8i41 — ") U [W, 745, vi46] contains an H-green
cycle that contains [@, 745, v;16] and is contained in cl(Q;). Theorem 6.7 shows no
edge of [@, 7,45, v;+6] is spanned by a global H-bridge, so no edge of [2/, r;15, v;1¢6] is
H-green by a global H-bridge. In this case, every edge of [2, 7,15, v;1¢] is H-green
by a local cycle.

So suppose W = v;1¢. By way of contradiction, we suppose there is a global
H-bridge J” spanning the edge of r;15 incident with v; 6. Then J” must be v, g,
for some a” € [2/, 715, vit6]. All edges in [/, r;15,2"] are H-green by local cycles.
For j € {i+ 3,7+ 8}, let ¢; be the edge of s,13 incident with v; and let D; be a
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1-drawing of G —e;. Corollary 12.7 implies 611—5-3 has BOD and Lemma 5.9 implies
Qi+3 is crossed in D;. Lemma 7.2 (3a) implies neither ;16747 NOr 113744 18
crossed in D;, while (2) of the same lemma implies neither ;49 nor ;41 is crossed
in D;. Therefore, r; ;g crosses r;qa.

If the edge ej g of r;4g that is crossed in D;;3 is H-green because of some
2.5-jump, then Lemma 7.2 implies e ¢ can cross only 741 in D;;3. Therefore,
Theorem 11.3 and Lemmas 12.4 and (because no H-green cycle containing e}, g
can contain e;y3) 12.5 imply e, g is red in G. Likewise the edge ej,, of r; 1o that
is crossed in D;;g is red in G.

By Lemma 11.7, €, and e;, g are R-separated in G. Moreover, the nearer
of the (ri+77i+8)(Tit2 Ti+3)-paths Ps in AC§+2 and Ps in A%H, along with s; and
Si+1 witness their R-separation. We now show that Py is contained in cl(Q;4s) and
must be disjoint from s;4.

If Pg intersects s;44 at a vertex other than v;44, then PgUs;44 Ur;1g contains
an H-green cycle that includes €] ¢. Otherwise, Ps and s;;4 intersect just at v; 4,
in which case Pg U s;44 U r;4g contains a cycle C' that includes €] 48 The H-green
cycle containing J shows C is H-yellow. Both possibilities contradict the fact that
e; g is red.

Symmetrically, we use J” to show that P, is disjoint from s;42. Thus, G
contains a subdivison of Vi, consisting of R, Ps, Ps, s;_1, Si, S;+1 and s;12. But
then G — e® contains a subdivision of Vjg, yielding the contradiction that f cannot
be crossed in D. Therefore, there is no global H-bridge J” spanning the edge of
Ti4+5 incident with v;y¢.

We conclude that every edge of [z/, 715, v;1¢] is in an H-green cycle contained
in cl(Q;).

We are now in a position to show that r; ¢ has a red edge. By way of contra-
diction, we suppose ;¢ has no red edge. If there were a global H-bridge having
an end in (r;y¢), then 7o is H-yellow; Lemma 12.4 shows r; ;2 is not crossed in
D, a contradiction. Thus, no global H-bridge has an end in (r;¢).

Let D; be a 1-drawing of G — (s;). Then Corollary 12.7 and Lemma 5.9 imply
@i is crossed in D;. However, Lemma 7.2 shows none of r; ;37,44 7;45 716 can be
crossed in D;, a contradiction.

Thus, ;16 has a red edge ¢’. Then e is R-separated from ¢’ in G. If e is
R-separated from ¢’ in G — €%, then f is R-separated from 7,2 in G — e and so
f cannot be crossed in D, a contradiction. Therefore, e is not R-separated from e’
in G —e", so Lemma 13.3 implies there is w-consecutive red edge for e, completing
the proof in Subcase 2.

Subcase 3: f € ;6.

In this case, J has an end «’ € (r;1¢) and the other end is v;19. Also, Lemma
7.2 implies f’ (crossed by f in D) is in 7;49.

Suppose by way of contradiction that no edge of r;;¢ is red in G. We show
that no edge of r; ¢ is H-yellow. As every edge in [2/,r;1¢,vi47] is H-green (be-
cause of J), we assume by way of contradiction that there is an H-yellow edge
in [vi16,Tit6,2']. Let C and C’ be the witnessing H-yellow and H-green cycles,
respectively. Lemma 11.2 (1) implies there is a global H-bridge B contained in C’,
while (4) shows C' C cl(Q;11).
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The edges of the span Pg of B are all H-green, so Pg does not contain the
red edge e. One end of B is in [w, 7, Vi+1,7i+1, Vit2] and the other end is in r;y3.
Furthermore, Lemma 10.9 (4) and the presence of J shows v; 44 is not the other
end of B.

Write C = Py P, P3P, as in Definition 11.1 (H-yellow). Because C' bounds a
face II[G], C C cl(Qj+1), so that P, = r;11 N C. In particular, e ¢ C.

Choose the labelling of P, and P, so that the end of P in r; ¢ is nearer to v;1¢
than is the corresponding end of Py. Since there is an H-yellow cycle containing
P, and s;12, Lemma 11.2 (3) shows this must be C. It follows that P, = s;42.

Consider the subdivision H' of Vi whose rim consists of (R—(Pg))—(z', rit6, Vite),
B, C — (ri16 N C), and whose spokes are s;_1, s;, and S;+3, [Vi+3,7i+3,2]. Then H’
does not contain €* and so must contain the unique crossing in D. Since f is not
in H', this is a contradiction, showing that no edge of [v;y¢,7it6, '] is H-yellow.

Because of J, a global H-bridge spanning an edge in [v; ¢, 716, 2] would have
to be a 2.5-jump having v;14 as an end. But then e is in an H-yellow cycle, which
is impossible. Thus, for each edge € of [v;y¢, 716, 2], € is in an H-green cycle Cs
contained in ¢l(Q;+1). Theorem 6.7 implies C5 is disjoint from s; 4.

Let D;12 be a 1-drawing of G — (s;42). We know that @H_Q is crossed in Dj 4o
(Corollary 12.7 and Lemma 5.9). Lemma 12.5 shows no edge in [v;1¢,Tit+6,2'] is
crossed in D;yo, while J and Lemma 7.2 show no edge in [2/, 76, Vit7] Tit7 Tits
is crossed in D; 5. Therefore, the crossing in D; o must be of an edge f” in 7;45
Crossing 741 Ti+2-

If f” is red in G, then Lemma 11.7 implies f” and e are R-separated in G.
Since e¥ € s;41, f” is between (in 7;45) v;45 and the peak of A.. Thus, f” and e
are R-separated in G — (s;y2) (using s;+3 and s;44 as two of the four spokes). In
turn, this implies f” cannot cross r;11 712 in D;1 2, a contradiction that shows f”
is not red. Therefore, Lemmas 12.4 and 12.5 imply f” is spanned by a 2.5-jump
viyax”, with 2”7 € (riy5).

Now let D;;3 be a 1-drawing of G — (s;43). We know that @, is crossed in
D, ;3. However:

e Lemma 12.5 implies [v;16,7i+6, '] is not crossed in D;y3;
e Lemma 7.2 (1) implies [/, r;y6, Vit7]7it7 Tits 18 not crossed in D;,3; and
e Lemma 12.4 implies 7,49 is not crossed in D; 3.
These three observations imply the contradiction that Q, 13 cannot be crossed in
D 3, showing that some edge €’ in ;¢ is red in G.

Obviously, €' € [viy6,Ti16,2']. By way of contradiction, suppose e and e’ are
R-separated in G — e¥. Because ¢ € r; and ¢’ € r;1g, Lemmas 12.12 and 12.13
imply that there is a a witnessing subdivision H' of V3 with two H’-spokes in
cl(@;) Ucl(Q;+1) and the other two H'-spokes are s;;3 and s; 4. Furthermore, six
of the eight ends of the H'-spokes are in the component R’ of R—{e, e’} containing
Tit1 Ti42 Ti4+3 Titd-

Let y be the end of ¢’ in R’. Because w = v;11 and &’ € [viy¢, rite, T), R is
contained in

Tit1 Ti+2 Ti+3 Ti+4 Ti+5 [”Uz'+6, Ti+6, !17> .
In particular, J is not an H’-spoke and at most two of the H’-spokes have ends in
the span of J. Lemma 7.2 (1) implies the contradiction that the span of J, which
includes f, cannot be crossed in D. We conclude that e and €’ are not R-separated
in G — e*. Lemma 13.3 implies that e has a w-consecutive edge, as required.



104 13. THE NEXT RED EDGE AND THE TILE STRUCTURE

Subcase 4: f € ;7.

In this case, J has an end 2’ € (r;;7). If the other end of J is v; 5, then Lemma
7.2 (3b) implies f’ is in r;y3. The contradiction is that @, is not crossed in D.
Therefore, the other end of J is v;. Lemma 7.2 (3b) implies f’ is in r; 7;41.

Suppose there is no red edge in ;16 ;7. Let e;1s be the edge of s;43 incident
with v;yg and let D;;s be a 1-drawing of G — e;4g. Corollary 12.7 and Lemma
5.9 imply @HS is crossed in D;;g. No edge in 7,46 is spanned by a 2.5-jump
having an end in (r;;¢), as otherwise e is H-yellow. Therefore, Lemmas 12.4 and
12.5 imply no edge of r;1¢ is crossed in D;;g. Lemma 7.2 (1) shows that no edge
of [2, 747,48 Tits Tito is crossed in D; 5. We conclude that some edge f of
[Vig7, Tit7, @'] is crossed in D;ysg.

Lemmas 12.4 and 12.5 imply that there is a 2.5-jump v;psx”, with = €
(Viy7,7ig7, 2], and, furthermore, that f € [vi47,7i47,2"]. Lemma 7.2 (3b) im-
plies f crosses an edge ¢’ in ri44. Lemmas 12.4 and 12.5 imply €’ is red in G.

Let y be the end of ¢’ nearest v;15 in r;+4. The r;7;45-path Py contained in the
uuc-subpath of A, —e must have v; 5 as an end, since otherwise e is either H-green
or H-yellow. Symmetrically, the r;;47;19-path Py contained in the yye/—subpath of
A, — e’ has v; as an end.

Lemma 11.7 implies €’ is R-separated from e in G. Therefore, Py and Py are
disjoint. This implies that RU Py U Py U S;42 U s;43 U s;14 is a subdivision Vjg in
G — e, showing that f cannot be crossed in D, a contradiction that proves there
is a red edge €’ in rj1 677,

Suppose e and e” are R-separated in G — e*.  Lemma 12.12 implies that
a witnessing subdivision H' of V3 is such that the component R’ of R — {e, f}
containing six of the eight ends of H'-spokes contains ;11 712 713 714 T'it5-

However, J spans [z, 747, Vit8] Ti+8 Tit9, SO at most two H'-spokes have ends
that are in the span of J. Lemma 7.2 (1) combines with H' to yield the contradiction
that the span of J, including f, cannot be crossed in D. It follows that e and ¢”
are not R-separated in G — e®, and now Lemma 13.3 implies e has a w-consecutive
red edge, completing the proof of Claim 1. O

With Claim 1 in hand, we may assume f is red. Recall that f and f’ are the
edges crossed in D, with f € rjyq7iv57ive iy and [/ € 1171301 702. The
proof in Case 1 is completed by finding a w-consecutive red edge for e. We proceed
in four cases, basically depending on which side of A, each of f and f’ is on.

Subcase 1: f is in riy4[vits, Tivs, u®] and f/ is in ri_q [v;, 7, u.

Since f and f’ are not R-separated in G — ¢ and, therefore, not R-separated
in G, f’ cannot be red (Lemma 11.7). If f’ is H-yellow in G, then Lemma 12.4
shows it is not crossed in D. Therefore, Theorem 11.3 implies f’ is H-green in
G. Lemma 12.5 says there is a 2.5-jump J spanning f’ so that f’ is in the partial
H-rim branch spanned by J. As J cannot span e (e is not H-green), Lemma 7.2
(3b) and our current context (f in r;44 745 and f’ in r;_q r;) implies this is possible
only if f/ € r;_1 and f € r;15. However, the red edges f and e are R-separated
in G, implying that G — €% still has five spokes (we may replace s;; with the
r;Ti+5 subpath of P,). Thus, f’ is H'-green in G — e, for some H' = Vjy. This is
impossible, as f is crossed in D (Lemma 6.6 (10)).

Subcase 2: f € 74 4[Vigs, Tigs, uf] and f € [u, 75, vi01] i1 Tige.
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In this subcase, f is R-separated in G from e. The witnessing subdivision H' of
Vs can be chosen to contain the “nearer” (r;—i r;)(r;447i+5)-paths, one from each
of Ay and A, together with the H-spokes s;19 and s;;3 to construct H'.

We claim that this H’ also shows that f is R-separated from f’ in G —e%. If
[ € 7iya, then, since @, is crossed in D, f' € r;r;1. In this case, H' contains
the spokes s;12 and s;13, so indeed f and f’ are in disjoint H'-quads, as required.
If f € riys, then f' € r;yo by Lemma 7.2 (3b), and again f and f’ are in disjoint
H'-quads, showing f and f’ are R-separated in G —e®. Observation 11.6 (1) yields
the contradiction that f and f’ do not cross each other in D.

Subcase 3: f € [w®, 7iy5,Vite]Tive Tivr and f € riq [vi, 7, u].

If f is R-separated from e in G—e%, then it cannot cross f’ in D, a contradiction.
Otherwise, Lemma 13.3 implies there is a w-consecutive red edge for e.

Subcase 4: f € [, rits5, Vigs)Tite Tigr and f € [u, 74, vip1] g1 rigo-

If f/ = e, then we are done: Lemma 13.3 implies e has a w-consecutive edge.

So we assume f’ # e. If f'isred in G, then Lemma 11.7 implies it is R-separated
from f in G. Therefore, f’ is R-separated from f in G — €%, a contradiction; so f’
is not red in G.

Suppose by way of contradiction that f’ is H-yellow, with witnessing H-yellow
and H-green cycles C and C’, respectively. If €* is not in C, then Lemma 12.4
yields the contradiction that f’ is not crossed in D.

If e¥ is in C, then let P, be the RR-subpath of C' containing e¥, let P’ be the
RR-subpath of A, — e that contains e, and let J be the global H-bridge contained
in C’. The end of P’ in r; 45 cannot be in the interior of the span of J, as then either
the peak of A, is a vertex, in which case we have that A, is H-yellow, yielding the
contradiction that e is H-yellow, or the peak of A, consists of parallel edges, both
in the span of J, contradicting Theorem 6.7.

It follows that P’ has its end in 15, but not in the interior of the span of J.
On the other hand, P, has, by Definition 11.1, one end in the interior of the span of
J. But now (P, U P’) —e” contains an R-avoiding subpath that intersects at most
the one spoke s;11. Therefore, this subpath is in an H-green cycle and contains an
edge spanned by J, contradicting Theorem 6.7. It follows that f’ is H-green.

Theorem 12.6 implies that H has no 3-jumps. If f’ is H-green by a 2.5-jump
J, then, because J cannot span e, Lemma 7.2 (3b) implies f € [w®, rit5, Vit6]Tite
and f' € ri1o. Let x be the end of f closest to w® in r;157r;16. Let H' be the
subdivision of Vg obtained from H — (s;41) by replacing s;1o with P, (recall this
is defined in Theorem 12.1 (3)). Now f and f’ violate Lemma 7.2 (3b) relative to
H'. Therefore, f’ is not H-green by a 2.5-jump.

Lemma 7.2 implies f’ is not H-green by a 2-jump, as then it is not crossed in
D. Thus, f’is H-green by a local H-green cycle C. Lemma 12.5 implies e® is in C.
Since f cannot be R-separated from f/ in G —e™, we see that f is not R-separated
from e in G — e*. Now Lemma 13.3 implies there is a w-consecutive red edge for
e, concluding the proof for Case 1.

Case 2: e¢¥ not incident with w.

By Theorem 12.1 (3), w is incident with a global H-bridge J,,. Since w is not
incident with e, w # v;41, and therefore J,, is the 2.5-jump wwv; 3.



106 13. THE NEXT RED EDGE AND THE TILE STRUCTURE

We observe that, since e, is not incident with w, its incident vertex in r; is
in the interior of the span of J,. Moreover, e, is the first edge of an R-avoiding
ririys-path P in A, — e, which, together with a subpath of r;r;11, s;42, and a
subpath of r; 5 ;16 makes an H-yellow cycle C. By Lemma 11.2 (3), there is only
one C-bridge in G and, therefore, P = s;41. In particular, e,, € s;41.

CLAM 2. No edge in r; 17748 is H-yellow.

PROOF. Suppose some edge €' in r; 177,48 is H-yellow. Let C' and C’ be the
witnessing H-yellow and H-green cycles, respectively. By Lemma 11.2 (1), C’
contains a global H-bridge J'.

In the case ¢’ is in ;. 7, the span of J’ contains a vertex of 7;, o in its interior.
Theorem 6.7 implies J' = J,,. But now C U Q11 contains an H-yellow cycle C”
for which there is a C"-interior C”’-bridge containing an edge of s;12, contradicting
Lemma 11.2 (3). Therefore, no edge in r; 47 is H-yellow.

Now we suppose €’ is in r;15. Lemma 10.9 (1) shows J’ does not have v;13 as
an end, so J’ has one end z € (r;;3) and its other end is v;1¢. But now C' U Q;14
contains an H-yellow cycle C” having a C”-interior C"'-bridge containing an edge
of $;44, contradicting Lemma 11.2 (3). O

CLAIM 3. Some edge of 7,17 is red.

PRrROOF. Suppose no edge of r;,7 is red. By Theorem 11.3 and Claim 2, every
edge in r; 7 is H-green.

SuBCLAIM 1. If there is a red edge in either ;13714 Or 7,48 7it9, then there
is a red edge in 7,8 7;19. Furthermore, among all such red edges, the one e’ with
an end z”/ nearest v;4g in 748 7o is such that (¢”)*" is not incident with 2 (that
is, Case 1 does not apply to ¢’ and z”).

ProOOF. We first suppose no edge of 7;137;+4 is red. Then there is a red edge
in 7;487;19. For any such red edge e”, if the end z” of €” nearest to v; g is
incident with (e”)*", then Case 1 shows there is an z”-consecutive red edge é for
e’. By Definition 13.1 (1), é € 741 riy2Tit37ira. Since the edges in ;41 712
are H-green, é ¢ r;17;12. But then é is a red edge in 7;45r;14, a contradiction.
Therefore, 2 is not incident with (e” )9’7//7 as required.

The alternative is that there is a red edge in 7;437;14. Among all such edges,
let ¢’ be the one having an incident vertex x’ nearest v;43 in r;137;14. Because of
Theorem 6.7 and J,,, 2’ is not incident with a 2.5-jump 2'v;11 or 2’v; 2. Therefore,
' is incident with (e’ )I,, and we conclude from Case 1 that there is an 2’-consecutive
red edge ¢” for ¢’. Because of Jy,, every edge in r;,¢ is either H-yellow or H-green
and so, in particular, is not red. By assumption, no edge of r;; 7 is red. By Definition
13.1 (1), €” € riygTito. Also, A.v separates s; 3 from Ay in cl(Qi43) Ucl(Qita)-

Let " be the end of ¢’ nearest v;1g in ;48 7;+9. By way of contradiction,
suppose z” is incident with (¢”)*". Then Case 1 shows there is an z”-consecutive
red edge é for ¢’. But é is not in 741 7342 because J,, makes every one of those
edges H-green. Therefore, é is in r;437;44. Since Ag separates s; 3 from A.» in
cl(Qit3) Ucl(Qita), we see that é is nearer to v;13 than €’ is, contradicting the

. . . . . ” .
choice of €’. Therefore ' is not incident with (e”)*, as required. O

SUBCLAIM 2. No edge in either 7; 43744 Or 7,48 719 is red.
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PROOF. Suppose by way of contradiction that there is a red edge in either
Ti43Titd OF Ti48Ti4+9. By Subclaim 1, there is a red edge €¢” in 7; 18719 so that
the end 2/ of ¢” nearest v, g in 7487y is not incident with (e)*". Therefore,
Theorem 12.1 (3) implies 2’ is incident with a 2.5-jump that is either z”v; ;¢ or
2" v 7. Tt cannot be the former, as the 2.5-jumps 2" v;1¢ and J,, contradict Lemma
10.9 (4). Therefore, 2" is in the interior of ;19 and the 2.5-jump is z"”v;;17. The
contradiction is obtained by showing that cr(G) < 1.

Let D be a 1-drawing of G — (r;+7). There is still a subdivision H’ of V5 in
G — (riy7) consisting of the rim (R — (r;y7)) U 2”v;47 and the four spokes s;,
Si+1, Si+2 and S;437i18[Vito, Tite, 2”]. We note that a”v; 7 is an H’'-rim branch,
contained in an H'-quad @ consisting of s;i2, rit2, Sit37its[Vito,Tito,x”’], and
2" visr.

We aim to show D|[Q)] is clean, so by way of contradiction, we assume D[Q)] is
not clean. The H’-rim branches of @ are r;.o and x”v; 7. Since r;11 7512 is not
crossed in D (Lemma 7.2 (3a)), we deduce that 2" v; 17 is crossed in D. Furthermore,
the cycle 743 Si+4 Tits Si+3 (which is Q; 43 in G) is H'-close and, therefore Lemmas
5.3 and 5.4 imply Q;13 is not crossed in D. It follows that x”v;17 crosses 714
in D, 80 $;4+37it8[Vit9, Ti+9,2”] is exposed in D, from which D[H'] is completely
determined. (See Figure 13.1.)

Vi+8 Vi+9

FIGURE 13.1. D[H']

Our contradiction is obtained from a detailed consideration of A... We first
show that v;44 is in the peak of A.». To see this, we note that the r; 1 97;14-subpath
of A — " that starts nearest 2" is simply s;44, as otherwise there is an H-yellow
cycle C' with more than one C-bridge. Theorem 12.1 (3) implies the subpath of
Agr — e’ from z” to the peak of A, has at most one edge in R; therefore, there is
no edge of r; 14 between v; 4 and the peak of Agv. That is, v;44 is in the peak of
Agr.

Let y” be the end of ¢’ different from z”/. Because y” is too close to J,,, it is
not incident with a global H-bridge. Thus, the edge of A.» — ¢ incident with 3"
is not in R and, therefore, is the first edge of an r;gr;44-subpath P of Agr — €.
Let 2" be the other end of P.
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We note that z” # v;14, as D[P] cannot cross D[H']. Therefore, 2" € (v; 44,714,
vis5]. If 2”7 is in the peak of A.», then z” and v;44 are joined by parallel edges,
one of which is not in H’. That one must cross D[H’], which is a contradiction.
Therefore, 2z is not in the peak of A.s. But now Theorem 12.1 (3) implies z” is
in the interior of the span of a global H-bridge J” that has an end in the peak of
Agr; therefore, this end of J” is in r;i4.

The end of J” in ;14 must be v;44, as otherwise J” is a 2.5-jump with one end
being v;47, which, together with z”v;, 7, contradicts Lemma 10.9 (1). Therefore,
J" is either v; 4 4v; 16 Or v;4qu”, with v” € (r;1¢). However, Lemma 7.2 (1) or (3a)
and J show that r; 14 cannot be crossed in D, a contradiction that finally shows
DIQ)] is clean.

We can now obtain the claimed 1-drawing of G. Observe that z''v;y7 is in an
H-green cycle that, by Lemma 6.6 (8), has only one bridge. Also, if there is a Q;12-
bridge other than Mg, ,,, then cl(Q;12) has an edge f not in ;2. But Theorem
5.23 and Lemma 5.9 imply @;2 would be crossed in any l-drawing of G — f;
however, both 7;15 and r;17 are H-green courtesy of J, and z"'v;y 7. Therefore,
Qi+2 has only one bridge. It follows that there are only two Q-bridges in G, one of
which is 7;47. Since D[Q)] is clean, it bounds a face of D[G — (r;4+7)] and it is easy
to put 7;+7 into this face so as to obtain a 1-drawing of G. That is, cr(G) < 1, a
contradiction completing the proof of the subclaim. [

We are now in a position to finish the proof of Claim 3. Let es be the edge
of s;y3 incident with v,15 and let D be a l-drawing of G — e3. Corollary 12.7
and Lemma 5.9 imply Q5 is crossed in D. It follows that there is an edge é in
Ti+6 Ti+7 Ti4+8 Ti+9 that is crossed in D.

The H-yellow cycle @;+1 contains r;yg, so Lemma 12.4 implies r;1¢ is not
crossed in D. By assumption for ;17 and by Subclaim 2 for ;1 g7;19, no edge
of rip77;18Tiro is red. Lemmas 12.4 and 12.5 imply that é is spanned by some
2.5-jump J’, and, moreover, é is in the H-rim branch whose interior contains the
end z’ of J'.

If € € r;y7, then J' is either x'v;y5 or z'v;. Suppose first that J' = 2'v;1s.
Lemma 7.2 (3b) implies é crosses an edge in 7;44. But Theorem 6.7 shows 7;44
cannot be in the span of a 2.5-jump, so Lemmas 12.4 and 12.5 imply no edge of
7444 18 crossed in D. Thus, J' # z'v;1s.

Now we suppose J' = z'v;. In this case, Lemma 7.2 (3b) implies é crosses an
edge in r;11, while (1) of the same lemma implies no edge in the span of J, which
includes r;41, is crossed in D. We conclude that é ¢ r; ;7.

If é € ri1g, then J' is either 2'v;14 or 2’v; 1. Theorem 6.7 shows the latter
does not happen. Lemma 10.9 (4) shows the former does not happen. Therefore,
é ¢ Ti+8-

The last possibility is that é € ;9. In this instance, J' is either a'v; 17 or
2'v;y2. Theorem 6.7 precludes the latter possibility, so we assume J' = z'v;y7.
However, in this case, Lemma 7.2 (3b) implies é crosses an edge € in 45, in which
case neither é nor € is in Q; 13, contradicting the fact that Q, i3iscrossedin D. 0O

We now finish the proof of Case 2 and, therefore, Theorem 13.2. By Claim 3,
we may let ¢/ = xy be the red edge in r;17 that is nearest v;17 in 747, labelled
so that x is nearer v;y7 in r;47 than y is. We look for the z-consecutive red edge
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for ¢/. As the edges spanned by J, are H-green, e is the only possibility for the
z-consecutive red edge for €’

Suppose first that e’ and x satisfy the condition for Case 1. We have proved
there is an x-consecutive red edge for €’ and, as just mentioned, this can only be
e. This implies that x = v;17. To see that €’ is the w-consecutive red edge for
e, it remains to show that e and e’ can be crossed in G — e*. (This is the only
asymmetric condition in the definition of consecutive.)

The H-quad Q;11 is also an H-yellow cycle and so (Lemma 11.2 (3)) bounds
a face of G. Tt follows that e and e’ are not R-separated in G — ¢¥ and, therefore
Lemma 11.7 implies there is a 1-drawing of G — e in which e and ¢’ are crossed,
as required.

The alternative is that ¢’ and z do not satisfy the condition for Case 1. Then,
just as for w above, there is a 2.5-jump J, = zv;15 incident with z. Also, the edge
e® of Ao — € that is nearest x and not in R is in s;47. Since Q;11 bounds a face
of G, e and €' are not R-separated in G — e and, therefore, Lemma 11.7 implies
there is a 1-drawing of G — e in which they are crossed. |

The following is a consequence of Definition 13.1 and Theorem 13.2.

LEMMA 13.4. Let G € ./\/l‘;’ and Vip=2 H C G, with H tidy. With the la-
belling of e = uw and ey, as in Definition 13.1, if x is the end of e,, nearest w® in
[We, 745, Vite]Tite Titr, then e is x-consecutive for ey, .

Proof. By Theorem 13.2, there is an z-consecutive red edge €” for e,,. Conditions
(2) and (3) of Definition 13.1 applied to e,, being w-consecutive for e and the same
conditions applied to e’ being z-consecutive for e,, imply that e = e”. |

The main goal of this work is to prove Theorem 2.14. The following lemma
will be very helpful.

LEMMA 13.5. Let G € M3, Vip= H C G, and let TI be an embedding of G in
RP? so that H is I-tidy. Let C be a contractible cycle contained in M so that C
is the union of a 3-rim path C' N R (recall Definition 11.1 (1)) and an R-avoiding
path P. Then, for every edge e of C N R, there is an H-green cycle containing e
and contained in H U P.

Proof. The graph H U P is 2-connected and not planar, so every face of II[H U P]
is bounded by a cycle. There is a face F' of H U P contained in 9t and incident
with e; by the preceding remark, F' is bounded by a cycle C".

Let j be the index so that e € r;; thus, F' is Q;-interior. Since F' is also C-
interior, C" N H C (sjr;j sj+1). In particular, there is at least one edge of C’ that
is in P but not in H.

Observe that (s; 7; s;41) —e has two components K; and K,. Since C’ contains
a vertex in each of K; and K, (namely the ends of €), C’ contains an (s; r; s;41)-
avoiding Ky Ko-path P’. Thus, P’ C P.

Let C" be the cycle in (s;7j sj4+1) UP’. Then C” is evidently an H-green cycle
containing e, as required. |

Now for the main result.

Theorem 2.14 If G is a 3-connected, 2-crossing-critical graph containing a subdi-
vision of Vig, then G € T(S).
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Proof. By Theorem 10.4, G contains a tidy subdivision H of Vig; let 1I be
an embedding of G' in RP? so that H is II-tidy. The strategy is to show that,
between every red edge e = uww and its w-consecutive red edge e,,, there is one of
the thirteen pictures (as defined just before Lemma 2.11). This is accomplished
by showing that e produces “one side” of the picture and e, produces the other.
Let i € {0,1,2,...,9} be such that e € r;; we choose the labelling so that r; =
[Vi, 75, u, e, w, T, viv1]. Thus, ey € 145 Tit6 Titr-

Let x be the end of e, so that e is the x-consecutive red edge for e,,. Let P;
be the wez-subpath of R that is a 3-rim path (Definition 11.1 (1)); likewise P is
the x®»w-subpath of R that is a 3-rim path.

CrAamM 1. Let B be a global H-bridge spanning an edge of P;. Then:

(a) B has ends w® and x;
(b) w® = v;y5; and
(c) e" € s;41 and (ey)” € Sita.

The analogous claims holds for Ps.

PROOF. We remark that the span of B does not include in its interior a peak
vertex of A., and does not include e,,. Therefore, B has both its attachments in
Py.

Consequently, the attachments of B are contained in r; 5 7i46[Vi+7, Fit7, Vits)-
Theorem 10.6 implies one end of B is v;15 and the other end is in [v; 17, 7i4+7, Vits).

It follows that w® = v;y5. At the other end, we claim x is in B. We note that
€w 18 In 747, so that H — (s;14) shows that e and e,, are R-separated. Let 2’ be
the end of B in r;47.

If (e,)” is not in s;42, then let e;,7 be the edge of s;;2 incident with v;;7 and
let D be a 1-drawing of G — e; 7. Corollary 12.7 and Lemma 5.9 imply Qi+2 is
crossed in D. The presence of J and B combine with Lemma 7.2 (1) to show that
neither [w, r;, viy1] 7i41 Tite DOT Tig6 [Vit7, Titr, '], Tespectively, is crossed in D.

It follows that some edge €’ in [2/,7r;417,v;18] is crossed in D. Let P, be the
path in A, described in Theorem 12.1 (3). Since P,, does not have v; 1 as one end,
and its other end is v;5, its only intersection with s;4; can be in (s;11). Such an
intersection produces an H-green cycle that shows the edge of r; incident with v; 1
is in two H-green cycles, contradicting Theorem 6.7. Therefore, P, is disjoint from
Si+1-

Using Py, Si+1, Si+3 and s;14 as spokes and R as the rim yields a Vg that shows
r;47 is R-separated in G — e;;7 from [v;, 7;, w]; thus, Observation 11.6 (1) shows e’
crosses an edge €’ of ;13 in D. Lemmas 12.4 and 12.5 shows ¢’ and ¢” are red in G.
Lemma 11.7 shows that e’ and € are R-separated in G. Lemma 12.13 shows that
a witnessing V3 can be chosen to avoid e;+7. But now D contradicts Observation
11.6 (1). Therefore, (ey)” is in $;42 and incident with v;47.

If B has an end in (r;y7), then Theorem 12.1 (3) implies P, Nr; 47 has just one
edge, namely zv;;7 and, consequently, z is in B.

If, on the other hand, v;;7 is an end of B, then Theorem 12.1 (3) implies x
must be incident with e” and, therefore x = v; 7. Again, we see that x is in B.

Observe that J,, and B are now seen to be completely symmetric with respect
to (e, w) and (z,e,); in particular, we conclude that e® € s;41. O
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If there is a global H-bridge B spanning an edge of P;, then we let P = B.
Otherwise, we let P/ = P;. A completely analogous discussion holds for P to yield
the wz™e-path Pj.

Our next claim identifies the cycle that is the boundary of our picture.

CLAIM 2. The closed walk P, PP, Pj is a cycle.

PROOF. If the edge of P, incident with w is in R, then Theorem 12.1 (3) shows
that w is incident with a global H-bridge B. Claim 1 implies B = P3. Thus, w has
degree 2 in the closed walk P, P|P,P;. Otherwise, Py = P, w is incident with e¥,
and again w has degree 2 in P, P| P, Pj.

The other “corners” w¢, x, and x°* are treated similarly. ([l

DEFINITION 13.6. Let e and ¢’ be red edges and let w and = be the ends of
e and €', respectively, so that €’ is the w-consecutive red edge for e and e is the
z-consecutive red edge for /. Let P; be the zA.-path in R that is a 3-rim path
and let P, be the wAg-path in R that is a 3-rim path. Let P, be the ww®-path
in A, — e and let P, be the zz¢ -path in A, —¢’. For i = 1,2, let P! be P; unless
there is a global H-bridge B; spanning an edge of P;, in which case P/ = B;.

The cycle C, is the composition P, P| P, Pj.

We will see that C, is the outer boundary of the one of the thirteen pictures that
occurs. We observe that C. is in the boundary of the closed disc in RP? consisting
of the union of the closed discs bounded by 7; 741 712 Sit3 Tit7 Fit6 Tits Sis P P1
(if P{ # Py), and PyP, (if P) # P,). Therefore, C, is the boundary of a closed disc
D, in RP2.

We now prove three claims that will be useful for finding the various parts of
the picture.

CrAaM 3. Let C be a cycle contained in ©,. If either CN P or CN P} is empty,
then C bounds a face of II[G].

PROOF. By symmetry, we may suppose CNP; is empty. Let M be the C-bridge
containing S;44.

SuBcLAIM 1. If B is a C-bridge different from M, then II[C'U B] is contractible
in RP2.

PROOF. We start by noting that II[B] C 90, since Pj is either just an edge
that is a global H-bridge (and so in © and forcing B to be in 9M) or Py = P,
and there is no global H-bridge having an attachment in (P). In the latter case,
any global H-bridge having an attachment at an end of P5 (say w), has its other
attachment in the H-rim R— (P5). Such an attachment is in Nuc(M), contradicting
the assumption that B # M.

It follows that II[C' U B] is contained in 91 and totally disjoint from s;44.
Therefore, IT[C' U BJ is contractible, as claimed. O

Let H' be the subgraph of HUP]UP; consisting of (R— ({(P1)U(P»)))U(P{UPy)
and the three H-spokes s;13, Si14, and s;. The following claim shows that H' is a
subdivision of Vg. (The notation ||y|| is in Definition 4.1 (1).)

SuBcLAIM 2. C.Ns; C ||’UZ'+5|| and C. N Sit3 C HU,‘+3H.



112 13. THE NEXT RED EDGE AND THE TILE STRUCTURE

PROOF. Recall that P, is contained in A.. Theorem 12.1 (the existence of A,
and Ay, together with (3)) implies P, is internally disjoint from P, and, therefore,
cannot intersect s;, except possibly at their common end point v;;5. The analogous
argument using A, applies for s;;3. O

If C does not bound a face of II[G], then let ¢’ be any edge of any C-interior
C-bridge and let D be a 1-drawing of G — e. Subclaim 2 implies that C' is H'-close
(Definition 5.2). Lemmas 5.3 and 5.4 imply C is clean in D. Therefore, D contains
a l-drawing of C'U M in which C is clean and Lemma 5.6 implies C' has BOD. It
now follows from Corollary 4.7 that cr(G) < 1, the final contradiction. O

We find structures in the C.-interior that lead to the pictures. Our discussion
will be w-centric; there is a completely analogous discussion for x.

A useful observation is the following. Recall that P, is the ww®-path in A, —e
(Theorem 12.1 (3)) and P, is the analogous za®*-path in A, .

CLAM 4. (1) No C.-interior C,-bridge has an attachment in each of the
components of (C, — P,) — e®.
(2) No C.-interior C,-bridge has an attachment in each of the components of
(Ce — Py) — €.

PRrROOF. Let H’ be a subdivision of V3 witnessing the R-separation of e and
ew. As e and e, are R-separated in neither G — e” nor G — €%, ¢* and e* are both
in H'. Since e and e, are in disjoint H'-quads, e and e* are in disjoint H’-spokes,
which we denote as P™ and P¥, respectively; P" and P* are contained in the closed
disc bounded by II[C.].

SUBCLAIM 1. There is such an H’ so that P* = P,.

PROOF. As a first case, suppose C.Ns; = &. Then we may choose H' to be R,
Siy Si+d, Pw, and P, and we are done. In the second case, C, N s;43 = &; replace
S; with Si+3-

In the final case, C.Ns; and C.Ns; 3 are not empty. In this instance, e,, € ;7.
We may choose H' to consist of R, s;14, Si, Si+1, and P, the latter being contained

in Cl(Qi+2). U

By symmetry, it suffices to prove (1). Suppose by way of contradiction that
there is a C,-interior Ce-bridge B having an attachment in each component of
(Ce — P;) — e". Subclaim 1 implies there is a subdivision H’ witnessing the R-
separation of e and e,, so that P, C H'. Let P¥ be the other H’-spoke contained
in the interior of C,.

Let C” be the cycle bounding the Ce-interior face of C, U P that is incident
with e?. The C.-bridge B contains a subpath P’ joining the two components of
(C'—P,)—e*. Now ((C'— P;) —e*)UP’ contains an R-avoiding path P” that can
replace P¥ in H' to get another subdivision of Vg that witnesses the R-separation
of e and e, in G — e“. However, this contradicts the fact that e and e,, are not
R-separated in G — e". O

Here is our final preliminary claim.

CLAIM 5. Let B be a Ce-interior C-bridge. Then B is just an edge and its
ends.
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PROOF. Suppose to the contrary that B is a C-interior C,-bridge with at least
three attachments.

SUBCLAIM 1. B has at most two attachments in each of C, — P{ and C. — P;j.

PrOOF. By symmetry, it suffices to prove the first of these. Suppose B has at
least two attachments in C, — P{. Let y and z be the ones nearest the two ends of
C. — P|. There is a cycle in B U C, consisting of a C,-avoiding yz-path in B and
the yz-subpath of C, — P{. Claim 3 implies this cycle bounds a face of II[G] and,
therefore, B can have no other attachment in C, — P;. g

SuBCLAIM 2. att(B) N P] C {z,w°} and att(B) N Py C {w,z%}.

PrROOF. By symmetry, it suffices to prove the first of these. By way of con-
tradiction, suppose B has an attachment y in (P[). Because B has at least three
attachments, Subclaim 1 implies B has an attachment z in Pj. Any C.-avoiding
yz-path in B contradicts Claim 4. g

From these two subclaims, we easily deduce that:

e B has at most four attachments;
e one of w and z®v is an attachment of B; and
e one of x and w® is an attachment of B.

Observe that Claim 4 (1) implies that not both w and w® are attachments of
B, while (2) implies that not both  and x°» are attachments of B. Therefore,
att(B) N (P{ U Py) is either {w,z} or {w®, z°}.

SUBCLAIM 3. att(B) N (P; U Pj) = {w®,z°}.

PROOF. Suppose by way of contradiction that att(B) N (P] U Pj) = {w,z}.
As B has at least three attachments, there is an attachment y in (P,) U (P;). By
symmetry, we may assume y € (P,). Let PY" be a C.-avoiding yw-path in B.
Then the union of P¥* and the yw-subpath of P, is a cycle CY" in ®..

Since y and w are in P, — w®, CY¥ is disjoint from P;. Claim 3 implies C¥*
bounds a face of II[G]. On the other hand, P, is contained in the boundary of the
face bounded by A, and, therefore, CY* N P, is in the boundary of two faces of
IT[G]. We deduce that CY* N P, is just the edge wy.

Furthermore, Claim 4 implies w and y are in the same component of P, — e™.
Therefore, the definition of e implies wy is in R, and consequently Pj is a global
H-bridge spanning wy. However, any edge of B incident with w — and there is at
least one such — must be in the interior of the face of II[G] bounded by the H-green
cycle containing Py (Lemma 6.6 (8)). This contradiction proves the subclaim. O

We are now ready to complete the proof of the claim. Any vertex in att(B) \
{we, z»} is in (P, ) U (P,). Subclaim 1 implies there is at most one of these. Since
B has at least three attachments, there is at least one of these. We conclude there
is exactly one such attachment y. We may choose the labelling so that y € (P,).
Lemma 5.19 implies B is isomorphic to Kj 3.

The vertex y is in the interior of P,. Thus, both edges of P, incident with y
are in the boundary of the face bounded by II[A.]. Consequently, any edge of G
incident with y is in ..

Let ¢ be the vertex of degree 3 in B. Claim 3 implies that the cycles [y, ¢, w®, 3]
and [y, ¢,z Py, w, P, y] both bound faces in .. Therefore, y has degree 3 in G.
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Let ¢’ be the edge cw® of B and let D’ be a 1-drawing of G — ¢’. Consider the
subdivision H’ of Vg consisting of (R — ((P1) U (Ps)) U (P{ U Py), Py, s;, and s;44.
Then H’ shows that P, U (B — ¢) is not crossed in D’.

The path P’ = [¢, cy, y, Py, w®] is not crossed in D’. Since y has degree 3 in D',
we may add the edge w®c to D’ alongside P’ without crossing to obtain a 1-drawing
of G. This is the final contradiction that shows B has only two attachments. Lemma
5.19 shows B is just an edge and its ends. O

We now have our preliminary lemmas in hand and proceed to complete the
proof of Theorem 2.14.

DEFINITION 13.7. Let C, be decomposed as P, P{ P, Py as in Definition 13.6.

(1) If f is an edge not in C, with ends w and z., and Pj has length 1, then
f is a w-chord.

(2) If f is an edge not in C, joining w to a vertex y € (P,) and the yz®*-
subpath of P, has length 1, then f is a w-slope.

(3) If f and f’ are edges not in C,, with f joining w with z € (Pj) and f’
joining z to 2z’ € (P,), and if Pj has length 2, while the z’z®»-subpath of
P, has length 1, then {f, f'} is a w-chord+w-slope.

(4) If f is an edge not in C, joining z°* to a vertex y in (P,), and both Pj
and the yw-subpath of P,, have length 1, then f is a w-backslope.

(5) If f is an edge not in C. joining y € (P,) and z € (P,), and the paths P,
and P, have length 2, while P] and Py have length 1, then f is a crossbar.

The five situations in Definition 13.7 are illustrated in Figure 13.2.

w Pz w Py oz w P, oz w Py oz w P, v

! !
Pl T | N [T MY T vt
P, P, Py P Py P, P, P,
w® Pz wt Pz w® P =z w® Pl =z w® Pz

FIGURE 13.2. Definition 13.7.

CLAM 6. If € is in neither an H-yellow nor an H-green cycle, then every
edge of Py is H-green. If C is the set of H-green cycles containing edges of P, then
Ce U (Ucee)C contains either:

(a) Ce¢ plus a w-chord;
(b) Ce plus a w-slope; or
(¢) C. plus a w-chord+w-slope.

PROOF. Because e is not in an H-yellow cycle, Theorem 12.1 (3) implies w
is incident with e®.

Case 1: some edge of P» is spanned by a global H-bridge.

Let B be a global H-bridge spanning an edge of P,. Claim 1 implies B has

ends x° and w, % = v;43, ¥ € $;41, and e* € s;42. Since w is incident with e*,
we have w = v;41.
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We show (b) occurs by proving that r;11 is a w-slope. We show that r;; and
ri+2 are both paths of length 1, starting with the latter.

We note that P, is equal to s;427;12. Moreover, r;1o has the face of II[G]
bounded by the H-green cycle C, containing B on one side and the face bounded
by A., on the other. Thus, 749 is just a single edge.

Claim 5 shows that the C-bridge B’ containing r;y; is just an edge and its
ends. Thus, 7;;1 is B’ and so has length 1, as required, completing the proof in
Case 1.

Case 2: no edge of Py is spanned by a global H-bridge.

In this case, Py = P,. We start by showing that every edge of P, is H-green.

Because e,, is w-consecutive for e, Definition 13.1 implies no edge of P» is
red. By Theorem 11.3, we need only show that none is H-yellow. Suppose to the
contrary that there is an H-yellow edge f in P», as witnessed by the H-yellow cycle
Cy and the H-green cycle Cy. Lemma 11.2 implies there is a global H-bridge B
contained in Cy.

The face of II[G] bounded by C, (Lemma 11.2 (3)) is in 9. Now the faces of
IT1[G] bounded by A, and A, separate 9 into two parts, one of which contains
f, and therefore P. It follows that P, is also in this part and Cy has at least a
vertex in P;. We conclude that B spans an edge of P;. Claim 1 implies B = P,
we = Vg5, e € $i11, and €* € s;49. Because P = Py, and e* € s;411, we deduce
that w = v;41.

Since e is not in an H-yellow cycle, we conclude that ;1 is not an H-yellow
cycle. The other attachment of B, namely x, which is in [v;17, 747, Vits), must
therefore be v; 7.

If the H-yellow edge f is in 741, then C, N P; is contained in the interior of
the span of B. This implies that s;41 is in an H-yellow cycle and, therefore, e is
in an H-yellow cycle, contrary to the hypothesis.

We have noted that x = wv;4.7 is an end of B. Consequently, no edge of
[Vit2, Tit2, 2] can be H-yellow. That is, every edge of P, is H-green.

We now complete the proof in Case 2. Let C be the H-green cycle containing
the edge of P, that is incident with w. Because e is not in any H-green cycle, w is
incident with an edge €’ in C that is not in C,. Let B be the C.-bridge containing
e.

Claim 5 implies B is just an edge with the two ends w and a second vertex z.
The path C' N P; is in the boundary of the face of II[G] bounded by C' (Lemma 6.6
(8)). Also, there is no global H-bridge spanning an edge of P, (we are in Case 2).
These two facts imply C'N Py is just an edge.

Suppose first that z € P, — 2°». Because C is H-green, it is disjoint from P;.
Thus, Claim 3 implies that the cycle C’ that is the union of the wz-subpath of P, P,
and B bounds a face of II[G]. This face is contained in 9, as is the face bounded
by C. Both are incident with the edge of P, incident with w and so they are the
same face. We conclude that C = C’.

Now C N P, is in the boundary of a face inside the disc bounded by A. on
one side and the face bounded by C' on the other. Because G is 3-connected, this
subpath has length 1. In this case, we have (b).

The other possibility is that z is in P,. We have already shown that w and z
are the ends of a digon. If z = 2, then we have (a). Therefore, we may suppose

z # xv.



116 13. THE NEXT RED EDGE AND THE TILE STRUCTURE

Since G is 3-connected, z has a neighbour y distinct from its neighbours in Ps.
Let B’ be the C,-bridge containing zy. Claim 5 implies B’ is just an edge joining
z and y.

The choice of y shows y # w. Claim 4 (1) and (2) imply, respectively, that
y ¢ (P,P{) and that y # x. If y € Pa, then (just as for w and z) z and y are
the ends of a digon, so y is a neighbour of z in P,, contradicting the choice of y.
Therefore, y € (Py).

Let C’ be the cycle consisting of zy and the zy-subpath of P,P,. Claim 3
implies C’ bounds a face of II[G].

To see that (c) holds, notice that C'N P, is in the boundary of the faces bounded
by C’ and A, . Again, the 3-connection of G shows C' N P, is a path of length 1.
Likewise, C' N Py is in the boundary of the face bounded by C’. There is no global
H-bridge spanning any edge of P», so C' N P, is also a path of length 1, completing
the proof that (c) occurs and the proof of Claim 6. O

It remains to consider the possibilities that e™ is in either an H-yellow or an
H-green cycle. We do the latter first.

CrAamM 7. If ¥ is in an H-green cycle C, then either

(d) CeUC contains C, plus a back-slope or
(e) C.UC is C, plus a crossbar.

PRrROOF. Let F be the face bounded by C' (Lemma 6.6 (8)). Obviously F' is not
inside the face bounded by A., and, since F is contained in 9, F is Ce-interior.
Let y be the end of e” nearer w in P»; then y € r;. From the definition of H-green
cycle (Definition 6.2), the edge of the yz¢»-subpath of P, incident with y is in C.

If w is an attachment of a global H-bridge, then every edge of C' N R is in two
H-green cycles, which is impossible by Theorem 6.7. Therefore, P, = P}, y = w,
and C'is the union of the wz-path CNP; (this defines z) and an R-avoiding wz-path
P.

The path P contains a subpath P’ joining a vertex of the zz-subpath of P, P,
to a vertex of the component of P, — e containing w®; we may assume P’ is C.-
avoiding. Claim 3 implies that the cycle contained in P’ U P, P> P, bounds a face
of II[G]. As z is in this cycle, it must be that z is an end of P’ and, moreover, this
cycle is C. In particular, P is just P’ plus a subpath of P,. We know that C' N P,
is just an edge. Since the path C'N P, is in the boundary of the faces bounded by
both C and A., it is also just the edge e,,.

If z # x°», then P’ = P and the zw®-path contained in P U P,, contradicts
Claim 4 (1). Therefore, z = z°v.

Let B be the C,-bridge containing P’. Claim 5 implies B has precisely two
attachments w’ € P, and 2’ € P,: therefore, B is just the edge w'z’ (this is also
P’). If o’ is z°v, then B is a w-backslope.

Finally, suppose z’ is in P, —x®». Then C bounds a face incident with C'N P,.
Since C'N P, is also in the boundary of the face bounded by A, , it has length 1.

On the P{ side, B together with the w’z’-subpath of (P, P|P,) is a cycle C"
disjoint from Pj. By Claim 3, C’ bounds a face of II[G]. As above, each of C' N P,
C' N P,, and Py all have length 1. Therefore, B is a crossbar. O

Our final case is that e" is in an H-yellow cycle.

Cramm 8. If €% is in an H-yellow cycle C, then either
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(d) C.UC contains C, plus a back-slope or
(e) C.UC is C, plus a crossbar.

PROOF. Let C' be the H-green cycle witnessing that the cycle C' containing
e is H-yellow. Then C’ contains an H-jump J and either both ends of J are in
Py or both ends of J are in P». In either case, Claim 1 implies the span of J is all
of P, or P,. We treat these two possibilities separately.

SuBCLAIM 1. If both ends of J are in P, then (e) occurs.

PrOOF. In this case, Claim 1 implies J has ends w and z®, x° = wv;;3,
e’ € si41, and €” € s;49.

Because e,, is both incident with v;; and in an H-yellow cycle as witnessed
by the H-green cycle C’ containing J, v;y1 is in the interior of the span of J;
consequently, w € (r;). Therefore, the edge of r; incident with v;11 is H-green.

We observe that J witnesses that Q;11 is an H-yellow cycle. It follows from
Lemma 11.2 (3) that C' = @Q;4+1. The same part of the same lemma combines with
the fact that e is not H-green to show that P, consists of [w,r;, vit1, Sit1, Vite)
and that P, has length precisely two. Symmetrically, P, consists of s;y2 742 and
has length 2. Therefore, we have (e), as required. O

It remains to consider the possibility that both ends of J are in P;. Claim 1
implies J = wz, w® = v;y5, € € s;41, and €* € s;19. Also, r;15 is in the H-green
cycle C' containing J, and so P, contains r; 45 s;+1. Since Theorem 12.1 (3) implies
P, has at most one H-rim edge, we conclude that w = v;;;. Recall that P, is
in the boundary of the face of II[G] bounded by A.. The path r;;5 is also in the
boundary of the face bounded by C” and so is just an edge. The path s;; is also
in the boundary of the face bounded by C, so it too is just an edge.

If J is not incident with v;;7, then the situation is precisely that Subclaim
1 with the roles of (e,w) and (e, x) interchanged. Therefore, C, U C is (e), as
required.

Therefore, we may assume J is incident with v;y7. At this point, we know
that s;117i45,J and at least the edge e® of s;12 are contained in C.. There is a
C.-bridge containing r;,¢; Claim 5 implies this C,-bridge is precisely r; ¢ and this
is just an edge.

The cycle C has a second edge ¢’ incident with v; 6. There is a Ce-bridge B
containing ¢’. Claim 5 implies B has precisely two attachments, namely v;4¢ and
some other vertex .

If y € P, — 2%, then B together with the yv;g¢-subpath of C. — Pj contains
a cycle disjoint from Pj and yet does not bound a face (it contains r;14). We
know that ;157,16 J bounds a face of II[G], so y is not in Jr;;5. Claim 4 implies
y & Py —xv. Thus, y = x®».

To finish the proof that (d) occurs, note first that s;;1 and B are both edges;
thus, it suffices to prove that Pj is just an edge. In fact, Claim 3 implies Pj B s;11
bounds a face of II[G]. In particular, P» is not inside this face; therefore, Py = Ps.
Consequently, Pj = P, is just an edge. [

In order to determine the 13 pictures, we remark that, from the perspective of
both e and e, any of (1)-(5) in Definition 13.7 can occur. However, if (5) occurs
for either, then Claim 3 implies C, and this crossbar is all that is in ®.. In the
cases (2)(4) and (3)(4), there are two possibilities, as the slope and the back-slope
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can have either distinct or common ends in the spoke; the latter is denoted by a
T in the listing below. There is no third possibility, since the slope and back-slope
do not cross in ®.. Thus, there are the 13 pictures (1)(1), (1)(2), (1)(3), (1)(4),
(2)(2), (2)(3), (2)(4), (2)(4)7, (3)(3), (3)(4), 3)(4)™, (4)(4), and (5)(5).

Label the red edges in G as eg,eq,...,ex_1 so that, for i =0,1,... k—1, ¢;
has ends u; and v; and so that, reading indices modulo k, e; 11 is the v;-consecutive
red edge for e;. This implies that e; is the u;41-consecutive red edge for e; ;.

Since there are no red edges between e;_; and e; 1 on the “peak of A.,” portion
of R, defining adjacency to mean “consecutive” shows the set of red edges make
a cycle. Furthermore, v; and u;4; are both in the cycle C,, that determines the
picture 3; between e; and e;41. Taking any v;u;11-path P; in 3;, we see that P;
together with either of the v;u;;1-subpaths of R makes a non-contractible cycle in
RP2. In this sense, e; and e;; are on opposite sides of R.

If we think of ey as being on “top” and e; on the “bottom”, then es, ey, ...are
all on top and es, e5 ..., are on the bottom. When we get back to e from ej_1,
we have gone once around the Mobius strip, so ey is now on the bottom. It follows
that eg_1 is on top and, therefore, k — 1 is even, showing k is odd.

It follows that G contains a subgraph H that is in 7(S). (There may be
edges in the interior of C, “between” the structures we identified “near” P; and
Pj.) However, Theorem 5.5 implies H € M3, so we conclude G = H. That is,
GeT(S). [ |



CHAPTER 14

Graphs that are not 3-connected

The rest of this work is devoted to: describing all the 2-crossing-critical graphs
that are not 3-connected, discussed in this section; finding all 3-connected 2-cros-
sing-critical graphs that do not contain a subdivision of Vg, treated in Section 15;
and showing that the number of 3-connected 2-crossing-critical graphs that do not
contain a subdivision of V5,, is finite, which is Section 16. These last two combine
with the preceding work to show that there are only finitely many 3-connected 2-
crossing-critical graphs to be determined, namely those that have a subdivision of
Vs but no subdivision of Vig.

In this section we show that every 2-crossing-critical graph that is not 3-
connected is either one of a few known examples or is obtained from a graph in
M3 by replacing 2-parallel edges with a “digonal” path (that is, a path in which
every edge is duplicated). We remark that we continue assuming that the minimum
degree is at least 3, as subdividing edges does not affect crossing number. We first
determine all the 2-crossing-critical graphs that are not 2-connected.

14.1. 2-critical graphs that are not 2-connected

Since the crossing number is additive over components, any 2-crossing-critical
graph can have at most two components, each of them equal to either K3 3 or Ks.
Thus, there are only three different such graphs: two disjoint copies of K5, two
disjoint copies of K3 3, and disjoint copies of each.

Similarly, the crossing number is easily seen to be additive over blocks. Thus,
the blocks of a connected, but not 2-connected, 2-crossing-critical graph must be
1-critical graphs, and therefore all such graphs can be obtained from the afore-
mentioned disconnected 2-crossing-critical graphs by identifying two vertices from
distinct components. The identified vertex may be a new vertex that subdivides
some edge. For example, there are three possibilities in which both blocks are Kj:
the identified vertex is a node in both, or only in one, or in neither. Likewise for
K3 3. There are four 2-crossing-critical graphs in which one block is a subdivision
of K5 and the other is a subdivision of K3 3.

PROPOSITION 14.1. The thirteen graphs in Figure 14.1 are precisely those 2-
crossing-critical graphs that are not 2-connected.

14.2. 2-connected 2-critical graphs that are not 3-connected

In this subsection, we treat 2-crossing-critical graphs that are 2-connected, but
not 3-connected. With 36 exceptions, these all arise from 3-connected 2-crossing-
critical graphs that have digons (i.e., two edges with the same two ends). The
digons may be replaced with arbitrarily long “digonal paths” — these are simply
paths in which every edge is converted into a digon.

119



120 14. GRAPHS THAT ARE NOT 3-CONNECTED

K K MM K <K

SOE B Ko DEOK

IO Rl BB PO
PO

FI1GURE 14.1. The 2-crossing-critical graphs that are not 2-connected.

Tutte [34, 35] developed a decomposition theory of a 2-connected graph into
its cleavage units, which are either 3-connected graphs, cycles of length at least
4, or for k > 4, k-bonds (a k-bond is a graph with k edges, all having the same
two ends). We provide here a brief review of this theory. A 2-separation of a 2-
connected graph G is a pair (H, K) of edge-disjoint subgraphs of G, each having at
least two edges, so that H UK = G and H N K = |[{u,v}| (recall ||[{u,v}| is the
graph with just the vertices u and v and no edges.). Notice that a 3-cycle and a
3-bond have no 2-separations and, therefore, are to be understood in this context
to be 3-connected graphs.

The 2-separation (H,K) with H N K = ||[{u,v}| is a hinge-separation if at
least one of H and K is a ||[{u,v}|-bridge and at least one of them is 2-connected.
Another way to say the same thing, but in terms of H N K: ||[{u,v}| is a hinge
if either there are at least three ||[{u,v}|-bridges, not all just edges, or there are
exactly two [[{u,v}||-bridges, at least one of which is 2-connected.

The theory of cleavage units develops as follows. Let G be a 2-connected graph.

(1) If ||{u, v} is a hinge and (H, K) is a hinge-separation (possibly of another
hinge), then there is some |[{u, v}|-bridge containing either H or K.

(2) G has no hinge if and only if G is 3-connected, a cycle of length at least
4, or a k-bond, for some k > 4. (Recall that a 3-cycle and a 3-bond are
3-connected.) In each of these cases, G is its own cleavage unit.

(3) If (H, K) is a hinge-separation and H N K = ||[{u,v}||, then the cleavage
units of G are the cleavage units of the two graphs H + wv and K +
uv obtained from H and K by adding a wvirtual edge between u and v,
respectively. This inductively determines the cleavage units.

(4) There is a decomposition tree T" whose vertices are the cleavage units of
G and whose edges are the virtual edges. A virtual edge joins in T the
two cleavage units of G containing it.

(5) G contains a subdivision of each of its cleavage units.

(6) If G contains a subdivision of some 3-connected graph H, then some
cleavage unit of G contains a subdivision of H.
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In attempting to reconstruct G from its decomposition tree and its cleavage
units, each time we combine two graphs along a virtual edge, there are two possi-
bilities for how to identify the vertices of the corresponding hinge. This ambiguity
will play a small role in constructing the 2-crossing-critical graphs that are 2- but
not 3-connected.

It is easy to see that G is planar if and only if every cleavage unit is planar. (We
could apply Kuratowski’s Theorem and Item 6 or prove it more directly.) Since we
are interested in non-planar graphs, there are two relevant possibilities: one or more
than one of the cleavage units of G is not planar. We start by treating the latter
case. We remark that the following discussion makes clear that the crossing number
is not additive over cleavage units. Related discussions can be found in Siran [32],
Chimani, Gutwenger, and Mutzel [10] (but see [5] for significant comments about
the latter), Beaudou and Bokal [5], and Leafios and Salazar [21].

LEMMA 14.2. Let G be a 2-connected graph. If two cleavage units of G are not
planar, then cr(G) > 2.

It is an important consequence that, if G is 2-crossing-critical, 2-connected, and
has 2 non-planar cleavage units, then G is simple, i.e., has no digons.

Proof of Lemma 14.2. Among all 2-separations (H, K) of G, we choose the
one that has K minimal so that both H + uwv and K + wv are not planar, where
HNK = ||{u,v}|. If the crossing number of G is not at least 2, then cr(G) < 1,
so, by way of contradiction, suppose D is a 1-drawing of G.

Let Px and Py be wv-paths in K and H respectively. Since G contains the
subdivision H U Px of H + uv, G is not planar. Therefore, D has a crossing.
Evidently, D(H U Pg) and D(K U Py) both contain the crossing. We conclude
that the crossing in D is of an edge of Py with an edge of Pg. It follows that
there are not edge-disjoint wv-paths in either H or K and that the crossed edges
are cut-edges in their respective subgraphs.

Let w and x be the ends of the edge in K that is crossed, labelled so that w is
nearer to u in Pk than z is. Let K, and K, be the two components of K —wzx, with
the former containing u. Since K + uv is not planar, either K, +uw or K, + vz is
not planar. We may assume it is the former. Notice that (H U K,) + xu contains
a subdivision of H 4+ uv and, therefore, is not planar. But then ((H U K,), K,,) is
a 2-separation contradicting the minimality of K. |

We are now in a position to determine the 2-connected, 2-crossing-critical
graphs having two non-planar cleavage units.

THEOREM 14.3. Let G be a 2-connected, 2-crossing-critical graph having two
non-planar cleavage units. Then G is one of the 36 graphs in Figures 14.2 and
14.8.

Proof. Let (7 and Cs be non-planar cleavage units of G.

CLAIM 1. G has at most three cleavage units: C;, C3 and possibly a 3- or
4-cycle; if there are three, then the 3- or 4-cycle is the internal vertex in the de-
composition tree.

PRrOOF. Fori = 1,2, let {u;,v;} be the hinge of G contained in C; such that C4
and Cy are contained in different ||{u;, v;}||-bridges. For any other virtual edge zy
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FIGURE 14.2. 2-connected, not 3-connected, 2-crossing-critical
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FIGURE 14.3. 2-connected, not 3-connected, 2-crossing-critical
graphs, 3 cleavage units, 2 of which are non-planar.

in C}, there is a path P, in G that is C; U Cs-avoiding. Let a be C; NG (ie., C;
with none of its virtual edges) together with all these P,,. Let H be the subgraph of
G consisting of CLuUCyU Q, where ) consists of two disjoint {1, v }{us, vs }-paths
in G. Evidently, H is 2-connected and C; and Cs are cleavage units of H.

Lemma 14.2 implies cr(H) > 2. Since H C G and G is 2-crossing-critical,
H = G. Since G has no vertices of degree 2, G consists of either two or three
cleavage units, namely C7, Cy, and possibly a 3- or 4-cycle between them. (]
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We next determine the possibilities for C; and Cs.

CLAIM 2. For each ¢ = 1,2, one of the following occurs:
(2) Ciis K335
(3) C; — w;v; is a subdivision of K3 3.

Proor. Hall proved that every 3-connected non-planar graph is either K5 or
contains a subdivision of K33 [16]. Since G is simple and C; is 3-connected, we
deduce that C; is either K5 or contains a subdivision of K33. So suppose C;
contains a subdivision K of K3 3.

Suppose C; —u;v; has an edge e for which C; —e is not planar. Since C; —e is 2-
connected, G—e is 2-connected and has at least two non-planar cleavage units (C5_;
and another contained in C; — e). By Lemma 14.2, cr(G — e) > 2, contradicting
2-criticality of G. So C; — u;v; € K. Thus, either C; = K or C; — u;v; = K, as
claimed. (Il

CLAIM 3. There are five possibilities for C;, namely:
(1) Ciis Ks;

) Ciis K33;

) Ci —uv; is K33 and u,;v; joins two non-adjacent nodes of Kj 3;

) C; —u,v; is K3 3 with one edge subdivided once and u;v; joins the degree
2 vertex to a node of K33 that is not incident with the subdivided edge;
and

(5) C; — wv; is K3 3 with two non-adjacent edges both subdivided once and

u;v; joins the two degree 2 vertices.

Proor. If C; is neither K5 nor K3 3, then it must be a subdivision K of K33
with the additional edge u;v;. Clearly K has at most two vertices of degree 2. If K
has no vertices of degree 2, then, since C; is simple, we have (3). Likewise, if K has
only one vertex of degree 2, that vertex (one of u; and v;) cannot be in a branch
incident with the other one of w; and v;, which is (4). Finally, suppose u; and v;
are both of degree 2 in K. Then their containing branches cannot be incident with
a common vertex w, as otherwise, we could delete the edge u;w and still have two
non-planar cleavage units, contradicting 2-criticality. This proves (5). O

Note that in all five cases of Claim 3, there is only one possibility for C;, up to
isomorphism. Only (4) has non-isomorphic labellings of u; and v;.

CLAM 4. If G has just two cleavage units, then G is one of the 16 graphs in
Figure 14.2.

PRrROOF. If neither C; nor Cs is (4) from Claim 3, then, with repetition allowed,
there are 10 possible unordered pairs for C; and C5. Each of the pairs uniquely
produces the graph GG. There are four graphs having C; but not C5 satisfying Claim
3 (4), and there are two graphs having both C; and Cs satisfying Claim 3 (4). O

CLAIM 5. If G has three cleavage units, then at least one of C; and Cs is either
K5 or Kg’g.

PROOF. Let e be an edge of G in the third cleavage unit of Gj recall that this
cleavage unit is either a 3- or a 4-cycle. The blocks of G — e include C; — uivy
and Co — ugue; if these were both non-planar, then cr(G — e) > 2, contradicting
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2-criticality of G. Hence, at least one of C; — wjv; and Cs — ugvs is planar. By
Claim 3, such a one must be either K5 or K3 3. [l

CLAIM 6. If G has three cleavage units, then G is one of the 20 graphs in Figure
14.3.

PRrOOF. There are three pairs in which both C; and Cy are one of K5 and K3 3
and two possibilities for the third cleavage unit, yielding six graphs. Now suppose
C is one of K5 and K33 and C is not. There are three possibilities for C'y and
two possibilities for the third bridge. However, when the third bridge is a 3-cycle,
there are two ways to attach Co when it is of Type (4) from Claim 3. Thus, there
are 6 graphs with the third cleavage unit a 4-cycle and 8 when it is a 3-cycle. O

From the claims, we see that the 36 graphs shown in Figures 14.2 and 14.3 are
all the cases in which G is 2-connected, but not 3-connected, and has two non-planar
cleavage units. |

In the remaining cases of 2-connected, but not 3-connected, 2-crossing-critical
graphs, there is only one non-planar cleavage unit C'. The graph C' is simple. The
following result shows how to obtain G from a 3-connected 2-crossing-critical graph.
It requires the following definition.

DEFINITION 14.4. A digonal path is a graph obtained from a path P by adding,
for every edge e of P, an edge parallel to e.

THEOREM 14.5. Let G be a 2-crossing-critical graph with minimum degree at
least 3. Suppose that G is 2-connected but not 3-connected and has only exactly one
non-planar cleavage unit, C'. The graph C obtained from C' by replacing each of its
virtual edges with a digon is 2-crossing-critical and 3-connected. The graph G is
recovered from C by replacing these virtual edge pairs by digonal paths.

Proof. That C is 3-connected is a trivial consequence of the fact that C is 3-
connected.

As for the rest, let uv be a virtual edge in C. Then |[{u,v}| is a hinge of G.
We consider the ||{u, v}||-bridges in G; let B, be the one that contains C' NG, and
let B be the union of the remaining ||{u, v}|-bridges. We have two objectives: to
show that C is 2-crossing-critical and that, for each uv, BY, is a digonal uv-path.

For the former, we first show cr(C) > 2. Otherwise C' has a 1-drawing D.
Obviously no edge in a digon of C is crossed in D. For each virtual edge uv of C,
B + uv is planar, so it may be inserted into D in place of the uv-digon in D to
obtain a 1-drawing of GG, which is a contradiction. Therefore, cr(é) > 2.

We next claim that each B, consists of digonal uv-paths. Assume first that
B, has a cut-edge e separating u and v. Since G has no vertices of degree 2
and B, is not just a single edge, B}, contains some edge €’ so that B, — ¢’ still
contains a uwv-path.

If no edge of B, is crossed in a 1-drawing D. of G — €/, then, since B, — ¢’
contains a uv-path, B, may be substituted for B¥. —¢’ in D, to obtain a I-drawing
of G, which is impossible. So some edge of B, is crossed in D.s. Deleting edges
from B, — €’ to leave only a uv path shows that D, restricts to a l1-drawing of
By, + uv in which there is at most one crossing; if there is a crossing, then uv is
crossed. Since every planar embedding of B, + uv has uv and e on the same face,
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the 1-drawing of B, + uv and a planar embedding of B, + uv may be merged to
produce a 1-drawing of G in which e is crossed. This contradiction that shows B},
contains edge-disjoint uv-paths.

Let e be an edge of BY,. Then a 1-drawing D, of G — e must have a crossing
of some edge ¢’ of BY,. If B¥, — {e,e'} has a uv-path P, then D, restricts to a
planar embedding of C by using P to represent uv. But C is non-planar, so every
edge of B# —uwv is in an edge-cut of size at most 2 separating u and v. Combining
this with the preceding paragraph shows that every edge of B, is in an edge-cut of
size exactly 2. It is an easy exercise to see that this implies B, is a pair of digonal
paths. B B

We conclude by showing that, for every edge e of C, cr(C —¢e) < 1. Suppose
first that e is not in a digon. Each B, has a uv-path P,, that is clean in D,. Thus,
D.[G — e] contains a subdivision of C' — e in which no virtual edge (represented in
the subdivision by P,,) is crossed. Therefore, the virtual edges may be replaced
with digons to give a 1-drawing of C - e, as claimed.

Now suppose e is in the uv-digon. Let €’ be any edge of B,. Then D, contains
a 1-drawing of C, in which every other virtual edge wz is represented by a wz-path
P, in Bffx that is clean in D,/. All these other virtual edges may be replaced with
digons to give a 1-drawing of C— e, as required. |



CHAPTER 15

On 3-connected graphs that are not
peripherally-4-connected

In this chapter, we reduce the problem of finding all 3-connected 2-crossing-
critical graphs to the consideration of non-planar, peripherally-4-connected graphs.
Our motivation for doing this is to use a known characterization of internally-4-
connected graphs (a concept intimately related to peripherally-4-connected graphs)
with no subdivision of Vg to find all the 3-connected, 2-crossing-critical graphs with
no subdivision of V.

DEFINITION 15.1. A graph G is peripherally-4-connected if G is 3-connected
and, for any 3-cut S of G and any partition of the components of G — S into two
non-null subgraphs H and K, at least one of H and K has just one vertex.

We begin this section by finding the four 3-connected, not peripherally-4-
connected, 2-crossing-critical graphs that are not obtained from planar substitu-
tions into a peripherally-4-connected graph. The bulk of the section is devoted
to explaining in detail how to obtain the remaining 3-connected 2-crossing-critical
graphs from peripherally-4-connected graphs. Finally, this theory is used to ex-
plain how to find all the 3-connected 2-crossing-critical graphs that do not contain
a subdivision of Vg.

15.1. A 3-cut with two non-planar sides

In this section we find the four 3-connected, not peripherally-4-connected, 2-
crossing-critical graphs that are not obtained by substituting planar pieces into
degree-3 vertices in a peripherally-4-connected graph (this substitution process be-
ing the remainder of the section). We start by describing the four graphs and
showing that they are 2-crossing-critical.

DEFINITION 15.2. The graph K3 4 is obtained from disjoint copies of Kz 3 by
joining the parts of the bipartition having three vertices in each of the copies by a
perfect matching M.

Observe that K34 is obtained from K3, by contracting all the edges of the
matching M. The following generalizes the well-known fact that K 4 is 2-crossing-
critical.

LEMMA 15.3. If H is obtained from K3 4 by contracting some subset of M, then
H is 2-crossing-critical.

Proof. Suppose e is an edge of K3, not in M. Then there is a 1-drawing of
K3, — e in which no edge of M is crossed. Thus, cr(H —e) < 1. If e € M, then
H — e is planar. It remains to show cr(H) > 2.

126



15.1. A 3-CUT WITH TWO NON-PLANAR SIDES 127

Suppose to the contrary that H has a 1-drawing D. Let H; and Hy be the
K3 3 subgraphs of H contained in K3, — M. For each vertex v of degree 3 in Ha,
there are three disjoint vHi-paths in H; adding v and these paths to H; yields a
subdivision H, of K33 in H. Thus, D[H,] has a crossing, and, since there are two
choices for v, this crossing involves only edges of H; and M.

Interchanging the roles of H; and Hy shows the crossing in D involves only
edges of M. But then D[H,] has its only crossing on branches incident with v,
which is impossible. |

We remark that there are splits of K34 that have crossing number 1 — split
two of the degree 4 vertices so that the two partitions of the four neighbors are
different. Fortunately, they do not occur in our context.

In order to show that these are the only four graphs with “non-planar 3-cuts”,
we need to understand just what “non-planar 3-cuts” are.

DEFINITION 15.4. Let S be a 3-cut in a 2-connected graph, so there are sub-
graphs H and K of G such that G = HUK and HN K = ||S||. For L € {H, K},
L™ denotes the graph obtained from L by the addition of a new vertex adjacent to
precisely the vertices in S.

We will see that, in the case G is 2-crossing-critical, with the exception of K3 4,
there are at most three non-trivial S-bridges, and so at least one of H and K is
an S-bridge. Our next goal is to show that the four graphs in Lemma 15.3 are the
only four that have both H* and KT non-planar. We start with the following,
which is likely well-known; however, we could not find a reference. It extends Hall’s
Theorem [16] that there is a subdivision of K3 3.

LEMMA 15.5. Let G be a 3-connected non-planar graph different from Ks and
let v be a vertex of G. Then G has a subdivision H of K3 3 in which v is an H-node.

Proof. Here is an outline of the easy, but tedious, proof. As a first step, we
show that there is a subdivision of K33 containing v. By Hall’s Theorem [16], G
contains a subdivision L of K3 3. If v ¢ L, then there are three disjoint vL-paths.
There are three possibilities for the ends of these paths in L: two are in the same
closed L-branch; two are in L-branches incident with a common L-node; and the
L-branches containing the ends of the paths are pairwise disjoint. In the first case,
v is incorporated into the interior of a branch of a new subdivision of K3 3, while
in the other cases, v is incorporated as a node of the new subidivision of K3 3.

So now assume that v is in L, but not as a node. Then v is interior to some
L-branch b with ends v and w. Let L’ = L — (b) — this is a subdivision of K33
less an edge. Because there are, in G, disjoint L’-avoiding v{u, w}-paths, standard
proofs of Menger’s Theorem imply that there are three disjoint L’-avoiding vL/'-
paths, having u and w among their three L’-ends. Therefore, we may assume not
only is v in the interior of b, but there is an L-avoiding vz-path from v to some
other vertex x of L'.

Up to symmetry, there are three possibilities for x: it is a node of L other than
u and w; it is interior to an L-branch incident with uw but not with w; and it is
interior to an L-branch not incident with either u or w. Let y and z be nodes of
L' (note that u and w are not actually nodes of L’). We can assume z is either y,
or in the L-branch [w,y], or in the L-branch [y, z]. Let Y be a {u, w, x}-claw with
centre v, so that Y N L’ is just u, w, and x.
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If = is either z or in (y, 2), then (L' UY') — (w, x) is a subdivision of K3 3 with
v as a node. If x is in (y, z), then (L’ UY') — (w,y) is a subdivision of K3 3 having
v as a node. ]

We are now ready for the classification of the 3-connected 2-crossing-critical
graphs with two non-planar sides to a 3-cut.

THEOREM 15.6. Let G € M3 have subgraphs H and K of G and a set S of
three vertices of G such that:
(1) G=HUK;
(2) HNK = ||5];;
(8) H and K both have an ||S||-bridge having all of S as attachments; and the
two graphs HY and KT are both non-planar.

Then G is one of the four graphs obtained from K3 , by contracting some subset of
M.

Proof. Let u, v, and w be the vertices in S. For L € {H, K}, let v; denote
the vertex in L™, but not in L. The graph L™ is a subdivision of a 3-connected
graph (the only possible vertices of degree 2 are u, v, and w). Since LT is not
planar and has a vertex of degree 3, it is not a subdivision of K5 and, therefore,
by Lemma 15.5 contains a subdivision L’ of K33 in which ’UZ_ is a node. Now
G = (H' —vf;) U (K' — vf) is a subdivision of Kj,, with some subset of M
contracted. By Lemma 15.3, cr(G’) = 2, so G’ = G, as required. |

15.2. 3-reducing to peripherally-4-connected graphs

In this section, we discuss the general details of reducing a 3-connected graph to
a peripherally-4-connected graph. These results apply in some generality and not
just in the context of 2-crossing-critical graphs. These are the first of several steps
toward finding all the 3-connected 2-crossing-critical graphs that do not contain a
subdivision of Vg.

These results are fairly technical but essential to this part of the theory.

DEFINITION 15.7. (1) A 3-cut S in a 3-connected graph is reducible if
G — S has at most 3 components and they partition into two subgraphs
each having at least two vertices.

(2) The set K consists of those 3-connected graphs that do not contain a
subdivision of K3 4.

The following result is obvious from the definitions and begins to explain the
appearance of K3 4 in Definition 15.7 (2).

LEMMA 15.8. Let G be a 3-connected graph that is not peripherally-4-connected.
Then either G has a reducible 3-cut or G has K34 as a subgraph.

The next result sets up the basic scenario that we will use throughout our
reduction to peripherally-4-connected graphs.

LEMMA 15.9. Let G € R. Then there is a sequence Ggy,G1,...,G of 3-
connected graphs in 8 so that: Gy = G; Gy is peripherally-4-connected; and, for
eachi=1,2,...,k, there is a 3-cut S; in G;—1 and a non-trivial, planar S;-bridge
B; so that Nuc(B;) has at least two vertices and G; is obtained from G;_1 by con-
tracting the nucleus of B;.
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Proof. Suppose G;_1 is 3-connected. Among all the choices of S; and S;-bridges B;
so that Nuc(B;) has at least two vertices, choose B; to be inclusion-wise maximal.
We claim that the graph G; obtained from G;_; by contracting Nuc(B;) to a vertex
is 3-connected.

Otherwise, there is some pair {u,v} of vertices so that G; — {u,v} is not con-
nected. If the vertex of contraction of Nuc(B;) is neither u nor v, then {u,v} is a
2-cut in G;_1, a contradiction. Therefore, we can assume u is the contraction of
Nuc(B;).

Let H and K be components of G; — {u, v}, with the labelling chosen so that
|S; NV (H)| > |S;NV(K)|; in particular, |S; NV (K)| < 1. Let h € V(H); if there is
a vertex k € V(K)\ S;, then {v} U (S; NV (K)) separates k from h in G;_;, which
contradicts the assumption that G;_; is 3-connected.

Therefore V(K) C S;, so there is a single vertex s in K, and s € S;. It follows
that s is adjacent to only vertices in Nuc(B;) and possibly to v. But this contradicts
the maximality of B;: let S = (S\ {s}) U{v}. Observe that B; + s is a planar
S’-bridge, contradicting maximality of B;.

Lastly, we show that if G;_; does not have a subdivision of K3 4, then neither
does G;. Any subdivision of K34 in G; must contain the vertex v; of contraction.
Since v; has degree 3 in G; and B;_; is an S-bridge, we can reroute the subdivision
of K34 in G; into B;_; to obtain a subdivision of K34 in G;_1. |

DEFINITION 15.10. Let G € &.

(1) Then G reduces to G’ by 3-reductions if there is a sequence Gg, G1, . .., Gk
of 3-connected graphs so that Go = G; Gr = G’; and, for each i =
1,2,...,k, there is a 3-cut .S; in G;_, and an S;-bridge B;, whose nucleus
at least two vertices, so that G; is obtained from G;_; by contracting the
nucleus of B;.

(2) For each vertex v of G’ and eachi = 0,1,2..., k, K! denotes the connected
subgraph of G; that contracts to v. We also set K, = K.

(3) If v has just three neighbours z, y, and z in G’, then G, is the graph
obtained from K, by adding z, y, and z, and, for each t € {z,y, 2} and
each edge v't’ of G with v/ € K, and t' € K;, adding the edge v't.

We now commence a lengthy series of technical lemmas that all play vital roles
in usefully reducing the 3-connected graph 2-crossing-critical graph G to a smaller
3-connected 2-crossing-critical graph Gep(). The culmination of this part of the
work is Theorem 15.25 in the next section, showing that G.cp(.) is 2-crossing-critical.
This will lead to a program for determining all the 3-connected 2-crossing-critical
graphs that reduce to a particular peripherally-4-connected graph.

LEMMA 15.11. Let G € R and suppose G reduces by 3-reductions to the peri-
pherally-4-connected graph GP*¢. For any two vertices u,v of GP*°, there is a single
vertex in G incident with all edges having one end in K, and one end in K,.

Proof. Let G = Gy, G4, ...,G = GP* be a sequence of 3-reductions. Choose i
to be largest so that there are disjoint K’ 1K'~ 1-edges ab and cd with a,c € Ki~!
and b,d € K{=!. In G, either a and ¢ have been identified or b and d have; by
symmetry, we may assume the former.

The vertices b and d are obviously attachments of B; and so these are in S;.
Let 2; be the third vertex in S;. Since K!~! is connected and since, by Definition
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15.10, u has three neighbours in GP*¢, z; € K,,. Continue using the label a for the
vertex obtained by contracting Nuc(B;).

At some point in the later 3-reductions, a and z; are identified and at another
point b and d are identified. We show that neither can be done before the other,
which is impossible.

Suppose z; and a are identified first. When this identification occurs, a 3-cut
S; and an S;-bridge B; so that z; and a are in Nuc(B;). The vertices b and d are
again attachments of B; and so are in Sj; let z; be the third vertex in S;.

Because i is largest so there are disjoint K/ 'K'l-edges, all edges between
K7 and K7 at this moment are incident with a. It follows that {a, z;} is a 2-cut in
the current graph, separating z; from b. But this contradicts the fact that G;_; is
3-connected. Therefore, z; and a are not identified before b and d.

On the other hand, suppose b and d are identified first, by the contraction of
Nuc(Bj). When b and d are identified, the only neighbours of a are b, d, and z;.
Following the identification of b and d, the only neighbours of a are z; and the
vertex of identification, again contradicting 3-connection of G ;. |

We need a slight variation on a standard definition.

DEFINITION 15.12. Let G be a connected graph.

(1) An isthmus is a set I of parallel edges so that G — I is not connected.
(2) A cut-edge is an edge e so that G — e is not connected.

Obviously, e is a cut-edge of G if and only if {e} is an isthmus, but an isthmus
may have more than one edge. The distinction comes into play because at various
points we will consider edge-disjoint paths in certain subgraphs of our 2-crossing-
critical graph; if there are not two edge-disjoint uv-paths, then there is a cut-edge
separating u and v. On the other hand, the 3-connection of G does not preclude
the possibility of parallel edges; at several points we will be able to identify that
two vertices u and v have the property that they must be adjacent, but be unable
to distinguish whether they are joined by 1 or 2 edges. A common scenario will
have the set of edges between them making an isthmus in some subgraph.

In particular, the case that K, has an isthmus is a central one in reducing
2-crossing-critical graphs.

LEMMA 15.13. Let G € R reduce to the peripherally-4-connected graph GP*° by
a sequence of 3-reductions. Suppose there is a vertex v of GP*® so that the graph
K, has an isthmus I. Then, for each component K of K, — I, there are at least
two neighbours  and y of v in GP so that there are KK, - and K K, -edges in G.

Proof. At some moment in the reduction of G, G;_1 has a 3-cut S; and B; is the
planar S;-bridge in GG;_; that contains I. Then B; — I is not connected; the ends u
and w of the edge or edges in I are in different components K and L, respectively,
of Bz — 1.

Let x, y, and z be the neighbours of v in GP*¢ and let ¢ be any vertex of G;_;
not in K! UKE U K; U K. (Since GP*¢ is not planar, it has at least five vertices.)
In G;_, there are three pairwise internally-disjoint ut-paths. These three paths
leave B; through distinct attachments of B;; these are the vertices in .S;. The same
argument applies for wt-paths.

In particular, two of the ut-paths leave K on edges incident with vertices in
S;. Likewise for L. Therefore, K and L are both joined by edges to the same
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attachment s € S;. It follows that s is not in K!, so s is in K?, say. Moreover,
since the K!-ends of these two edges are not the same, Lemma 15.11 implies all the
edges between K¢ and K! are incident with s.

Since G;_1 is 3-connected, G;—1 — ({s} U I) is connected. Therefore, there are
edges of G;_1 leaving each of K and L; each of these edges is also leaving K} and,
therefore, has its other end in one of K7, K/, and K.. However, this other end
cannot be s and, consequently, cannot be in K, as required. |

The connectivity of G has further implications about the structure of the K.

LEMMA 15.14. Let G € R reduce by 3-reductions to a peripherally-4-connected
graph GPc. Let v be a vertex of GP* with just the three neighbours x, y, and z
and suppose K, has at least two vertices. For each t € {x,y,z}, let t’ be any vertex
incident with all the K,K;-edges. Then x', vy, and 2’ are all distinct.

Proof. Suppose 2’ = y'. Then 2’ is in K,,. Observe that no vertex of K, — {2/, 2}
is adjacent to any vertex of of G — {2/, 2’} not in K,. Since G is 3-connected, it
follows that K, consists of just 2’ and z’. In particular, 2’ # x’. Also, recall that
K, contracts to a single vertex in the sequence of planar 3-reductions.

At the moment of contraction of K,,, G;_1 is 3-connected and 2’2z’ is an isthmus.
Therefore, Lemma 15.13 implies that 2’ is joined to at least one of K and K;; this
contradicts the fact that all edges from K! to K’ U Kyj are incident with z’. |

The vertices 2/, 3/, and 2’ are not uniquely determined. It is possible that there
is only one vertex in each of K, and K, incident with all K, K -edges; one obvious
instance is if there is only one K, K, -edge. We will follow up on this a little later.

Here is a very simple and very useful observation.

LEMMA 15.15. Let H be a simple, non-planar, peripherally-4-connected graph.
There is no 3-cycle of H having two vertices with just 8 neighbours.

Proof. Suppose to the contrary there are three vertices x,y, z making a 3-cycle,
with z and y having only three neighbours each. Let v and w be the other neigh-
bours of z and y. Then x and y are the vertices of one component of H — {v,w, z}.

Observe that H is non-planar, 3-connected, and has a vertex of degree 3. There-
fore H is not K5 and so contains a subdivision of K3 3. It follows that H has at
least six vertices. Thus, there is another component of H — {v,w, z}.

Since H is peripherally-4-connected, the only possibility is that there is exactly
one other component and it consists of a single vertex u, adjacent to all of v, w,
and z. The only other possible edges in H are between v, w, and z. However, the
resulting graph is planar, a contradiction. |

The following result assures us that useful (and expected) paths exist in each
K,.

LEMMA 15.16. Let:

(1) G € & reduce by 3-reductions to the peripherally-4-connected graph GP;

(2) GP*¢ have at least five vertices;

(3) v be a vertex of GP*¢ so that K, has at least two vertices; and

(4) x, y, and z be the neighbours of v in GP*¢, with corresponding vertices x’,
y', and z' in G as in Lemma 15.1/.
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Then:

a) for any vertex w in K, — {a',y',2'}, there are three w{a’,y', 2’} -paths in
G, that are pairwise disjoint except for w; and

b) if ' € K, then there are &'y’ - and x'2'-paths in G, — x that are disjoint
except for x'.

Proof. For a), let u be any vertex of G not in K, U K, U K, U Ky,. Since
G is 3-connected, there are three pairwise internally-disjoint wu-paths in G. The
result follows from the observation that w and w are in different components of
G—{2,y, 7}

If b) fails, then there is a vertex w of G,, — x that separates =’ from {y’,2'}.
Since K, is an ||{x,y, z}|]-bridge in G,, w is in K, (possibly w = ¢ or w = 2/).
Since {2/, w} is not a 2-cut in G, 2’ and w are adjacent in K,. But now they are
joined by an isthmus [ in K,. Since z’ is a component of K, — I joined only to
K, we have a contradiction of Lemma 15.13. |

15.3. Planar 3-reductions

In this section we now turn our attention to the particular case G € M3.
We want to show that the 3-reductions can be taken to be contractions of planar
bridges. So suppose S is a non-peripheral 3-cut in G.

If there are four or more non-trivial S-bridges (that is, having a nucleus), then
G has a subdivision of K34 and so is K3 4. In the remaining cases, there are at
most three non-trivial S-bridges. If there are three and B is one of them so that BT
is not planar (as in Subsection 15.1), then the union K of the remaining S-bridges
has Kt not planar. Theorem 15.6 implies that G is one of four 2-crossing-critical
graphs. Thus, if there are three non-trivial S-bridges, we may assume that, for
each one B, BT is planar. Finally, consider the case that there are precisely two
non-trivial S-bridges By and Bs. Since S is not peripheral, both B; have at least
two vertices. If both B are non-planar, then we are in the case dealt with in
Theorem 15.6, so we may assume that one of them is planar. In summary, in every
case, we may assume that GP%° is obtained from 3-reductions in G in which the
contracting S;-bridge B; is always planar.

DEFINITION 15.17. Let G be a 3-connected graph and let GP4¢ be a peripherally-
4-connected graph. Then G reduces to GP4° by planar 3-reductions if there is a
sequence G = Go,G1,Ga,...,G, = GP* of 3-reductions so that, for each i =
1,2,...,k, G; is obtained from G;_; by contracting Nuc(B;_1) and B;" ; is planar.

We need two results about K, in the context of planar 3-reductions. This
requires further definitions.

DEFINITION 15.18. Let G be a 3-connected graph that reduces by 3-reductions
to the peripherally-4-connected graph GP4¢. Suppose v is a vertex of GP* having
only the neighbours z, y, and z. For each t € {z,y, 2}, let m; denote the number of
vertices in K, adjacent to vertices in K; and let n; denote the number of vertices
in K; adjacent to vertices in K,,. (Lemma 15.11 implies that at least one of m; and
ng is 1.)

(1) The subgraph K*** induced by K, together with, for each ¢t € {z,y, 2z}
with n; = 1, the vertex of K; adjacent to vertices in K.
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(2) The subgraph K™® induced by K, together with, for each t € {z,y,2}
with m; > 1, the vertex of K; adjacent to vertices in K.

We remark that K, C K™ C KM% and, for t € {z,y,2}, K™ has a vertex
t' € K; that is not in K™ precisely when n; = m; = 1.

LEMMA 15.19. Let G € R reduce by 3-reductions to a peripherally-4-connected
graph GP*. Let v be a vertex of GP4° with just the three neighbours x, y, and z and
suppose K, has at least two vertices. Then there is a cycle C in K™ containing
all of ', y' and 2'.

Proof. Suppose w is a cut-vertex of K™ so there are subgraphs X and Y of
K™t with X UY = K®" X NY = |lw|, and both X —w and Y — w are not
empty. We may choose the labelling so that X has at least the two vertices ' and
2" from {a',y’, 2’}, while Y — w has at most one; we may further assume z’ # w. If
y' ¢ Y —w, then w is a cut-vertex of G, contradicting the fact that G is 3-connected.
Therefore, ¢y € Y — w.

However, if y/ € K, then we have a contradiction to Lemma 15.16 (b). There-
fore, y' ¢ K,. If there is a vertex in Y other than w and g’, then we contradict
3-connection of G, so y' is adjacent only to w in G,. But then 3’ ¢ K™,

It follows that there is no cut-vertex in K™, Thus, there is a cycle C in Km0
containing ' and y’. Obviously, we are done if 2’ € C, so we assume 2’ ¢ C.

Since there is no cut-vertex in K™ there are two 2’C-paths P; and P, that
are disjoint except for z’. If the C-ends of P; and P, are not both on the same
z'y-subpath of C, then G} contains a subdivision of K33. This contradicts the
fact that we are doing planar 3-reductions. Therefore, the C-ends of P; and P, are
on the same z'y’-subpath of C and it is easy to find the desired cycle through all
of ', 4/, and 2'. [ ]

The following is the last lemma we need to get the main result of this section.

LEMMA 15.20. Let G € M3 and suppose G reduces by planar 3-reductions to
the peripherally-4-connected graph GP*. Let v and x be adjacent vertices in GP4°.
Then there are at most two vertices in K, adjacent to vertices in K,.

Proof. This is obvious if K, has at most one vertex. In the remaining case, v has
degree 3 in GP*; let y and z be its other neighbours.

Suppose by way of contradiction that s, ¢, and w are distinct vertices in K, all
adjacent to vertices in K,. By Lemma 15.11, there is a vertex z’ incident will all
the K, K -edges and, evidently, z’ € K.

In the planar embedding D} of G, letting w denote the new vertex adjacent
to each of x, y, and z, we may choose the labelling so that the edges zw, xs, xt, zu
occur in this cyclic order around zx.

CLAIM 1. There is an su-path in K, containing ¢.

Proor. As K, is connected, there is an su-path P in K,. We are obviously
done if t € P, so we assume t ¢ P. Let C be the cycle obtained by adding 2’ to P
and joining it to s and w.

The rotation at z implies that ¢ is on one side of D, [C], while w, y, and,
consequently, z, are on the other. Therefore, every ¢{y, z}-path in G} goes through
either x or P.
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If there is a cut-vertex r in K, separating ¢ from P, then {r, 2’} is a 2-cut in
the 3-connected graph G, which is impossible. Therefore, there are ¢t P-paths @) and
R in K, that are disjoint except for t. We can now reroute P through ¢ to obtain
the desired path. ([l

Since G is 2-crossing-critical, there is a 1-drawing D of G — x’t. From Claim 1,
there is an su-path P in K, containing ¢t. Let C be the cycle obtained from P by
adding 2/, z's and z'u.

CrAamM 2. All the vertices of G — (K, U K,) are in the same face of D[C].

PROOF. Suppose by way of contradiction that there are vertices in G — (K, U
K,) that are in different faces of D[C].

Case 1: there is a vertex p in GP4°

different faces of D[C].

In this case there is an edge f of K, that crosses D[C]. As D has at most one
crossing, f is a cut-edge of K,,. Lemma 15.13 implies each component of K, — f
is adjacent to at least two different K, ’s. If one of them is adjacent to both K,
and K,, then we have a 3-cycle pzv in GP4¢ in which both p and v have degree 3,
contradicting Lemma 15.15.

Therefore, we may assume each is adjacent to one, say K, and K,, that is
neither K, nor K,. However, now {v,z,p} is a 3-cut in GP*° separating ¢ and r in
GP4¢, Therefore one of them — say ¢ — is adjacent to precisely these three vertices
in GP¥¢, producing the 3-cycle {q,v,z} in GP¥ that contradicts Lemma 15.15.

Case 2: any two vertices of G — (K, U K,) in different faces of D|C] are in
different Kp’s.

Since G — (K, U K,) is connected, there is a path in G — (K, U K,) joining
vertices in different faces of D[C]. Therefore, there is, for some vertices ¢ and r of
GP*, a K,K,-edge f that crosses D[C]. It follows that D[C] has no self-crossings,
so D[C] has only two faces.

Clearly GP*¢ — {z,v, f} has K, and K, in different components. Since GP*°
has at least six vertices, it has a vertex m different from all of v, , ¢ and r. We
may choose the labelling so that D[K,] is in one face of D[C], while D[K, U K,;,] is
contained in the other. It follows that {v,z,r} is a 3-cut in GP*¢ separating q from
m.

Since GP?¢ is peripherally-4-connected, one of ¢ and m — say g — is adjacent
precisely to v, z, and r, yielding the 3-cycle {v,x,q} in GP*¢ that has two vertices
with only three neighbours, contradicting Lemma 15.15. O

so that K, contains vertices that are in

We note that the crossing in D cannot involve two edges, each incident with a
vertex in K, as otherwise GP4¢ is planar. In particular, D[C] is not self-crossing.

Cram 3. ODg+(C) is isomorphic to ODg(C). In particular, ODg(C) is
bipartite.

PROOF. The main point is that there is a single C-bridge in G containing
G — (K, + z'). To prove this, we show that any two vertices in G — (K, + ') are
connected by a C-avoiding path. For vertices not in K, U K, this is easy: for any
two vertices p and ¢ in GP4¢ — {v, x}, there is a pg-path in GP*® — {v, x}, showing
that any two vertices in K, U K, are joined by a path in G — (K, U K;).
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If p e K, — ', then Lemma 15.14 implies that the three vertices separating K,
from its neighbours are distinct. For one of these vertices w’ that is not 2/, Lemma
15.16 implies there is a pw’-path in K, — 2/, completing the proof that there is a
single C-bridge B in G containing G — (K, + 2').

Every other C-bridge in G is contained in K, + z’. These are all C-bridges in
G} the only other C-bridge in G} is the one containing the vertex joined to z, vy,
and z. This C-bridge has precisely the same attachments as B. This shows that
OD¢(C) and OD+(C) are isomorphic.

Since G (C) is planar, OD+(C) is bipartite, yielding the fact that ODg(C)
is bipartite. O

Suppose first that C' is clean in D. Since B is the unique non-planar C-bridge
in G, D yields a 1-drawing of C'U B with C' clean. Therefore, Corollary 4.7 implies
cr(G) < 1, a contradiction.

If, on the other hand, C is not clean in D, then C' is crossed by an edge f. By
Claim 2, f is incident with a vertex in K, U K,. If f is incident with a vertex in
K, then contract K, (with a vertex inserted at the crossing point, if necessary, to
get a 1-drawing of GP%° so that both edges incident with the crossing are incident
with v. This implies the contradiction that GP*¢ is planar.

If f is not incident with «’, then K, — 2’ has vertices on both sides of D[C].
One of these is in a component K} of K, — f that is on the side of D[C] that does
not contain any vertex of G — (K, U K,). Lemma 15.13 implies K! — z is joined
to a vertex in some other K,,, w # v, which cannot happen without crossing D|[C]
a second time, a contradiction. It follows that f is incident with 2. Furthermore,
Lemmas 15.19 and 15.16 (a) imply that f is in a cycle Cf in G — K,,. The ends of
the edge e, of K, crossed in D are separated by D[Cy], so e, is a cut-edge of K.
Moreover, e, is in C.

We now see that the C-bridges are B, those contained in one component of
K, — ey, and those contained in the other component of K, — e,. Notice that B is
a cut-vertex of ODg(C), and so it overlaps C-bridges of both the other types.

Since OD¢(C) is connected and bipartite, it follows that the C-bridges in either
of the components of K, — e, occur on the same side of D[C] that they do in D .
In particular, 't may be reintroduced to D to obtain a 1-drawing of G, which is
impossible. |

Strategy. The strategy now is to show that if we replace any K, with a smallest
possible representative subject to the preceding observations, then we produce a 2-
crossing-critical graph. This is the last part of this section. This implies that GP4°
turns into a 2-crossing-critical graph by choosing these smallest possible represen-
tatives. From this, it is then possible to determine (although not in a theoretical
sense, but rather in a definite, finite — really manageable — way that we shall de-
scribe) all the 3-connected 2-crossing-critical graphs that have these configurations
and reduce to GP* by planar 3-reductions.

There will remain the issue of determining all the possible GP*. Of course, one
can list them all, but it is not clear at what point to stop. Fortunately, Theorem
2.14 shows that we do not need to do this when G contains a subdivision of Vi,
as we already know what G looks like. When G does not contain a subdivision
of Vg, a theorem of Robertson plus some analysis implies that GP*¢ has at most
9 vertices. We are left with the open question of finding the graphs in M3 that
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contain a subdivision of Vg but do not contain a subdivision of Vig. In Section 16,
we show that any such graph has at most about 4 million vertices.

We next characterize certain properties of the graphs G,,; our goal is to show
that these (more or less) determine the crossing number of G.

DEFINITION 15.21. Let z, y, and z be vertices in a graph H so that H is an
I{x,y, z}|-bridge. Then:

e T is the set of vertices w € {x,y,z} so that there are edge-disjoint
w({z,y,z} \ {w})-paths in H; and

e U is the set of vertices w € {x,y, z} for which there are edge-disjoint paths
in H — w joining the two vertices in {x,y, 2z} \ {w}.

o (H,{z,y,z}) is a (T,U)-configuration if the graph H' obtained from H
by adding a new vertex adjacent just to x, y, and z is planar.

Our entire argument depends on the fact, to be proved in the next section,
that the pairs (7, U) effectively characterize 2-criticality. Theorem 15.24, the main
point of this section, shows that substituting one (T, U)-configuration for another
retains the fact that the crossing number is at least 2.

For a (T, U)-configuration, obviously there are only four possibilities for |T|. It
is a routine analysis of cut-edges to see that, if |T'| < 1, then U is empty, while if,
for example, T = {x,y}, then U = {z}. Thus, for |T| < 2, U is determined by T.
This is not the case for |T| = 3. In this instance, if z ¢ U, then there is a cut-edge
in G, — z separating x and y. From here and the fact that T' = {x,y, 2z}, one easily
sees that z,y € U. Thus, if T'= {z,y, 2z}, then |U| can be either 2 or 3. Therefore,
there are in total five possibilities for the pair (|, |U]).

We first show that replacing a (T, U)-configuration with another (7', U)-con-
figuration does not lower the crossing number below 2. First the definition of
substitution.

DEFINITION 15.22. Let G reduce by planar 3-reductions to the peripherally-4-
connected graph GP*¢. Suppose v is a vertex of GP* with neighbours x, y, and z so
that (G, {x,y, z}) is, for some subsets T and U of {x,y, z}, a (T, U)-configuration.
Let N be the set of vertices ¢ in {z,y, z} for which K}***N K, is null. (See Definition
15.18 for KM#*) Let N, denote the attachments of K™2*: these are the vertices
that are of the form t', ¢ € {z,y, 2}, chosen to be in K; whenever possible.

(1) A (T,U)-configuration (H,{x,y,z}) is (G, K, )-compatible if:
(a) for each t € N, then there is only one neighbour of ¢ in H;
(b) the degrees of each t € {z,y, 2} are the same in both G, and H; and
(c) setting Ng to consist of the union of the set of vertices of H in
{z,y,2} \ N together with the neighbours in H of the vertices in N,
H — N either has a single vertex or contains a cycle through all the
vertices in Np.

(2) The substitution of the K,-compatible (T,U)-configuration (H,{x,y,z})
for K, in G is the graph G obtained from G by adding H — N by
identifying the vertices in N, with those in Ny in the natural way, and
then deleting all vertices in K™* — N,,.

We are almost ready for a major plank in the theory.
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Our plan is to show that we can replace a “large” (T, U)-configuration by a
“small” (T, U)-configuration and still be 3-connected and 2-crossing-critical. There
is one special case that requires particular attention.

DEFINITION 15.23. A (T,U)-configuration (H, {x,y, z}) is doglike with nose n
if |T| =3 and |U| =2 and n is the vertex in T\ U.

THEOREM 15.24. Let G reduce by planar 3-reductions to the peripherally-4-
connected graph GP. Suppose v is a vertex of GP with precisely the neighbours
x, y, and z so that K, has at least two vertices so that (G,,{x,y, z}) is, for some
subsets T and U of {x,y, 2z}, a (T,U)-configuration. Let (H,{x,y,z2}) be a (G, K,)-
compatible (T, U)-configuration. If cr(G) > 2, then cr(GH) > 2.

Proof. We remark that the non-planarity of G and the fact that we are doing
planar 3-reductions implies GP4¢ is not planar. This fact will be used throughout
the proof.
Let H = H — {z,y,z} and let N be the set of vertices ¢ in {z,y, 2} so that
K™a* N K, is null. By way of contradiction, we suppose G has a 1-drawing D.
We start with two simple observations.

CramM 1. Some edge of H' is crossed in D.

PRrROOF. If no edge of H’ is crossed in D, then Definition 15.22 (1b) implies we
may resubstitute K, for H' to obtain a 1-drawing of G, a contradiction. (]

CLAIM 2. There is no drawing D’ of GH in which each crossed edge is incident
with a vertex in H'.

PRrROOF. Otherwise, insert a vertex at each crossing point, and add this vertex
to H’'. Then contract every edge in the new graph that has both ends in H’, and
also contract all the K, to single vertices. The result is a planar embedding of
GP*¢, a contradiction. O

Therefore, we may assume the crossing edges are e, € H' with some other edge
/ not incident with any vertex in H’. Observe that H’ cannot be a single vertex.

CLAIM 3. f is not a cut-edge of G — H'.

PROOF. Suppose f is a cut-edge of G — H'. Since D[G — H'] has no crossing,
it is planar. Therefore, the faces on each side of f in D[GX — H'] are the same.
Thus, the ends of e, are in the same face of D[GH — H'].

Consider now the planar embedding D[GE — ¢,]. The two ends of e, are in
the same face of the subembedding D[G — H’] and so may be joined by an arc
that is disjoint from D[GH — H']. This produces a drawing of G in which all
the crossings involve e, and edges incident with at least one vertex in H’. This
contradicts Claim 2. O

Since f is not a cut-edge of G — H’, there is a cycle Cy of G — H' containing
f. Moreover, D[C/| separates the two ends of e,, so e, is an cut-edge of H'. Let
H' and H? be the two components of H' — e,.

The next claim is central to the remainder of the argument.

CrLAIM 4. Let t € {x,y,2} be a common neighbour of H* and H?. Then f is
incident with ¢ € K; and one of the faces of H' + ' incident with both ¢’ and e, is
empty except for the segment of f from #' to the crossing with e,.
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PROOF. Let C be any cycle in H' + ¢ containing e,. Since e, is a cut-edge of
H',#' € C. Since GP* — {v,t} is connected, G — (K, U K}) is connected.

Suppose by way of contradiction that there are vertices u and w of G— (K, UK})
on both sides of D[C]. By the preceding paragraph, there is a uww-path P in
G — (K, U K;). Since P is graph-theoretically disjoint from C, but D[u] and D]w]
are on different sides of D[C], D[P] crosses D[C]; this must be at the unique crossing
of D, so f € P and the crossing of D[P] with D[C] is the crossing of f with e,.

Moreover, D[Cy] crosses D[C] at the crossing of D and so they must cross
somewhere else. As C'y and H' are disjoint, the second crossing is at the vertex t'.
Since this is true of any cycle Cy in G — K,, f is a cut-edge of (G — K,) —t'.

We now consider two cases.

Case 1: there are distinct vertices t1 and ty of GP* — {t,v} so that D[Ky,]
and D[Ky,] are on different sides of D[C].

In this case, either (i) for some vertex s of GP4¢, f € K, in which case ¢; and
ty are in different components of GP4 — {t, v, s}, or (ii) since GP4¢ is non-planar
and so has at least five vertices, for some vertex s of GP¢ that is an end of f, we
may choose t; and t, to again be in different components of GP* — {¢, v, s}.

In either case, the internal 4-connection of GP4¢ implies that there is an i €
{1,2} so that ¢; is the only vertex in its component of GP¥ — {t,v,s}. But then
tvt; is a 3-cycle in GP* having v and ¢; as degree 3 vertices, contradicting Lemma
15.15.

Case 2: there are not distinct vertices t1 and ty of GP4° —{t,v} so that D[Ky,]
and D[Ky,] are on different sides of D[C].

In this case, there is a vertex s of GP4 — {t,v} so that f € K, and all the
vertices of G — (K, U K,) on one side of D[C] are in one component K} of K, — f,
while all the other vertices of G — (K, U K,), including the other component K2
of K, — f, are on the other side of D[C].

Lemma 15.13 implies that K! has neighbours in two K,’s. According to D,
these can only be K, and K;. But now the 3-cycle tvs has the two degree 3 vertices
v and s, contradicting Lemma 15.15.

Since f is on both sides of D[C], but one side has no vertex, it must be that
the end of f on that side is in C. But f is disjoint from H’, and so this end can
only be t'. O

Our proof proceeds by considering how many common neighbours among K,
K,, and K, there are for H' and H?. We start by noting that there cannot be
three, since then the graph H™T is not planar, contradicting Definition 15.21.

CramM 5. H' and H? have exactly one common neighbour.

PROOF. We have already ruled out the possibility that H' and H? have three
common neighbours.

To rule out two common neighbours, suppose by way of contradiction that H*
and H? have the two common neighbours K, and K,. By the preceding remark,
at least one of H' and H? does not have a neighbour in K,. Since H’ does have
a neighbour in K, we may choose the labelling so that H'! has a neighbour in K,
and H? does not.

Claim 4 implies f is incident with both 2’ and y’. But now D[f] can be rerouted
along the other side of the 2’/ H2-edges, around H?, and on to ' so that G has
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no crossings. This implies the contradiction that GP*¢ is planar. We conclude that
H' and H? have at most one common neighbour.

If they have no common neighbours, then H' has neighbours just in K, while
H? has neighbours in K, and K., but not in K,. In this case, e, is a cut-edge
in H separating x from {y,z}. It follows that = ¢ T. Since G, is also a (T,U)-
configuration, there is an cut-edge €, of G, separating = from {y, z}. Now we can
replace H' in T with K, in such a way that e/, (in fact the only edge of G, incident
with ) is crossed by f to yield a 1-drawing of G. This contradiction completes the
proof of the claim. O

We conclude from Claim 5 that H' and H? have precisely one common neigh-
bour z’. Claim 4 implies that f is incident with z’.

If, for some i € {1,2}, H* has no other neighbour, then we may reroute f to go
around D[H'], yielding a planar embedding of G and, therefore, of the non-planar
graph GP4°, a contradiction.

Thus, we may choose the labelling so that H! has at least one neighbour in
K, while H? has at least one neighbour in K. If, say, H' is joined to K, by only
one edge, then y ¢ T'; therefore, y is incident with a unique edge in G, and we can
replace D[H] with the planar embedding of K, so that it is the yK,-edge that is
crossed by f. This yields that contradiction that G has a 1-drawing.

Thus, we may assume that T = {x,y, z}. However, there are not edge-disjoint
yz-paths in H — = (e, is a cut-edge separating y and z). Therefore, U = {y, z},
showing G, is doglike. It follows that G, — = has a cut-edge €] separating y and
z. We may substitute the planar embedding of K, for D[H] so that e, crosses f,
yielding the final contradiction that G has a 1-drawing. |

15.4. Reducing to a basic 2-crossing-critical example

In this section, we show that if G is a 3-connected 2-crossing-critical graph that
reduces by planar 3-reductions to a peripherally-4-connected graph, then there is
a “basic” 3-connected 2-crossing-critical graph from which G is obtained by the
regrowth mechanism of the preceding section.

THEOREM 15.25. Let G € M3 reduce by planar 3-reductions to a peripherally-
4-connected graph GP°. Let v be a vertex of GP*¢ with just the three neighbours x,
y, and z, so that (Gy,{z,y,2}) is a (T,U)-configuration and K, has at least two
vertices. Let Grep(y) be the graph obtained from G by contracting as indicated in
the following cases.

(1) If (Gy,{z,y,z}) is doglike, then let e be the cut-edge of K, and contract
each component of K,, — e to a vertez.
(2) If (Gy,{z,y,2}) is not doglike, then we have the following subcases.
(a) If none of Gy, Gy, and G is doglike, then contract K, to a vertex.
() If (|T),|U]) = (3,3), then contract K,, to a vertex.
(c) If G, is doglike and y & T, then let C be a cycle in G} containing
'y, and 2', delete everything in K, — E(C) and contract the edges
of C to the 3-cycle x'y'2’.
Then Grep(v) € M%

There is one clarification that is required to understand one fine detail of G .ep(v)-
If, for example, the vertex z’ is in K,,, then we proceed precisely as described in the
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statement. If, however, 2’ is in K, and x € T, then in G,p(,) We retain only two
edges between z’ and the contracted vertex in K,ep(,y to which it is joined. This
especially applies in the case 2c: if 2/ € K, then we keep only the two edges of C
incident with 2/, while if 2’ € K, then we keep all the z’' K ,-edges.

There is also an important remark to be made. We had long thought that
it was possible to reduce each K, to a single vertex and retain 2-criticality. This
might be true in the particular cases of 3-connected 2-crossing-critical graphs with
no subdivision of Vg, but it is certainly not true of all 3-connected 2-crossing-critical
graphs.

In Definition 2.10 we described the set S of all graphs that can be obtained
from the 13 tiles and the two frames. These graphs are all 3-connected and 2-cros-
sing-critical. Consider any one of these that uses the right-hand frame in Figure
2.1 and uses the second picture in the third row of Figure 2.2. With appropriate
choices of the neighbouring pictures, the 3-cycle in the upper half of the picture is
part of a doglike GG, that contains the parallel edges in the picture and the parallel
edges in the frame: the horizontal edge in the 3-cycle is K,. The vertical edge in
the other 3-cycle in the picture is a K,. When we do the planar 3-reductions in
this case, the contractions of K, and K, produce a pair of parallel edges not in
the rim. The conclusion is that the resulting peripherally-4-connected graph plus
parallel edges is not 2-crossing-critical. Thus, the technicalities we must endure in
the statement of Theorem 15.25 seem to be unavoidable.

Proof. We use the notation K,ep(,) for the contraction of K, in G
Phase 1: showing G

rep(v)*

rep(v) 18 3-connected.

Let t and u be vertices of Gep(y). We show Giep(y) — {t,u} is connected.

Let w; and w, be the vertices of GP¢ so that t € K, and u € K,,, (taking, for
example, Ky, t0 be Kiep(y) if t € Kiep(v)). It follows from Lemma 15.16 that every
vertex of every K has a path in G — {¢,u} to at least one neighbour of K, that is
not one of Ky, or Ky,. This is also true of Ki¢,(,), as may be seen by checking
the analogues for K,ep(,) of Lemma 15.16 in the three cases for which K,y (,) has
at least two vertices. (Note there are two possible outcomes for K., in Case 2c,
depending on whether 2’ € K, in which case Kiep) is a 3-cycle, or 2’ € K, in
which case K, is an edge.)

Since each K is connected, Gep(y) — {t,u} is connected.

rep(v
Phase 2: showing cr(Grep(v)) > 2.

The graph I_(rep(v) obtained from K,ep(,) by adding z, y, and z is a (G, K,)-
compatible (T, U)-configuration. Therefore, Phase 2 follows immediately from The-
orem 15.24.

Phase 3: showing that Gyep(v) 18 2-crossing-critical.

Let e be any edge of Gep(v). Then there is an edge eg in G' naturally corre-
sponding to e (in the sense that precisely the same contractions and deletions of G

and G — e¢ can be used to obtain both Giep(v) and Grep(y) — €)-

Special situation. There is one case where the choice of eq must be made
with special care. Suppose K, contracts down to the single vertex v and e is one
of two parallel edges vx. In the case K, has a cut-edge €', Lemma 15.13 implies
each component of K, — ¢’ is joined to two of the neighbours of v. Suppose that K,



15.4. REDUCING TO A BASIC 2-CROSSING-CRITICAL EXAMPLE 141

is the only common neighbour of these two components. Since G, is not doglike,
some component L of K, — ¢’ is joined by exactly one edge to its other neighbour;
choose e to be an xL-edge.

DEFINITION 15.26. For each vertex w of K,
K, that contracts to w.

ep(v)> Luw denotes the subgraph of

Since G is 2-crossing-critical, there is a 1-drawing D of G — eg. If no edge
of any L,, C K, is crossed in D, then these may each be contracted to obtain a
1-drawing of Giep(y) — €, and we are done.

CrAM 1. If there is a drawing of G — e in which all the crossings are between
edges incident with vertices in Ly, then G ¢p(,) — € is planar.

PROOF. Insert vertices at each crossing point and contract every edge in the
new graph that has both ends in some L,. The result is a planar embedding of
Grep(v) — €. [l

Therefore, we may assume the crossing edges are e, € L,, C K, with some
other edge f not incident with any vertex in L.

Case 1: [ is a cut-edge of (G —eg) — L.

In this case, D[(G — e¢) — L] has no crossing, so it is planar. Therefore, the
faces on each side of f in D[(G — eg) — L] are the same. Thus, the ends of e, are
in the same face of D[(G — eg) — Ly).

Consider now the planar embedding D[(G — eg) — €,]. The two ends of e, are
in the same face of the subembedding D[(G — eg) — L,,] and so may be joined by
an arc that is disjoint from D[(G — eg) — Ly,]. This produces a drawing of G — eg
in which all the crossings involve e, and edges incident with at least one vertex in
L. Claim 1 implies Gep() — € is planar, as required.

Case 2: f is not a cut-edge of (G — eq) — Ly.

In this case, f is in a cycle Cy of (G — eq) — Ly,. Moreover, D[C] separates
the two ends of e,, so e, is a cut-edge of L. Let L. and L? be the components
of L, — e,.

We consider separately two cases for G, .

Subcase 2.1: G, is doglike.

In this subcase, Kep(v) is two vertices w and @ joined by a cut-edge e’ of
G, — x, each joined by an edge to 2/, w is joined by at least two edges to K, and
w is joined by at least two edges to K,. Lemma 15.20 implies that K, has at most
two neighbours in K,,. We already know there is one in each of L,, and Lz. Lemma
15.11 now implies there is a vertex ' € K, incident with all the K, K -edges in G.
Thus, we may choose the labelling of L1 and L? so that the neighbour of 2’ in L,,
is in L.

We see that 2/ and the end of e, in L2, are neighbours of vertices in L., and
neither of these vertices is in LL,. The only other possibilities for neighbours of L,
outside of L} are in K, and Ly, the latter being the end of €’. A similar remark
holds for L2 : it has the neighbour (via e,) in L., and can have at most neighbours
in K, and Ly (via €).

Since G is 3-connected, for each i = 1,2, L’ has at least two neighbours outside
of L¢, other than 2’. From the neighbour analysis of the preceding paragraph, there
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are at most three in total: two to K, and one to L. There are two ways this can
happen.

In the first way, both edges from L., to K, have their ends in L2, while ¢’ has
an end in L. . But then e, is a cut-edge of K, that violates Lemma 15.13: the edge
eg cannot connect L2 to either 2/ (Lemma 15.20 or K, (because €’ is a cut-edge
of G, — ), so the component L2 of K, — e, is joined only to K.

Therefore, ¢’ has one end in L?U and the two K, K, edges have ends in different
ones of L. and L2 . It follows that 3/ is incident with these edges, so Lemma 15.20
implies 3" has precisely these neighbours in K.

Contract Dle,] so that L. is pulled across f and, if necessary, shrink D[L}] so
that we obtain a new drawing D! of G — e in which f crosses the edges from z’
and y' to L.

CLAIM 2. f & L.

PROOF. If f € Ly, then exactly the same analysis as for L,, implies that Lg— f
has two components L. from which there is an edge to 2’ and an edge to 2’, and
L2, from which there is an edge to 2z’ and L2,. But now the graph-theoretically
disjoint cycles in L,, +' containing e, and Ly + 2z’ containing f cross exactly once
in D, which is impossible. O

It follows from Claim 2 that f ¢ Lg. We contract the uncrossed D'[L,,] and
D'[Ly)] to obtain a drawing D? of Gep(y) — €, in which the only crossings are of f
with the edges from 2’ and 3’ to L.. In D?, there are parallel edges 3'w; the one
from ¢’ to L2, is not crossed in D?, so we may make all the others go alongside the
uncrossed one. This yields a drawing D3 of G'rep(v) — € in which the only crossing
is 2/w with f, so D3 is a 1-drawing of Gyep(v) — €, as required.

Subcase 2: G, is not doglike.

Subcubcase 2.1: there is a neighbour x of v in GP*° so that G, is doglike and
' € K, 1s the nose of G.

Let C be the cycle in G, that we contracted to the 3-cycle z'y'z’. We let G¢
be the subgraph of G obtained by deleting all edges between the various L, except
the one or three edges in C. Choose the labelling so that y is a neighbour of v in
GP*¢ so that there is exactly one K, K,-edge in G; thus y’ € K,,.

Let r be that element of {x,y,z} so that ' € L,,. There are precisely two
edges e; and es in G¢ coming out of L, in G, —r.

Let L. be the component of L, — e, containing r’ and let L? be the other.
Since C' goes through 7/, at least one of e; and ey is incident with a vertex in L1 .
Therefore, at most one of e; and ey has an end in L2,

We claim that L2 is not joined to any other vertex in G¢. The only possibility
is that there is an edge from L2, to K, UK, UK. Since all the K, K,- and K, K-
edges in G are incident with 2’ and %/, respectively and 2’ and 3’ are not in L2
there are no edges in G from L2, to K, U K.

As for the possibility of an L2 K ,-edge, this can only exist if 2/ € K,. But 2’
already has two known neighbours in K, namely the K,-ends of the edges of C
incident with z’. Lemma 15.20 implies these are the only vertices of K, adjacent to
vertices in K,. Therefore these known z’-neighbours are the only ones; in particular,
2’ has no neighbour in L2, as claimed.
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We obtain a 1-drawing of Giep(,) — € by partially contracting Dle,] and, if
necessary, scaling D[L?2] down so that L1 and L? are now drawn on the same side
of f. The only crossing in this new drawing is of the edge of D[G], if it exists,
that is not e, and joins L2 to the rest of G¢. Now we may contract all the L, to
single vertices to obtain the required 1-drawing of G cp() — €.

Subsubcase 2: there is no neighbour x of v in GP° so that G, is doglike and
' € K, 1s the nose of G..

At this stage, K, contracts to a single vertex of Gep(,). In this case, K, — e,
has two components K| and K2. Lemma 15.13 implies each of K! and K? are
connected in G to at least two of K,, K, and K,. Because G, is planar, at most
two of K, K,, and K, can be adjacent to both K} and K2.

If both K, and K, have neighbours in both K! and K2, then there is an
i € {1,2} so that K! has adjacencies only in those two. Now pull D[K!] across
f and, scaling D[K'] if necessary, to obtain a planar embedding of G — eg. This
contracts to a planar embedding of Gep() — €, as required.

Thus, we may assume K} and K2 have precisely one common neighbour in G.
Each has its own neighbour. Since G, is not doglike, one of these, say K, is joined
by a single edge to that unique neighbour and now we can drag K} across f. This
works unless e goes to K2 and K2 is joined to its unique neighbour by two edges.
But this is the special situation, and e is joined to K}, not K2. |

15.5. Growing back from a given peripherally-4-connected graph

The important corollary of Theorem 15.25 is that, if we replace each K, with
its Kiep(v), then we get a 2-crossing-critical model of GP¥¢ with very simple re-
placements for the vertices of GP*. In this section, we explain how to obtain all
the 3-connected 2-crossing-critical graphs that reduce by planar 3-reductions to a
particular peripherally-4-connected graph.

Let L be a non-planar peripherally-4-connected graph. For each vertex v of
L having only three neighbours z, y, and z, we decide on the type of v; that
is, we choose T, C {x,y, 2} and, in the case |T,| = 3, we decide on U,: either
U, = {z,y, 2}, or U, consists of two of {z,y,z}. For each edge of L joining two
vertices of degree at least 4, we decide whether the edge will be a single edge or a
parallel pair.

The choices must be made so that € T, if and only if v € T;,. If, for some v,
(ITu1,1Us|) = (3,2) (v is chosen to be doglike), then some other implications (as in
Theorem 15.25) must be maintained. Choose the labelling so that « ¢ U,. Then x
is the nose of the dog, v is replaced with K, so that K, is an edge 3'2’, so that 3/
incident with two edges going to K, and likewise for 2’ to K,. Each of ¢’ and 2’
is also incident with an edge to 2’ € K,. Furthermore, K, can be either a vertex,
or, if |T,| # 3, an edge, or a 3-cycle.

Once all these choices have been made, the resulting graph is tested for 2-
criticality. Thus, for a given peripherally-4-connected graph L, there will be many
graphs that require testing. If one of the resulting graphs L’ is found to be 2-cros-
sing-critical, then there may be many other 3-connected 2-crossing-critical graphs
that arise from L’. Recall that, for each vertex of L that has only three neighbours,
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we have made a choice as to what type that vertex has. The following lemma
explains what may replace the vertex of each type.

LEMMA 15.27. Suppose the peripherally-4-connected graph L has choices as
explained in the preceding paragraphs to produce a 3-connected 2-crossing-critical
graph L'. Suppose G is a 3-connected 2-crossing-critical graph that reduces by planar
3-reductions to L so that L' is the graph obtained from G by the replacements
described in Theorem 15.25. Then, for each K, in L', K, is replaced by one of the
possibilities shown in Figures 15.1, depending on (T,,U,).

Proof. We only illustrate the tedious proof in a couple of cases.

Case 1: (T,,U,) = ({z,v, 2}, {y, 2}).

Let e be a cut-edge in G, — z separating y and z. Let K, —e have the two com-
ponents KY, containing the neighbour(s) of y, and K?, containing the neighbour(s)
of z. If KY, for examples, is not just either a single vertex or an edge joining the
two neighbours of y, then it contains a subdivision of one of these (either pick a
path in K'Y joining the neighbour of y to the KY-end of e or pick a path joining the
two neighbours of y). It is easy to see that the subdivision (making a similar choice
on the z-side) is also a (T, U, )-configuration. By Theorem 15.24, the subgraph has
crossing number 2, and so is all of G. Thus, K, can be at most one of the three
figures in Figure 15.1 corresponding to (|T,|U]) = (3,2).

Case 2: T, = {z,y, 2} = U,.

In this case, G, — x contains edge-disjoint yz-paths. Therefore, it contains two
such paths P and @ that make a digonal pair. If P and @ are internally disjoint,
then there is a (P — {y,2})(Q — {y,z})-path R. If P and @ are not internally
disjoint, then set R = @. In either case, set M = PUQ U R. There are two
x(M —{y, z})-paths Ry and Rz in G,.

If the ends of P and @ are in the same digon of P U @, then planarity of G
implies Ry and Ry have their ends in the same one of P and Q). It follows that
MU Ry U Ry is a (T, Uy)-configuration, and so is G,, by 2-criticality and Theorem
15.24.

The fact that G is 3-connected implies that there cannot be more than four
common internal vertices to P and @, as if there were six digons, then some two
consecutive ones would not contain an end of either Ry or Ro. This would readily
yield a 2-cut in G, which is impossible. This is why the number of possibilities for
G, in this case is finite. [ |

In some of the larger (7', U)-configurations, there are edges that are not required
to produce the relevant paths between s, t, and u, but, rather, are there to maintain
the connectedness of the configuration. These edges might be deletable without
reducing the crossing number below 2. Thus, each candidate 3-connected graph
produced by the method described needs to have its criticality checked.

15.6. Further reducing to internally-4-connected graphs

In order to find the 2-crossing-critical graphs that do not contain Vg, we wish
to use the characterization by Robertson of Vg-free graphs. This characterization,
described in the next section, is in terms of internally-4-connected graphs. These



15.6. FURTHER REDUCING TO INTERNALLY-4-CONNECTED GRAPHS 145

A A A A A
A A R
AR A A
AR A A

A A
AL A
A A
A

F1GURE 15.1. The possible (T, U)-configurations.

graphs are very closely related to peripherally-4-connected graphs and it is the
purpose of this section to describe the reduction of a peripherally-4-connected graph
to an internally-4-connected graph, and back again.

DEFINITION 15.28. A hug in a graph G is an edge e in a triangle 7" whose
vertex v not incident with e has degree 3. The triangle T is the e-triangle, v is the
head of the hug and the two edges of T other than e are the arms of the hug.

DEFINITION 15.29. A G is internally-4-connected if it is peripherally-4-connec-
ted and has no hugs.
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FIGURE 15.2. The thick edge is a bear hug. The dotted edges tw
and vz might be subdivided, and the dashed edge uw need not be
present. If ww is not present, then {uz,uy} is a simultaneously
deletable pair of bear hugs.

It is not correct that simply deleting (successively) the hugs from a peripherally-
4-connected graph produces an internally-4-connected graph. There is a particular
situation that arises that needs special care.

DEFINITION 15.30. (1) A hug e with head v is a bear hug if there is an
end u of e, incident with a second hug uy whose head t is different from v,
and so that, with w the other end of e, the neighbours of u are contained
in the union of {¢,v,w} and the set of neighbours of ¢. (See Figure 15.2.)

(2) A hug is deletable if it is not a bear hug.
(3) A pair of bear hugs having a common end is simultaneously deletable.

We are now in a position to reduce a peripherally-4-connected graph to an
internally-4-connected graph.

THEOREM 15.31. Let G be a non-planar peripherally-4-connected graph and let
G = Gy, Gy, ...,Gy be a sequence of graphs so that, for each i = 1,2,... k, there
is either a hug h; or a simultaneously deletable pair h; of bear hugs in G;_1 so that
G; =G;—1 — h;. Then, fori=0,1,2,...,k:
(1) G; is a subdivision of a non-planar peripherally-4-connected graph;
(2) ifv has degree 2 in G; but not in G;_1, then h; is a simultaneously deletable
pair of bear hugs in G;_1, both incident with v; and
(3) every degree 2 vertex in G; has two degree 3 neighbours in G;.
Furthermore, if the sequence Go,G1, . ..,Gy is mazimal, then Gy is a subdivi-
sion of an internally-4-connected graph.

We emphasize that, in the reduction process described in the statement, G; is
obtained from G;_; by the deletion of either one or two edges.

Proof. Suppose by way of contradiction that ¢ is least so that G; is planar. Since
Gy is not planar, ¢ > 0, so G; = G;—_1 — h;. Each edge in h; joins two neighbours
of a degree 3 vertex in GG; and so may be added to the planar embedding of G;
to produce a planar embedding of G; together with that edge of h;. In the case
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|h;| = 2, the heads of the hugs are not adjacent. Thus, both hugs may be added
simultaneously, while preserving planarity. Thus, G,;_; is planar, contradicting the
choice of 1.

By way of contradiction, we may let i be least so that G; is not a subdivision
of a peripherally-4-connected graph. Thus, ¢ > 1. Throughout the proof, when
we refer to the vertices ¢,u, v, w, x,y, z, we are always referring to the labelling in
Figure 15.2. In each of the three cases, there are two possibilities for h; to be
considered.

It will be helpful to notice that, in the case h; consists of a simultaneously
deletable pair of bear hugs, the vertex w is not a node of G; and is incident with
both deleted edges.

CLAIM 1. G} is a subdivision of a 3-connected graph.

PROOF. Let a and b be distinct nodes of GG;. Then a and b are distinct nodes
of G;_1, so there are three internally disjoint ab-paths Py, P, P3 in G;_1.

If e € h;, then the head c of the e-triangle has degree 3. If e is in some P; and
T is the triangle containing e and its head, then we may replace P; N'T" with the
path in T complementary to P, N'T. The at most two modifications result in three
internally disjoint paths that are also paths in Gj;. (I

CLAIM 2. If @ has degree at least three in G;_; and degree 2 in G;, then:
(1) |hil =2;
(2) a is incident with both edges in h;; and
(3) both neighbours of a have degree 3 in G;.

PrOOF. Let e € h;. The head b of the e-triangle has degree 3 in G;_; and,
since GG;_1 is a subdivision of a peripherally-4-connected graph, no other vertex of
the e-triangle has degree 3, so Lemma 15.15 shows they both have degree at least
4. Tt follows that if e is the only edge in h;, then the ends of e have degree at least
3 in G; and no new vertex of degree 2 is introduced in G;.

Therefore h; is a deletable pair. The only new vertex of degree 2 in G; is u, so
a = u. Also, the only neighbours of u in G; have degree 3 in Gj;. (]

The remaining possibility is that there is a set {a,b,c} of nodes of G; and a
3-separation (H,J) of G; so that H N J = ||a,b,c|| and both H — {a,b,c} and
J — {a,b,c} have at least two nodes of G;.

Because G;_1 is a subdivision of a peripherally-4-connected graph, there is an
edge e € h; having one end ry in H — {a, b, c} and one end r; in J — {a, b, c}.

Suppose for the moment that h; has a second edge. Since G;_; is a subdivision
of a peripherally-4-connected graph, not all the neighbours of u in G;_1 can be in
the same one of H and J. We may choose the labelling so that x = r;. Astis a
common neighbour of u = ry and = = r;, we conclude that ¢t € {a,b,c}, say t = a.

It follows that at least one of v and y (the other two neighbours of ) is in H —
{t,b,c}. Since v and y are adjacent, it follows that both are in H and, furthermore,
uy is also in H. In particular, there is a unique edge in h; that has one end in
H — {a,b,c} and one end in J — {a, b, c}.

Now the two possibilities for h; are merged: e is the unique edge in h; having
one end rg in H — {a,b,c} and one end r; in J — {a,b,c}. The head ¢ of the
e-triangle must be in {a,b, ¢}, say ¢ = a.
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FIGURE 15.3. When s = b, G;_1 is a subgraph of the illustrated
planar graph.

Since g has degree 3, we may choose the labelling so that ry is the only neigh-
bour of ¢ in H — {q,b,c}. The neighbour r; of ¢ is in J — {¢, b, c}. Note that rg
and r; are both nodes of GG;_1.

The third neighbour s of ¢ is in J, so {rg,b, c} is a 3-cut in G;_;. Since G;_;
is peripherally-4-connected, there is a unique node p in H — rg, which is joined by
branches in G;_; to all of rg, b, and c.

If s € {b,c}, then the discussion in the preceding paragraph applies with r;
and J in place of ry and H, respectively. The nodes of G;_; are now all known
(there are only 7), and the edges are almost completely determined. In particular,
G;_1 is a subgraph of the planar graph shown in Figure 15.3, contradicting the fact
that G;_1 is non-planar. Therefore, s is in J — {q¢, b, c}.

The vertex rg is the only candidate for the second branch vertex (after p) of
G; in H — {q,b, ¢}, so it must be joined by a G;-branch to at least one of b and ¢;
choose the labelling so that b is an end of such a G;-branch.

If b has only one neighbour in J — {q,b,c}, then p and b are both degree 3
vertices in a triangle in G;_1; since G;_1 is a subdivision of a peripherally-4-con-
nected graph, this contradicts Lemma 15.15. The same reasoning implies that both
ry and b have degree at least 4 in G;_1. These imply that rgp, rgb, and pb are all
edges of G;_1.

Because rgyry is in h; and ¢ is the head of the rgr-triangle, we know that
rygry, qry, and qry are all edges of G;_1. Furthermore, rgs is not a G;_1-branch
(it would yield a second edge with one end in each of H—{a,b,c} and J—{a, b, c}).

The triangles pryb and qrgry; show that rgry is a bear hug. Since it was
deleted, it must be in a simultaneously deletable pair of bear hugs. This implies
that rgb is the other edge in that pair. Thus, H — {a,b,c} has only one node
in Gy, a contradiction that completes the proof that each G; is a subdivision of a
peripherally-4-connected graph.

We move on to showing that a maximal sequence ends in a subdivision of an
internally-4-connected graph. So suppose G; is not a subdivision of an internally-
4-connected graph. Since it is a subdivision of a peripherally-4-connected graph
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H, there is a 3-cut {a,b,c} in H so that ab is an edge of G;. Since H is periphe-
rally-4-connected, there is a vertex p adjacent in H to all of a,b,c and with no
other neighbours in H. Lemma 15.15 shows that the triangle p,a,b has at most
one vertex of degree 3; since p is such a vertex, a and b have degree at least 4 in
H. It follows that pa and pb are edges of GG; and, therefore, ab is a hug in G;.

It is evident from the definitions that, as soon as G; has a hug, then either G;
has a hug that is not a bear hug or G; has a pair of simultaneously deletable bear
hugs. In either case, G; is not the last in a maximal sequence. |

We conclude this section with a brief discussion of the reverse process: how
to generate all the peripherally-4-connected graphs that reduce to a given non-
planar internally-4-connected graph G. Every graph created through iterating the
following procedure is peripherally-4-connected and non-planar. We choose either
two non-adjacent neighbours of a degree 3 vertex and add the edge between them,
or we choose an edge e joining degree 3 vertices and a neighbour of each vertex
incident with e, subdivide e once, and join both the chosen neighbours to the
vertex of subdivision.

Every internally-4-connected graph produces only finitely many peripherally-
4-connected graphs through this process, as the number of possible additions is
initially finite and strictly decreasing.

15.7. The case of Vg-free 2-crossing-critical graphs

In this section, we complete our analysis of peripherally-4-connected 2-crossing-
critical graphs by considering the case of 3-connected 2-crossing-critical graphs that
do not contain a subdivision of Vg. This is the whole reason for studying periphe-
rally-4-connected graphs, since there is a characterization of the closely related
internally-4-connected graphs that do not contain a subdivision of V3.

Two important classes of graphs in this context are the following.

DEFINITION 15.32. (1) A bicycle wheel is a graph consisting of a rim,
which is a cycle C, and an axle, which is consists of two adjacent vertices
2 and y not in the rim, together with spokes, which are edges from {z,y}
to C.
(2) A 4-covered graph is a graph G containing a set W of four vertices so that
G — W has no edges.

Maharry and Robertson [22] prove Robertson’s Theorem that an internally-4-
connected graph with no subdivision of Vg is one of the following:
(1) a planar graph;
(2) a non-planar graph with at most seven vertices;
(3) C30C5;
(4) a bicycle wheel; and
(5) a 4-covered graph.

Suppose G is a 3-connected graph that does not contain a subdivision of Vg
and G reduces by planar 3-reductions to the peripherally-4-connected graph GP*c.
It follows that GP% has no Vg. Eliminating hugs as described in Theorem 15.31
produces an internally-4-connected graph Gi4¢. Deleting hugs does not affect the
planarity of the graph; since GP* is not planar, so is Gi¢. By Robertson’s Theorem,
one of the following happens:
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(1) G™¢ is not planar and has at most seven vertices;
(2) Gi4C is Cg O Cg;

(3) G'¢ is a bicycle wheel; and

(4) G™¢ is a 4-covered graph.

Our ambition in the remainder of this section is to explain how to determine
all the peripherally-4-connected graphs GP%¢ that can be the outcome of a sequence
of planar 3-reductions starting from a 3-connected, 2-crossing-critical graph G that
has no subdivision of Vg. Any peripherally-4-connected graph with no subdivision
of Vg that either has crossing number exactly 1 or is itself 2-crossing-critical needs
to be tested. Those with crossing number 1 might extend to a 2-crossing-critical
example by duplication of edges and/or replacing vertices of degree 3 by one of the
basic (T, U)-configurations, as explained in the preceding section.

The first two items arising from Robertson’s Theorem are easily dealt with. A
computer program can easily find all internally-4-connected graphs with at most 7
vertices and determine which ones either have crossing number 1 or are 2-crossing-
critical. The graph C30Cj5 is itself 2-crossing-critical, so this is one of the 3-
connected, 2-crossing-critical graphs that do not contain a subdivision of V.

DEFINITION 15.33. Let GP4¢ be a peripherally-4-connected graph and let G4¢
be the internally 4-connected graph obtained from GP%¢ by simplifying (that is,
leaving only one edge in each parallel class) and eliminating hugs. Then GP is a
peripherally-4-connected extension of GH¢.

We conclude this section by showing how to which bicycle wheels and 4-covered
graphs G'#¢ can have such a 2-crossing-critical GP4¢ as an extension. In particular,
G must either have crossing number 1 or itself be 2-crossing-critical; in the latter
case GPic = Gide,

CASE 1: the bicycle wheels.

Let o and y be the adjacent vertices making the axle of the bicycle wheel G4¢,
and let C' be the cycle that is the rim. Our goal is to provide sufficient limitations
on C' to show that the computation is feasible. Here is our first limitation, which
can very likely be improved.

LEMMA 15.34. Suppose G € M3 reduces by planar 3-reductions to the graph
GP¥¢ that is a peripherally-4-connected extension of G'4¢. If G is a bicycle wheel
with azle vy and rim C, then x is not adjacent in G*° to six consecutive vertices
on C, none of which is adjacent to y.

Proof. Suppose by way of contradiction that x1, x2, x3, T4, T5, Tg are six consecutive
(in this order) vertices of C' adjacent to « but not y. Lemma 15.15 implies no two
consecutive ones of these vertices have only three neighbours in GP4¢. By symmetry,
we may assume x3 has a neighbour u that is not adjacent to xs in G4°.

Because GP4° is a peripherally-4-connected extension of G'4¢, there are vertices
w and z so that z3, u, and w are the neighbours (in both graphs) of z and no other
vertex has just these three neighbours. Since y is not adjacent to 3 and x has more
than 3 neighbours, z € C. If follows that 3 and u are the C-neighbours of z and w is
the neighbour of z that is in {x, y}. In particular, z, being a neighbour of x5 is either
T OT X4, SO w = x. In either case, three consecutive vertices from 1,9, ..., Tg are
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such that the outer two are adjacent by a chord in GP%; if necessary, we relabel so
these are 1, z2,x3. In particular, 2o has just three neighbours in GP4.

Let D be a 1-drawing of GP*¢ — zz5 and let K be the subgraph of GP4¢ — xx
induced by x, x1, 2, and x3.

CLAIM 1. K is clean in D.

PROOF. In GP* — x5, x5 has only two neighbours, so the edge x123 and the
path (x1,x2,x3) make a pair of parallel edges. Therefore, we may assume neither
of these is crossed in D.

It suffices to prove that xxy is not crossed in D, as the proof for zx3 is sym-
metric. Suppose by way of contradiction that xz; is crossed in D and consider the
planar embedding of GP4¢ — {zx1, z25} induced by D. Since G*¢ — {zxq, w22} is a
subgraph, it is also planar, embedded in the plane by D.

Since z3 has only three neighbours in G#¢ — {zx,r2,}, we can add the edge
rx9 alongside the path (x, z3,22) to obtain a planar embedding of G*¢ — 2. Then
we may add the edge zz, alongside the path (x,z2,21) to get a planar embedding
of G*¢. However, this contradicts the fact that G4 is not planar. O

Now let K be the subgraph of GP4¢ — 25 induced by x, 1, z2, and x3. Because
x1, 9, and x3 are consecutive along C, there is a unique K-bridge B in GP4¢ — zx.
The claim shows K is clean in D, so D[B] is contained in one face F of D[K].

Adjusting which of D[zj23] and D[(z1, 22, x3)] is which, if necessary, we may
arrange D so that both x and xs are incident with a face of D[K] that is not F'.
This permits us to add zxs to D without additional crossings, to obtain a 1-drawing
of G. This final contradiction yields the result. |

Along the same lines, we have the following limitation.

LEMMA 15.35. Suppose G € M3 reduces by planar S-reductions to the graph
GP4° that is a peripherally-4-connected extension of Gi4¢. If G'¢ is a bicycle wheel
with azle xy and rim C, and there are four distinct vertices of C' adjacent to both
x and y, then these are the only siz vertices of Gi4°.

Proof. Suppose to the contrary that wi, us, us, and uy are distinct vertices of C
adjacent to both z and y in GP*¢ and there is another vertex us. We may choose
the labelling of x and y so that zus € G*¢. Let D be a 1-drawing of GP4° — zus.

Let K be the subgraph of GP4¢ — zus consisting of C' and all edges between x
and vertices of C. (We do not include any chords of C' that might exist in GP*.)
If z and y are both in the same face of D[C], then y is in some face F' of D[C]
and at least two of uy, ug, uz, and uy are not incident with F'. This implies the
contradiction that D has at least two crossings.

We conclude that y is not in the same face of D[C] with x. It follows that xy
crosses C' in D and this is the only crossing. We claim we can add the edge zus to
D to obtain a 1-drawing of GP4°,

Let F be the unique face of D[K] incident with both us and w and let C’ be
the cycle bounding F. If we cannot add zus in F, then there is an edge e of GP4°
that has an end in each of the two components of C/ — {z, u5}. Since C' —x C C,
it follows that both ends w; and wsy of e are in C.

Since e is not an edge of G'¢, there are vertices w3 and z of GP4¢ so that z
has just the neighbours wi, ws, and ws. Since both z and y have at least four
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neighbours, z ¢ {x,y}. Since one of z and y is a neighbour of z, wsz € {x,y}.
Finally, z has at least two neighbours in C| so these are w; and wy. We conclude
that z = us.

We note that zy cannot cross the 3-cycle uswiws in D. Therefore, we can move
wiws to the face of D[C] that contains y; in this new 1-drawing of GP4 — zus, =
and us are incident with the same face, giving the contradiction that GP*° has a
1-drawing. |

The final limitation is the following.

LEMMA 15.36. Suppose G € M3 reduces by planar S-reductions to the graph
GP¥¢ that is a peripherally-4-connected extension of G4¢. Suppose G'4¢ is a bicycle
wheel with azle ry and rim C, and there are six distinct vertices x1, Y1, T2, Y2, T3,
ys n this cyclic order on C, so that, for i =1,2,3,, x; is adjacent to x and y; is
adjacent to y. Then these are the only siz vertices of C.

We remark that we allow for the possibility that some (or all) of the x; are also
adjacent to y and, likewise, some of the y; can be adjacent to x.

Proof. Suppose to the contrary that there is another vertex u in C. If possible,
choose the x;, y; and w so that u is adjacent to only one of x and y. We may assume
that u occurs between x; and y; in the cyclic order on C'. By the choice of the x;,
y;, and wu, if u is adjacent to both x and y, then so are x; and y; and all vertices
between them on C.

Let D be a l-drawing of GP4*¢ — zu. Let K be the subgraph of GP¢ — zu
consisting of C' and all edges between x and vertices of C. (We do not include any
chords of C' that might exist in GP4¢.) If x and y are on the same side of D|[C],
then at most one of the y; is incident with the face of D[K] containing y, showing
D has at least two crossings, a contradiction. Therefore, the crossing of D is of xy
with an edge of C.

There is a face of D[K] incident with both z and w; let C’ be its bounding
cycle. If we cannot add zu to D, it is because there is an edge e of GP*® — zu with
an end in each of the components of C’ — {z,u}. Since C' —x C C, it follows that
the ends w; and wy of e are both in C. Because GP*° is a peripherally-4-connected
extension of a bicycle wheel, there are vertices z and ws so that z has only the
neighbours wy, ws, and ws.

Both 2 and y have at least four neighbours in G, so z ¢ {x,y}; thus, z € C.
Since z has two neighbours in C' and at least one in {z,y}, it follows that ws €
{z,y}, while w; and wy are the two C-neighbours of z. Therefore, z = u. As u is
adjacent to x, we conclude that u is not also adjacent to y. But now we can move
the edge wyws to the other side of C' so that the resulting 1-drawing of GP* — zu
extends to a 1-drawing of G, a contradiction. |

Lemmas 15.34, 15.35, and 15.36 effectively limit the possibilities for Gi4¢. Each
of these must be checked for either having crossing number 1 or being 2-crossing-
critical. Those with crossing number 1 must have their peripherally-4-connected
extensions tested for 2-criticality. No matter what improvement is made to Lemma
15.34, this will require computer work to complete.

CASE 2: the 4-covered graphs.
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We begin our analysis by describing three particular internally-4-connected 2-
crossing-critical graphs that are 4-covered.

DEFINITION 15.37. (1) The 3-cube Q3 is the 3-regular, 3-connected, pla-
nar, bipartite graph with 8 vertices.

(2) The graph QY% is the bipartite graph obtained from @3 by adding one new
vertex joined to all four vertices on one side of the bipartition of Q3.

(3) The graph Q% is the bipartite graph obtained from Q3 by adding two of
the four missing (bipartite-preserving) edges.

(4) The graph Q} is the graph obtained from @3 by adding a 3-cycle abc on
one side of the bipartition of Q3 together with one edge joining the fourth
vertex d of the same part to the non-adjacent vertex in the other part of
the bipartition.

LEMMA 15.38. The graphs Q%, Q3¢, and Q% are all 2-crossing-critical.
Proof. We start with the following observation.

CramM 1. If D is a 1-drawing of @3, then D is the unique planar embedding
of Qg.

PROOF. If e and f are two non-adjacent edges of @3, then it is easy to see that
they are in disjoint cycles. Therefore, no two edges of Q3 cross in D. O

We use Claim 1 to show that cr(QY) > 2, er(Q?%¢) > 2, and cr(Q%) > 2.

Adding the one vertex to the planar embedding of the 3-cube yields 2 crossings,
since each face of the 3-cube is incident with only 2 of the four vertices joined to
the new vertex. This shows cr(Q}) > 2.

For Q3¢, each of the two new edges joins vertices not on the same face of Q3
and so each has a crossing with Q3. Thus, cr(Q3¢) > 2.

For Q%, the new edge e incident with d must cross 3 in any drawing D of Q%
for which D[Q%] has no crossings. If the 3-cycle D]abc| also has a crossing with
Q3, then D has two crossings. Otherwise, D[abc] separates the two ends of Dle],
so Dle] crosses D[abc]. Thus, cr(Q%) > 2.

We now consider 2-criticality in each case.

For @3, deleting any edge of the 3-cube makes a face incident with 3 of the
four vertices and so yields a 1-drawing. Likewise deleting one of the edges incident
with the new vertex yields a 1-drawing.

For Q3%¢, obviously deleting either of the edges not in Q3 yields a 1-drawing.
On the other hand, if e is an edge of )3 incident with at most one of the vertices of
Q3¢ of degree 4, then deleting e makes one of the newly adjacent pairs now lie on
the same face, yielding the required 1-drawing. If e is one the remaining two edges
of 3, there is a 1-drawing of (3 — e with one crossing that extends to a 1-drawing
of Q3¢

For @}, criticality of all the edges not incident with d is obvious, as it is the
new edge e incident with d. The remaining three edges are symmetric. Deleting
any one of these results in a subgraph that has crossing number 1 (we may move
the other end of e to the other side of abc to get a 1-drawing). u
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LEMMA 15.39. Suppose G € M3 reduces by planar 3-reductions to a peripherally-
4-connected GP® with at least 8 vertices that is an extension of the internally-4-
connected 4-covered graph G4¢. Then either G is one of the graphs Q%, Q3¢, or
GP*¢ has exactly 8 vertices.

Proof. Let a,b,c,d be the four vertices so that Gi*¢ — {a, b, ¢, d} is an independent
set I. For each z € {a,b, ¢, d}, let X be the set of vertices in I adjacent to everything
in {a,b,c,d}\ {z}, and let R be the remaining vertices in I; a vertex in R is joined
to all of {a, b, c,d}.

Note that a vertex in R has degree 4 in G*¢, so it is also a vertex of G; it
cannot be the outcome of any 3-reductions. If |R| > 3, then G contains K3 4 and
so G = K3 4, a contradiction. Thus, |R| < 2.

If, for some z € {a,b,c,d}, |X| > 2, then {a,b,c,d} \ {z} is a 3-cut in G'¢
that separates any two vertices v, w in X from all the other vertices in I\ {v, w},
of which there are at least two. This contradicts the fact that G*¢ is internally
4-connected. Thus, |X| < 1.

This implies that GP* has at most 10 vertices, but we can proceed a little
further.

If R = @, then G*¢ is planar (adding the K, on {a,b,c,d} does not affect
planarity), which is a contradiction. Thus, |R| > 0.

If, for each x € {a,b,c,d}, | X| = 1, then the bipartite subgraph of G*¢ consist-
ing of {a, b, c,d} and the four vertices in AU BUC U D is the 3-dimensional cube
(3. Adding one of the vertices in R to )3 produces Q5. That is, if all of A, B, C,
and D are not empty, |R| =1 and G = Q.

Thus, we may assume R # & and D = @.

If |R| = 2, then for G'¢ to have at least 8 vertices, at least two of A, B, and C
are not empty. Thus, Q3%¢ C GP¥¢ so GP¢ = Q3°.

In the final situation, we have |R| = 1 and, because GP*° has at least 8 vertices,
all of A, B, and C are not empty. In particular, GP* has exactly 8 vertices, as
required. |

A computer search can find all the peripherally-4-connected graphs having 8
vertices. These will include all the examples that are peripherally-4-connected
extensions of internally-4-connected, 4-covered graphs having 8 vertices. This com-
pletes our analysis of 3-connected, 2-crossing-critical graphs with no subdivision of
Vs.



CHAPTER 16

Finiteness of 3-connected 2-crossing-critical graphs
with no V,,

This section is devoted to showing that, for each n > 3, there are only finitely
many 3-connected 2-crossing-critical graphs that do not contain a subdivision of
Voy,. In particular, Theorem 16.14 asserts that if G has a subdivision of V5,, but no
subdivision of Va,, 12, then |V (GQ)| = O(n?).

The finiteness has been proved previously by completely different methods in
[13]. In our particular context, this shows that there are only finitely many 3-
connected 2-crossing-critical graphs that have a subdivision of Vg but do not have a
subdivision of Vjg; these are the only ones missing from a complete determination
of the 2-crossing-critical graphs.

The first subsection shows that, if G is a 3-connected 2-crossing-critical graph
that does not contain a subdivision of Va9, then, for any Vo, =2 H C G, each
H-bridge in G has at most 88 vertices. The second subsection shows that, for a
particular subdivision H of Va,, there are only O(n?®) H-bridges having a vertex
that is not an H-node. These easily combine to give the O(n?) bound of Theorem
16.14.

16.1. V5,-bridges are small

The main result of this subsection is to show that if G € M3 and V2, 2 H C G,
then any H-bridge B is a tree with a bounded number of leaves, so that |V (B)| < 88.
In the next subsection, we show that there are only O(n?) non-trivial H-bridges.

The next lemma will have as a corollary the first main result of this subsection.

LEMMA 16.1. Let G € M3, Vo, 2H C G, n > 3, and B an H-bridge. Then
latt(B)] < 11n + 12.

Proof. Let e be an edge of B incident with x € att(B) and y € Nuc(B). Then
D.[B — €] is contained in a face F' of D.[H]. Because we know the 1-drawings of
Van, we know that each face of D.[H] is incident with at most n + 1 H-branches.
Moreover, B — e is an H-bridge in G — e and attg_.(B — e) is either attg(B) or
attq(B) \ {z}.

If B has at least 11(n + 1) 4+ 2 attachments, then some H-branch b contains
at least 12 attachments of B — e. Let aj...a12 be any 12 distinct attachments of
B — e occurring in this order in b. Let T'C B be a minimal tree that meets att(B)
at a1, as, aq, ag, ar, ag, aig, and a1z, so that these a; are the leaves of T', and let
Q =[a1,b,a12]. Set Y =T UQ.

For ¢« = 1,4,7,10, there is a unique cycle C; C Y that meets b precisely in
a;Qairo. Let T C {1,4,7,10} be the subset such that, for i € I, = ¢ C;; clearly
1] > 3.
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For each i € I, let M; be the C;-bridge in G — e with H C M; UC;. As z ¢ C;,
x € Nuc(M;). Let B; be the C;-bridge in G — e containing y or B; = y if y € C;.
Let P; be a minimal subpath of C; containing B; N C;, so that a;Qa; 12 € P;.

Cram 1. Let 4, j, k € I be distinct. If y ¢ M; U M;, then:

.BiZBj;
oPi:PjQC'iﬂCj;and
o y € M.

Proor. If v and v are vertices in C; N C}, then w and v are not in b and there
is a unique wv-path P in T. We note that P C C; N C;. Thus, C; N Cj is a path.

If there were a yC-path disjoint from Cj, then y € M;, a contradiction. There-
fore, every yC;-path meets C; and, symmetrically, every yC;-path meets C;. Thus,
every y(C; U Cj)-path has one end in C; N Cj. It follows that if y € C; U Cj, then
y € C; N Cj, so in this case B; = B; = ||y||.

In the case y ¢ C; U Cj, let B be the (C; U C;)-bridge containing y. The
preceding paragraphs show that att(B) C C; N C}, so that in fact B is also both a
C;- and a Cj-bridge. In particular, B; = B; = B.

For the last part, we assume y ¢ Mj, and note that B = B; = B; = By, and
C;NC;NCy is anon-null path P’. If P has length at least one, then P'UC;UC,;UC)
contains a subdivision of K33 and yet has all three of the vertices on one side
incident with a common face, which is impossible. Therefore, P’ consists of a single
vertex z.

If z is not y, B has only z as an attachment in G —e. It follows that either z or
{z,z} is a cut-set of G, contradicting the fact that G is 3-connected. Thus, z = y,
and so, for some t € {i,j,k}, vy is an attachment of M;; in particular, y € My, a
contradiction. (]

By Claim 1, there is an ¢ € I such that y € M;. For such an i, set C' = C; and
note that x € M; — att(M;), so that M = M; + e is a C-bridge in G. Furthermore,
attg(M) = attG_e(M — 6).

Notice that D.[C] is clean, since the crossing of D, is between disjoint H-
branches. Thus, C' has BOD in G — e. Also, any C-bridge B’ # M has C U B’
planar. As attg(M) = attg_.(M — e), C has BOD in G.

Recall that the H-bridge B has a;, a;41, and a;o as attachments. For any
vertex u of B not in b, there is an H-avoiding ua;o-path, whose edge ¢’ incident
with u is in some C-bridge B’. Since x and y are on the same side of D.[C], M is
contained on that side of D.[C] and ¢’ is on the other side. Therefore, B’ # M.

In D./, the crossing is in H and D.[C] is clean. That is, Do[C U M] is a
1-drawing with C clean. Corollary 4.7 shows cr(G) < 1, the final contradiction. W

The following corollary is the first main result of this section.

COROLLARY 16.2. Let G € M3, Vo, *H C G, n > 3, B an H-bridge. Then
latt(B)| < 45.

Proof. If n = 3, then the result is an immediate consequence of Lemma 16.1. Thus,
we may assume n > 4. If B has attachments in the interiors of non-consecutive
spokes, then G is the Petersen graph and the result clearly holds.

Otherwise, B has attachments in at most two consecutive spokes. Thus, there
is a subdivision H’ of Vg contained in H that contains all the attachments of B.
Applying Lemma 16.1 to H’', we again see that |att(B)| < 45. |
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We now turn to the other half of the argument that bounds the number of
vertices in an H-bridge, namely, that the bridge is a tree. We need a new notion.

DEFINITION 16.3. Let T™ be a graph consisting of subdivision of a K 3 together
with three pendant edges, one incident with each of the three degree 2 vertices in
the Ko 3. A tripod is any graph T obtained from T by contracting any subset of
the pendant edges; if all three pendant edges are contracted, then an edge is added
between the two copies of K7 3, but not having a vertex of contraction as an end
— this may be done in any of three essentially different ways. The attachments of
the tripod are the degree 1 and 2 vertices in T'.

We are now ready for the second half of the main result of this section.

LEMMA 16.4. Suppose G € M3, Vo, 2H C G, n > 3, G has no subdivision of
Vo(nt1), and B is an H-bridge. Then either B is a tree or B has a tripod, n = 3
and |V (G)| < 10.

Proof. By way of contradiction, suppose B has a cycle C. If att(B) N C # 0,
let e be an edge of C incident with u € att(B). If C' N att(B) = 0, then let e be
any edge of C. The choice of e shows that B — e is an H-bridge in G — e and that
attg_.(B—e) = attg(B). Since D.[H]| contains the crossing in D.[G —e], D.[B — €]
is contained in a face F' of D [H].

Let C' = OF*, so (' is a cycle in G' = (G — e)*. Since G’ is planar, C’ has
BOD in G’ and C’U B’ is planar for each C’-bridge B’ in G’. If C'U B were planar,
then G’ + e would be planar, in which case cr(G) < 1, a contradiction. Therefore,
C’" U B is not planar.

We now introduce a convenient notion.

DEFINITION 16.5. Let G be a graph. The graph G? is the graph whose vertices
are the G-nodes and whose edges are the G-branches.

Cram 1. (C"U B)! is 3-connected.

PrOOF. Let L = (C'U B)t. If [V(Nuc(B))| = 1, then L is a wheel and the
claim follows. So assume |V(Nuc(B))| > 2. We show that any two vertices of L
are joined by three internally disjoint paths. For u,w € Nuc(B), this is true in G,
so let Py, Py, P3 be such paths in G. If at least one P; is contained in B — C’, then
we can easily modify the others to use C’ rather than G — B to get three paths in
L. If all three intersect C., then BN (P U P, U Ps) is two claws Y, and Y,,. There
is a Y, Y,,-path in Nuc(B), which returns us to the previous case.

If u € Nuc(B) and w € C’, then w is an attachment of B. Let Y be a claw in
B with centre u and talons on C’. Using a C’-avoiding wY -path in B, if necessary,
we can assume w is a talon of Y. It is then easy to use C’ to extend the other two
paths in Y to w.

Finally, if u,w € C’, then both u and w are attachments of B, so there is a
(C’-avoiding path joining them. This path and the two ww-paths in C’ yield the
required three paths. O

DEFINITION 16.6. Let C be a cycle in a graph G and let P; and P; be disjoint
C-avoiding paths in G. Then P; and Py are C-skew paths if the two C-bridges in
C U P U P, overlap.

As C’" U B has no planar embedding, [25] implies B has either a tripod whose
attachments are in C’ or two C’-skew paths.
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CrLAM 2. If B has a tripod T, then n =3, G = HUT and |V (G)| < 14.

PrOOF. Let S be the attachments of T. As HUT is 2-connected and, relative
to the cut S, both H'"™ (taking H' to be any Vs containing S) and T are non-
planar. By Theorem 15.6, cr(H' UT) > 2. Thus, G = H' UT, so n = 3 and, again
by Theorem 15.6, |V(G)| < 10. O

Thus, we can assume B has no tripod. Then B has C’-skew paths, say P; and
P;. Since these do not exist in B —e, e is in one of them. If CNatt(B) = (), choose
¢’ any edge of C not in Py U P,. If C Natt(B) # ), choose €’ to be the other edge
of C' incident with the same attachment as e.

Repeat with G — ¢’. This yields C” so that B has C”-skew paths uju} and
wiwh (e’ incident with uf). Since ujue Uwiwy C B — €, they are not C”-skew. In
C’, we have the cyclic order uq, w1, us, ws, say. In C” we have ujuswiwsy. Likewise
in ¢’ we have ujujwjwh, while in C” we have ujw]ujws.

Let D and D’ be 1-drawings of H having all attachments of B on faces F, F”,
respectively, so that the cyclic orders of att(B) are different in OF and OF".

CLAIM 3. n > 4.

PROOF. Let H be a subdivision of Vg in G. We remark that if f and f’ are any
disjoint H-branches having internal vertices that are ends of an H-avoiding path P
in G, then H U P is a subdivision of V3 in G.

We consider first the case that att(B) is not contained in any 4-cycle of H.
Because we know the 1-drawings of H and att(B) is contained in the boundary OF
of a face F' of such a 1-drawing, OF is xwivguzx. If B has attachments in both
(xw1) and (vsx), then G has a subdivision of Vg, as required. Thus, we may assume
that att(B) is contained in a 4-cycle @ of H, which we may take to be [v1vov3v41].

In at least one of D and D', Q is self-crossed (otherwise the cyclic orders of
att(B) are the same) and B is drawn in the face xwvjvgv3x. However, in this case
att(B) C (x,v1] U [vs, x) and at least two attachments of B are in each. In this

case, we again have a subdivision of Vg in G, as required. O
CLAIM 4. B has no (interior) spoke attachment.

PRrROOF. From Claim 3, we know that n > 4. By way of contradiction, we
assume B has an attachment in (sg). From the listing of the faces of 1-drawings of
Van, the only possibilities for each of OF and OF’ are:

2 (1) [vo, 70, V1, S15 Unt1s Tny Uns S0, Vol;

1’) [UO,T—17U—175—1,%—1,7%—1,%7807U0};

2) (V1,70,V0, 50, Un, "ns Vn 41, Tndl, Ung2);

2’) <”U—1,T—1,Uo,So,Un,Tn—l,’Un—l,Tn—z,”Un—2>;
3) (Un—1,Tn—1,Vn;80,V0,7—1,V_1,7_2,V_2);
3") {Vnt1, Ty Un,y S0, V0, T0, V1, 1, U2);

4 <’U—17T—17’UO7 50, UnyTn, vﬂ+1>;

[N

(
(
(
s (
2 (
2 (
(
(
(

4") (Vpn—1,Tn—1,Un, 50,0, 70, V1);
5) [1}0,’111,1)2,...,1)”,80,1}0];
57) [v0, 805 Uns Unt1, Unt2y « - - s U—1, Vo)

We now consider these possibilities in pairs. In every case, the ends of the skew
paths will occur in the same cyclic order on the boundaries of the two faces, which
is impossible.
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tt
t

(B) C sp; same cyclic order, a contradiction.
tt(B)
tt(B)
tt(B)

(B)

1

2 so; same cyclic order, a contradiction.

3 S0; same cyclic order, a contradiction.

4 So; same cyclic order, a contradiction.

) so; same cyclic order, a contradiction.

,2) att(B) C (v1,70, V0, S0, Un, 'n, Un + 1]; same cyclic order, a contradiction.
,2") att(B) C [vo, S0, vn]; same cyclic order, a contradiction.

,3) att(B) C so; same cyclic order, a contradiction.

3) att(B) C <vn+1,rn7vn7so,v07ro,v1] same cyclic order, a contradiction.
4) att(B) C (v, 79, Vo, S0, Un]; same cyclic order, a contradiction.
4
5
5
3
3
4
4
5
5

1) a
2') a
3) a
att

)

C
c
Cc
Cc
att -
-

) att(B) C [v1, 70, Vo, S0, Un); same cyclic order, a contradiction.
) att(B) C [Unt1,Tn, Un, So, Uo); same cyclic order, a contradiction.
,3) att(B) C so; same cyclic order, a contradiction.
") att(B) C (Vpt1,Tn, Un, so,vo,ro,vl] same cyclic order, a contradiction.
,4) att(B) C (Upn41,Tn, Un, S0, Vg); same cyclic order, a contradiction.
") att(B) C (v1, 70, Vo, S0, ' ); same cyclic order, a contradiction.
,5) att(B) C (v1, o, Vo, So, Un); same cyclic order, a contradiction.
,5") att(B) C [vo, 80, Vn, Ty Unt1s Tnt1, Unt2); same cyclic order, a contradic-
tion.
(3,4) att(B) C (v_1,7_1, Vo, S0, Us]; same cyclic order, a contradiction.
(3,4) att(B) C (vp—1,Tn—1, Un, So, Uo]; same cyclic order, a contradiction.
: (3,5) att(B) C (vn—1,7Tn—1,Vn, So, Vo|; same cyclic order, a contradiction.
(3,5
(4,5
(4,5

(1
(2
(3
(4
(5
(1
(1
(1

: (1 B

: (1,

: (1,47) att(B) C [vy, 70, Vo, So, Un]; same cyclic order, a contradiction.
(1,
(1 B
(2
(2
(2
(2
(2
(2

) att(B) C (v_g,7—_2,v_1,7_1, Vg, S0, Upn]; same cyclic order, a contradiction.
,5) att(B) C [vo, S0, vn]; same cyclic order, a contradiction.
") att(B) C (v_1,7—1,00, S0s Un, Tns vn+1> same cyclic order, a contradiction.

As any pair gives the same cyclic order, we always get a contradiction. [
CLAIM 5. B is not a local H-bridge.

PROOF. Suppose B is local, with att(B) C Qg. From Claims 3 and 4, we may
assume n > 4 and B has no spoke attachment. Thus, att(B) C ro U r,. Moreover,
B cannot have attachments in both (r¢) and (r,) because G has no subdivision of
Va(n41)- On the other hand, B has at least two attachments in both ro and r;, or
else the cyclic order of the ends of the skew paths is always the same. So we may
assume att(B) N1y = {vp,v1}. We need two attachments in r,,. From the listing
of faces in 1-drawings of V5,,, the only possibilities for F and 9F’ occur when Qg
is not self-crossed and so the cyclic orders of the attachments of B are the same in
both cases, a contradiction. ([l

CrLAaM 6. For some i, att(B) C r; Uripni1.

PrOOF. By Claims 3, 4, and 5, n > 4, B has no spoke attachments, and B is
not local.
We consider in turn the possibilities for the face of D.[H] that contains B — e.
We know B is not local, so it can only be contained in a face whose boundary has
one of the following forms:
(1) [X, 74, Viy iy Vikns Titn—1, X];
(2) [X, 74, Vis Tim1, Vi 15 8im 1, Untie1, Tnti—15 XJ;
(3) [X,7i, vit1,Tig2, - oy Vidn—1, Tin—1, XJ;
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(4) [UZ‘, SisUn+4is Tn+iy Unti+1ls -5 Ti—1, ’Ui}; or
(5) [Xa T3y Vid1s i1 - -+ s Tndi—1, Untis Tnti, X}'

As in the proof of Claim 4, the faces of D.[H| and D,/[H] containing B — e
and B — ¢, respectively, cannot both be of one of the types (3, 4, 5): the vertices
of att(B) will occur in the same order in both cases.

If one of the drawings has B — e or B — ¢’ in a face of type (1), then we are
done: att(B) C r; Uri1n—1. The remaining case is that one of the drawings has
B —eor B—¢ drawn in a face of type (2).

All other possibilities having been eliminated, we may assume (taking i = n+1)

att(B) - [X,rl,vl,ro,vo,so,vn,rn, X} .

Because B is not local, att(B) N {r1) # 0. Because att(B) occurs in different orders
in OF and OF’, att(B) Nr, # 0. By way of contradiction, we suppose B also has
an attachment in [vg,ro,v1). The only other face which could allow these three
attachments is [X,ro,v1,71, ..., Vi—1,7i—1,Un, I'n, X]. Notice vy is not in this second
boundary, so one attachment is in (ro). Because Vy(,11) € G, no attachment is in
(rp). Thus att(B) Nr, = {v,}. But then, once again, the attachments of B occur
in the same cyclic orders in OF and dF’, a contradiction. g

As we have seen above, the alternative to “B is neither a tree nor contains a
tripod” is that B has the C’-skew paths P; and P, as well as the C”'-skew paths
P{ and Pj. Claim 6 shows the four ends of P; and P, are in ro U rpyq. If three
of them are in rg, say, then they occur in the same cyclic order in OF and 9F’, a
contradiction. So two are in rg and two in 7,41. If P; has both ends in rq, say,
then the ends of P; and P can never interlace, a contradiction as they interlace in
OF'. So each has one end in each of rg and r,1. Likewise for P|, Pj.

Adding at most 3 paths in B — att(B) to P, U P, U P{ U P, we obtain B’ C B
containing P; U Py U P{ U Pj so that B’ is an H-bridge in H U B’.

Recall that n > 4 by Claim 3. All the attachments of B’ are in H — (s3).
Suppose D" is a 1-drawing of (H U B’) — (s3). Then D”[B’] is in a face F” of
D"[H — (s3)]. Since rg and 7,41 both have at least two attachments of B’, they
are both incident with F”. Thus one of the pairs Py, P, and Pj, Py is a OF"-
skew pair. Therefore, cr((H U B’) — (s3)) > 2, contradicting the fact that G is
2-crossing-critical. |

Combining Corollary 16.2 and Lemma 16.4, we immediately have the main
result of this section.

THEOREM 16.7. Let G € M3, Vo, 2H C G, n > 3, and suppose G has no
subdivision of Va(ny1y. If B is an H-bridge, then |V (B)| < 88.

This completes the first main step of our effort to show that 3-connected, 2-
crossing-critical graphs with no subdivision of V5, have bounded size.

16.2. The number of bridges is bounded

This subsection, the final leg of this work, is devoted to showing that there is
a particular subdivision H of Vs, in G so that there are at most O(n3) H-bridges
in G that have a vertex that is not an H-node. Theorem 16.7 shows that, for any
Vo 2 H C G, all H-bridges have at most 88 vertices (when there is no subdivision
of Va(nt1)). The combination easily implies G has at most O(n®) vertices.
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DEFINITION 16.8. Let G be a graph and let n be an integer, n > 3. A subdivi-
sion H of V5, in G is smooth if, whenever B is an H-bridge with all its attachments
in the same H-branch, B is just an edge that is in a digon with an edge of H.

We begin by showing that every G € M3 with a subdivision V5, has a smooth
subdivision H of V5,,. For such an H, every vertex of G either is an H-node or is
in an H-bridge that does not have all its attachments in the same H-branch. So it
will be enough to show that the number of these H-bridges is O(n?).

This analysis is completed in three parts. We start with the result that there
are not many H-bridges having an attachment in a particular vertex of H and an
attachment in the interior of some H-branch. This is useful for H-bridges having
both node and branch attachments, but is also used in the second part, which is
to bound the number of H-bridges having attachments in the interiors of the same
two H-branches. The final part puts these together with those H-bridges having
attachments in three or more H-nodes.

We start by showing that every G € M3 with a subdivision of V3, has a smooth
subdivision of V.

LEMMA 16.9. Let G € M3 and suppose G contains a subdivision of Vay,, with
n > 3. Then G has a smooth subdivision of Va,,.

Proof. Choose H to be a subdivision of V5,, in G that minimizes the number of
edges of G that are in H. We claim H is smooth.

To this end, let B be an H-bridge with all attachments in the same H-branch b
and let P be a minimal subpath of b containing att(B). Set K = BU P and notice
that K is both H-close and 2-connected. By Lemma 5.13, K is a cycle, so B is just
a path and, since G is 3-connected, just an edge. It remains to prove that P is just
an edge as well.

Let H = (H U B) — (P). Evidently H' is a subdivision of V3, in G and
|E(H")| = |E(H)|—|E(P)|+1. Since |E(H)| < |E(H')| by the choice of H, we see
that |[E(P)| <1, and, therefore, P is just an edge, as required. |

We now turn our attention to the H-bridges of a smooth subdivision H of V5,,.
There are three main steps.

Step 1: Bridges attaching to a particular vertexr and branch.

The first step in bounding the number of H-bridges is to bound the number of
them that can have an attachment at a particular vertex of H and in the interior
of a particular H-branch. This is the content of this step.

LEMMA 16.10. Let G € M3, Vo, *H C G, n > 3 and suppose H is smooth.
For a vertex (not necesssarily a node) uw of H and an H-branch b, there are at most
41 H-bridges with an attachment at u and an attachment in (b) — u.

Proof. Suppose there are 42 such H-bridges. Let By be one of them, let e € E(By)
and let D be a 1-drawing of G —e. If u ¢ (b), then at most 4 faces of D[H] are
incident with (b), and therefore at least 11 of these H-bridges (other than By)
are in the same face F of D[H|. If u € (b), then precisely two faces of D[H] are
incident with u, so at least 21 of these bridges are in the same face F' of D[H] and
of these at least 11 have an attachment in the same component of D[b—u]N(OF)*.
In both cases, let B be the set of 11 bridges, contained in F', having u as an
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attachment and an attachment in the same component ' of D[b— u] N (OF)*. As
D[(OF)* U (UpepB)] is planar with (0F)* bounding a face, no two (OF)*-bridges
in B overlap.

Let P =V and Q = (OF)* — (P). Lemma 4.8 applies to (0F)*, P, Q, B. As
there are no digons disjoint from H, there is a unique (up to inversion) ordering
Bi,...,B11 of Bsothat P=Pp, ... Pp,, and Q = QpB, -..QB,,-

Because u € @, NEQB,N---NEp,, and the () p, are internally disjoint subpaths
of Q, all of Qp,,...,Q@pB,, are just u. Fori=1,...,11, let a; and a} be the ends of
Pi,sothat P= (... ag9,...,a5, ...,Q43,...,05, ...,G10,...,0)0,--.)-

CrLam 1. Fori € {2,...,9}, a; # aj,.

PROOF. Otherwise, a; = aj = a;41 = aj, implying that B; and B, consti-
tute a digon disjoint from H, which is impossible. ([l

For i,j € {2,3,...,10} with i < j, set K;; = (U]_,Bx) Ua;Pa).
Cram 2. For 4,5 € {2,...,10} with ¢ < j, Kj; is 2-connected.

Proor. Let R; be an H-avoiding ua;-path in B;, and R; an H-avoiding ua;—
path in B;. Then Cj; := R;UR; U aiPag» C K;; is a cycle containing u and
aiPaz».

For x € By, i < k < j, x ¢ H, for any H-node w # u, G has 3 internally
disjoint zw-paths; at least two of these leave By in ayPaj,, and so no cut vertex of
K;; separates = from Cj;. [l

Since ' is not crossed in D, D[K; ;1+2] is clean and is contained in F'U JF.
There is a unique face F; of D[K; ;12| so that F; € F'; since K, ;12 is 2-connected,
F; is bounded by a cycle C;. As D[K; ;42] C FUOF, OF C F; UOF;. As D[u| €
oF N D[Ki7i+2], D['LL] € OF;. Likewise D[aiPa;_m] C OF;.

Thus, v € C; and a;Paj,, C C;. Therefore, C; N H is u and a;Paj, 4, from
which we deduce that there is a C;-bridge M; so that H C C; U M;. Observe that
B;;1 is a C;-bridge different from M;.

For i = 2,5,8, let e; be an edge of B;;; incident with u, and let D; be a
1-drawing of G — e;.

CrLamM 3. For i € {2,5,8}, C; has BOD in G and D;[C;] is not clean.

PROOF. At most one of Dy[Cy], i € {2,5,8} is crossed, so for at least one
i € {5,8}, D.[C;] is clean. It follows that C; has BOD in G — e.

By Claim 1, a3 # a;, whence By C M;, and By — e C M; — e. Furthermore,
u € H, sou € att(M; —e). Thus attg_.(M; —e) = attg(M;) and M; — e is a
C;-bridge in G — e. We conclude that the overlap diagrams for C; in G — e and G
are isomorphic and, therefore, C; has BOD in G.

We now show that all three C;, j € {2,5,8}, have BOD in G. If D;[C}] is clean,
then D;[C;UM,] is a 1-drawing of C;UM;, implying via Corollary 4.7 that cr(G) < 1,
a contradiction. So D;[C}] is not clean, and, therefore, for j € {2,5,8}\ {4}, D;[C}]
is clean. Thus, C; has BOD in G — e;, and, following the argument above for Cj,
we deduce that C; has BOD in G. O

CramM 4. For i € {2,5,8}, one face of D;[C}] contains all H-nodes, other than
(possibly) w.



16.2. THE NUMBER OF BRIDGES IS BOUNDED 163

PROOF. Let €] be the edge of H so that D;[e;] crosses Djla;ba; ] and let b;
be the H-branch containing €. If n = 3, let R be a hexagon in H containing b and
bi. For n >4, both b and b} are in the rim R of H.

Since b and b} are disjoint, for n > 3, R — ((b) U (b')) has two components, each
with at least two nodes of H. Either of these with < n nodes has all its nodes
adjacent by spokes to the other component. Obviously, there is at least one such.

Observe that if A is any path in R — ((b) U (b})) such that D;[A] has a vertex
in each face of D;[Cy], then u € V(A) and the two paths P, P’ in A having u as an
end are such that D;[P] and D;[P’] are in different faces of D;[C}].

Let K be a component of R— ({(b)U (b)) not containing u and let L be the other.
Then D;[K] is in the closure of a face F; of D;[C;]. We claim that D;[L] C F;U{u}.

Any H-node w in L that is joined by a spoke to an H-node w’ in K has
D;[w] C F; U D;[u], since otherwise D;[ww’] crosses D;[C;].

If there is an H-node w in L that is not adjacent by a spoke to any vertex in
K, then w is adjacent by a spoke to another H-node w’ in L and, moreover, w and
w’ are the first and last nodes of L. As D;[ww'] is disjoint from D;[C;], we deduce
that there is a face F' of D;[C;] so that D;[w] and D;[w'] are both in F' U D;[u].
Therefore, D;[L] is contained in that face. As at least one H-node in L is adjacent
by a spoke to an H-node in K, we conclude that D;[L] C F; U D;[u]. O

Let F; be the face of D;[C;] containing all the H-nodes and let F} be the other
face of D;[Cy].

CLAM 5. For i € {2,5,8}, the crossing in D; is not in (a;41,b, al, ).

PROOF. Suppose by way of contradiction that e} is an edge of G — e; so that
D;le}] crosses (ai1,b,al, ). Clearly, a;41 # aj ;. Since H — (b) is 2-connected,
there is a cycle ¢’ C H containing ej. Let P be an H-avoiding a;;1aj, ,-path in
Biy1 and let C be the cycle PU[a; 41, b, aj, ;]. Then C and C” are graph-theoretically
disjoint and D;[C]N D;[C’] contains the crossing of D;. But then D;[C] and D;[C’]

must cross a second time, a contradiction. ([
CLAIM 6. The only C;-bridge that overlaps B;y1 is M;.

ProOOF. Let B be a C;-bridge different from M; overlapping B;y;. Then
att(B) C [asbaj, ] U {u}. As H is smooth, u € att(B). We claim both Bji;
and B overlap M;.

By Claim 1, a; # aj,, so By either has an attachment in (a;,a},,) or it
has both a; and aj , as attachments. In either case, B;;1 overlaps M; (which has
attachments at u, a;, aj ).

Likewise B either has two attachments in [a;, a},,] or at least one attachment
in <ai+1,ag+1> C <ai,ag+2>, so B overlaps M;. But now B;,1, B;, and M; make a
triangle in OD(C;), contradicting Claim 3. O

Let &’ be the H-branch that crosses C; in D; and let = be the H-node so that
the crossing is in [z,V, u].

CLAIM 7. Let L be the graph [D;[G—e;]N(cl(F}))]*UB;+1. Then the C;-bridge
containing [x, ', u] overlaps B;y; in L.

ProOF. If L embeds in the plane with C; bounding a face, then this embedding
combines with D; restricted to the closure of F' to yield a 1-drawing of G, which



164 16. FINITENESS OF 3-CONNECTED 2-CROSSING-CRITICAL GRAPHS WITH NO Vs,

is impossible. As each individual C;-bridge B in L has C; U B planar, there are
overlapping C;-bridges in L.

By definition, L is planar with all C;-bridges other than B;;; on the same side
of C;. Therefore B;y; overlaps some other C;-bridge in L. By Claim 6, this is not
any C;-bridge other than D;[M;]* N D;[L], that is, the one containing [x,b, u]. O

By Claim 4, [a;,b, aj,,] — x has a component A containing att(B;y1) — u. Let
z be the one of a; and a;y2 that is an end of A and let () be the minimal subpath
of A containing all of z,a;41,a;,,. By Claim 7, M; has an attachment w; € [2Q)
and an H-avoiding path @Q; from w; to a vertex x; € (x,b',u). Notice that, if
j e {2, 5, 8} \ {Z}, then Q; N Oj = 0.

There are at most two H-branches (or subpaths thereof) incident with u that
can cross b. Thus for some 4,j € {2,5,8}, b = b}. Choose the labelling so that
x; is no further in b} from w than z; is. Since xb;u contains x;, D;[z;] C Fj’ but
Dj|w;] C F}. Since Q; N Cj = 0, D;[Q;] crosses Cj, the final contradiction. [

The other steps in the argument are to show that a smooth subdivision H of
Vo, in G has few bridges with attachments in the interiors of distinct H-branches.
There are two parts to this: either the branches do or do not have a node in
common. We first deal with the latter case.

Step 2: H-bridges joining interiors of disjoint H-branches.

LEMMA 16.11. Let G € M3, Vo, 2H C G, n > 3, H smooth and suppose G
has no subdivision of Va(ni1y. If bi,ba are disjoint H-branches, then there are at
most 164n + 9 H-bridges having attachments in both (by) and (bs).

Proof. Suppose there is a set B of 164n + 10 H-bridges having attachments in
both (by) and (be). Let By € B and let e € By. In D,, at most 4 faces are incident
with (b1), so there is a set B’ consisting of 41n+ 3 elements of B\ { By} in the same
face of D.[H]. By Lemma 4.8, there is a unique ordering (B, ..., B4int3) of the
elements of B’ so they appear in this order in both (b;) and (bs). It follows that
Bs, ..., Byinto have all attachments in (b;) U (b2). By Lemmas 4.8 and 16.10, B;
and B;i4; are totally disjoint. So there are n + 1 totally disjoint (by) (bs)-paths
with their ends having the same relative orders on both.

We aim to use these disjoint paths to find a subdivision of Vy(,41) in G. We
need the following new notion.

DEFINITION 16.12. Let e = ww and f = xy be edges in a graph G. Two
cycles C' and C' in G are ef-twisting if C = (u,e,w,...,z, f,y,...) and C' =
(u,e,w,...,y, fyz,...), l.e., C and C’ traverse the edges e and f in opposite ways.

We note that Vg has edge-twisting cycles: if e = uw and f = zy are disjoint
edges in Vg, with u,z not adjacent, then the 4-cycle (u,w,z,y,u) and the 6-cycle
(u,w, z,y, 2,2 ,u) are ef-twisting.

Next suppose n > 4. There are three possibilities for b; and bs.

: Case 1: Both by and by are in R. We may assume without loss of generality
(recall that by and by are not adjacent) that by = rg, by =1, 2 < i < n.
Set H' = RUsg U sy Usg, so H = Vi, Then b; and by are in disjoint
H'-branches and so H', and therefore H, contains by bo-twisting cycles.
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: Case 2: One is in R, the other is a spoke. We may assume without loss of
generality that by = 7o, by = s;,7 ¢ {0,1}. Set H' = RUsgUs; Us;. Then
b1 and by are in disjoint H’-branches, so H', and therefore H, contains
b1 bo-twisting cycles.

: Case 3: Both by and by are spokes. We may assume without any loss of generality
that by = sg,b2 = s;. Then there exists j € {0,...,n — 1} \ {0,¢}. Set
H' = RUsyUs;Us;. Then by and by are in disjoint H’-branches and so
H', and therefore H, contains by by-twisting cycles.

Choose the cycle C in the twisting pair in H for b; and b so that C traverses
b1 and by in order so that the ends wu;, w; of the n + 1 disjoint paths occur in C

aS UL, Uy -+« y Upgly -+, Wiy« ..,Wpt1. Then C and these paths are a subdivision of
Vao(ns1) in G, contradicting the assumption that G has no subdivision of Vo, 41).
|

Next is the third and final consideration.

Step 3: H-bridges joining interiors of H-branches having a common node.

LEMMA 16.13. Let G € M3, Vo, 2H C G, n > 3, and let by, by be adjacent
H-branches. Then at most 2 H-bridges have attachments in both (by) and {(bs).

Proof. By way of contradiction, suppose there is a set {Bj, Bs, B3} of 3 such
H-bridges. For each i € {1,2,3}, let e; € B;. There is precisely one face F;, of a
1-drawing D; of G — e;, that is incident with both (b1) and (b2). Thus, for each Bj,
J # i, D;[B;] C F;. Clearly for {j,k} = {1,2,3} \ {i}, B; and Bj, do not overlap
on F;. In particular, their attachments in b; and bs are in the same order as we
traverse them from their common end u. Thus we may assume B, B, B3 appear
in this order from u on both b; and bs.

Notice that att(Bs) # att(Bz). Therefore, there is a cycle C' C By U by U by
consisting of a (by) (by)-path in By and a subpath of b; Uby containing u, such that
C does not contain some attachment w of By. Reselect es € B3 to be incident with
w. Let Mg be the C-bridge so that H C C'U M.

Then w € Nuc(Mc¢), so Bs C M. Furthermore, if e3 is incident with an
attachment x of M, then x is contained in R. In particular, it is incident with
another edge of M. Thus, Mc — eg is a C-bridge in G — ez having the same
attachments as M¢ has in G. Because C' is H-close, D1[C] is clean; furthermore,
D1[C U M¢] is a 1-drawing of C'U M¢. Since D3[C] is also clean, C' has BOD in
G — ez and hence in G. Corollary 4.7 implies the contradiction that cr(G) < 1. B

We end this section with the asserted finiteness of 3-connected 2-crossing-cri-
tical graphs with no subdivision of V5, 49.

THEOREM 16.14. Suppose G € M3 and there is an n > 3 so that G has a
subdivision of Vay,, but no subdivision of Vao(n41). Then |V(G)| = O(n?).

Proof. By Lemma 16.9, G has a smooth subdivision H of Va,,. We may assume
no H-bridge contains a tripod, as otherwise |V(G)| < 14 by Lemma 16.4.

We first claim that a vertex w of H that is not an H-node is an attachment
of some H-bridge B not having all its attachments in the same H-branch. Since
u has degree 2 in H and degree greater than 2 in G, u is an attachment of some
H-bridge. Because H is smooth, an H-bridge that has all its attachments in the
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same H-branch is an edge in a digon. If all the H-bridges attaching at u are such
edges, then u has only two neighbours and G is not 3-connected, a contradiction.

Thus, every vertex of G is either an H-node or is in some H-bridge that does
not have all its attachments in the same H-branch. We bound the number of these
H-bridges as follows.

We claim that, for any three H-nodes u, v, w, at most two H-bridges have all
three of u,v,w as attachments. To see this, suppose three nontrivial H-bridges
B;,i = 1,2,3, all have all of u,v,w as attachments. Each B; contains a claw Y;
having w,v,w as talons. Then Y; UY> U Y3 U H contains a subdivision of K3 4,
in which case 2-criticality implies G is K3 4. Thus, at most two H-bridges have
attachments in any three nodes. So there are at most 2(2;) nontrivial H-bridges
with only node attachments.

Every other H-bridge of concern has an attachment in the interior of some
H-branch and at some vertex of H not in that H-branch. Lemma 16.10 implies
that there are at most (2n)(3n)41 H-bridges with an attachment in an H-node and
in an open H-branch.

Lemma 16.11 implies there are at most ((°)') —6n)(164n+9) H-bridges having
attachments in the interiors of disjoint H-branches.

Lemma 16.13 implies there are at most 2 H-bridges with attachments on two
given adjacent H-branches and so there are at most 6n(2) H-bridges with attach-
ments on two adjacent H-branches.

Every H-bridge has at most 88 vertices, and every vertex of G is either an
H-node or in one of these enumerated H-bridges. Therefore,

V(@) < 88 {2@‘) £ 2n-3n-41+6n(2) + K?’;) —64 [164n+9” .



CHAPTER 17

Summary

This short section provides a single theorem and some remarks summarizing
the current state of knowledge about 2-crossing-critical graphs.

THEOREM 17.1 (Classification of 2-crossing-critical graphs). Let G be a 2-
crossing-critical graph.

(1) Then G has minimum degree at least two and is a subdiwvision of a 2-cros-
sing-critical graph with minimum degree at least three.

Thus, we henceforth assume G has minimum degree at least three.

(2) If G is S-connected and contains a subdivision of Vig, then G € T(S)
(Definition 2.12). That is, G is a twisted circular sequence of tiles, each
tile being one of the 42 elements of S (Definition 2.10).

(3) If G is 3-connected and does not have a subdivision of Vig, then G has at
most three million vertices (so there are only finitely many such examples).
Each of these examples either

e has a subdivision of Vg or

o is either one of the four graphs described in Theorem 15.6 or obtained
from a 2-crossing-critical peripherally-4-connected graph with at most
ten vertices by replacing each vertex v having precisely three neighbors
with one of at most twenty patches, each patch having at most sic
vertices (so G has at most sizty vertices).

(4) If G is not 3-connected, then either

o G is one of 13 examples that are not 2-connected, or

o (G is 2-connected, has two nonplanar cleavage units, and is one of 36
graphs, or

e (G is 2-connected, has one nonplanar cleavage unit, and is obtained
from a 8-connected 2-crossing-critical graph by replacing digons with
digonal paths.

We conclude with some remarks on what remains to be done to find all 2-
crossing-critical graphs.

REMARK 17.2. In Section 15.7, we provided a method for finding all 3-connected,
2-crossing-critical graphs not containing a subdivision of Vg. It would be desirable
for this program to be completed.

REMARK 17.3. The remaining unclassified 3-connected, 2-crossing-critical graphs
have a subdivision of Vg but not of Vjg. The works of Urrutia [36] and Austin [3]
have found many of these, but more work is needed to find a complete set. It
may be helpful to note that we have found all such examples that do not have a
representativity 2 embedding in the projective plane. The known instances are all

167
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quite small, so it is reasonable to expect that each of these has at most 60 vertices
or so.
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(T, U)-configuration, 137

<uPv>, 17

<uPv], 17

AB-path, 14

Ay, 84

Ay, 84

BOD, 14

C-exterior, 24

C-interior, 24

C-skew paths, 158

Ce, 112

GH 137

Gt, 158

GP4e, 137

G, 151

Gy, 130

H-avoiding, 14

H-bridge, 14

H-close, 17

H-face, 19

H-friendly, 31

H-green, 30

H-hyperquad, 17

H-node, 11

H-quad, 17

H-rim, 12

H-yellow, 74

K-prebox, 17

Kb 79

KL"?", 133

K134

K, 130
compatible, 137
compatible substitution, 137

K, 130

K34, 127

Krep(v)v 141

L - QAP B, 17

L~H, 11

Lt 128

Ly, 142

Mp,, 84

NBOD, 14

Index

OD(C), 14
P/, 112
PQ, 17
Py, 84
Py, 84
Qs, 154

¢, 154
Q3, 154
Q3%¢, 154

Q;-local H-bridge, 61

R, 12
R-separated, 76
Vop, 1, 11
embeddings, 12
[uPv>, 17
[uPv], 17
A, 84
Ay, 84
Ay, 84
Py, 84
Py, 84
Ue, 84
We, 84
Te, 84
peak, 87
sharp, 87
Loc(H), 65
Nuc(B), 14
II-pretidy, 63
II-tidy, 64
a, 12
B8, 12
P;, 79
il
P;, 79
il
S, 7
cl(@Q), 74
H#* 19
v, 12
W], 14
[uPvQu], 17
5, 79
M3, 12
Ny, 137
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N, 51

D, 12

m, 12

R, 129

u(e), 62

®,5

O, 79

ter, 5

T(S),9

-

P;, 79

.

P;, 79

{z,y, z}-claw, 17

a, 12

att(B), 14

b, 12

e-triangle, 146

ef-twisting, 165

k-bond, 121

k-drawing, 5

u-consecutive, 99

Ue, 84

w-backslope, 115

w-chord, 115

w-chord+w-slope, 115

w-consecutive, 99

w-slope, 115

We, 84

Te, 84

(G, H,11, 7)), 50

internally-4-connected, 146

peripherally-4-connected, 127
extension, 151

1-drawing, 5

2-jump, 69

2-separation, 121

2.5-jump, 69

3-equivalent bridges, 14

3-jump, 69

3-reductions, 130
planar, 133

3-rim path, 74

4-covered graph, 150

arm (of a hug), 146
attachment, 14
attachments

of a tripod, 158
avoiding, 14
axle, 150

backslope, 115
bearhug, 147
bicycle wheel, 150
axle, 150
rim, 150
spokes, 150
bipartite overlap diagram, 14
BOD, 14

INDEX

bond, 121
box, 20
bridge, 14

attachment, 14
bipartite overlap diagram, 14
equivalent, 14
global, 61

local, 61

Mobius, 17
nucleus, 14
overlap, 14

overlap diagram, 14
planar C-bridge, 15
residual arc, 14
skew, 14

skew paths, 158

centre, 17

chord, 115
chord+slope, 115
chordless, 57
claw, 17

centre, 17
talon, 17

clean, 15
cleavage unit, 121
close, 17

closure, 74
compatible, 137

substitution, 137

complement, 79
configuration, 137
consecutive, 99
crossbar, 115
crossing-critical, 1
cut-edge, 131

deletable (hug), 147

simultaneously deletable, 147

digon, 120
digonal path, 120, 125
doglike, 138

nose, 138

equivalent, 14
exceptional, 30
exposed, 23
exterior, 24

face, 19

friendly, 31

friendly, standard quadruple, 50
fsq, 50

global H-bridge, 61
green, 30

head (of a hug), 146
hinge, 121
hinge-separation, 121



hug, 146

arm, 146

bearhug, 147

deletable, 147

head, 146

simultaneously deletable, 147
hyperquad, 17

inside, 52
interior, 24
isthmus, 131

jump, 69
local H-bridge, 61

Mobius bridge, 17
Mobius ladder, 11
H-rim, 12
H-spoke, 11
rim, 11
rim branch, 11
spoke, 11

NBOD, 14

node, 1, 11

non-planar C-bridge, 15
non-trivial J; ;C-path, 79
nose, 138

nucleus, 14

open H-claw, 17

outside, 52

overlap, 14

overlap diagram, 14
bipartite, 14

path, 14

AB-path, 14
peak, 87
planar C-bridge, 15
planar 3-reductions, 133
prebox, 17
pretidy, 63

quad, 17

red, 30

reduces (by 3-reductions), 130
reducible (3-cut), 129
representativity, 10

residual arc, 14

rim, 9, 11, 12

rim (of a bicycle wheel), 150
rim branch, 11

rim path, 74

scope, 79
separated, 76
separation, 121
sharp, 87

INDEX

simultaneously deletable, 147
skew bridges, 14
skew paths, 158
slope, 115
smooth, 162
span, 69
spanned by, 69
spine, 79
spoke, 11
exposed, 23
spokes (of a bicycle wheel), 150
standard labelling, 23
substitution, 137

talon, 17
tidy, 64
tile, 5
k-degenerate, 6
compatible, 5
crossing number, 5
cyclization, 6
join, 5
tile drawing, 5
triangle (e-), 146
tripod, 158
attachments, 158
trivial J; ;C-path, 79
twisting, 165

virtual edge, 121

yellow, 74
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