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Abstract

It is very well-known that there are precisely two minimal non-planar graphs:
K5 and K3,3 (degree 2 vertices being irrelevant in this context). In the language
of crossing numbers, these are the only 1-crossing-critical graphs: they each have
crossing number at least one, and every proper subgraph has crossing number less
than one. In 1987, Kochol exhibited an infinite family of 3-connected, simple 2-
crossing-critical graphs. In this work, we: (i) determine all the 3-connected 2-
crossing-critical graphs that contain a subdivision of the Möbius Ladder V10; (ii)
show how to obtain all the not 3-connected 2-crossing-critical graphs from the 3-
connected ones; (iii) show that there are only finitely many 3-connected 2-crossing-
critical graphs not containing a subdivision of V10; and (iv) determine all the 3-
connected 2-crossing-critical graphs that do not contain a subdivision of V8.

2010 Mathematics Subject Classification. Primary 05C10.

Key words and phrases. crossing number, crossing-critical graphs.
Bokal acknowledges the support of NSERC and U. Waterloo for 2006-2007, Slovenian Re-

search Agency basic research projects L7-5459, J6-3600, J1-2043, L1-9338, J1-6150, research pro-

gramme P1-0297, and an international research grant GReGAS.
Richter acknowledges the support of NSERC.

Salazar acknowledges the support of CONACYT Grant 106432.

iv

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
19

3,
 D

ec
em

be
r 

13
, 2

01
3



List of Figures

2.1 The two frames. 7

2.2 The thirteen pictures. 7

2.3 Each picture produces either two or four tiles. 8

2.4 The different kinds of edges in the pictures. 8

3.1 The 3-connected, 2-crossing-critical graphs that do not embed in RP 2. 10

3.2 The 2-crossing-critical 3-representative embeddings in RP 2. 11

3.3 Standard labellings of the representativity 2 embeddings of V10. 13

5.1 The two possibilities for Di when j = i+ 2. 27

5.2 The two possibilities for D2. 28

5.3 The two possibilities for D3. 29

6.1 The case e ∈ ri+4 ri+5 for Q̄i being a (Q̄i ∪MQ̄i)-prebox. Only two of the
three spokes are shown. 35

7.1 The subgraph K of G in RP 2. 43

7.2 The 1-drawing of K. 45

7.3 The 1-drawings D2[(K − 〈s2〉) ∪ P0] and D3[(K − 〈s3〉) ∪ P0]. 45

7.4 The 1-drawings D2[(K − 〈s2〉) ∪ P0] and D3[(K − 〈s3〉) ∪ P0]. 47

8.1 The two possibilities for D2. 52

8.2 The two possibilities for D3. 52

11.1 The locations of e, f , we, wf , He, N , and Kf . 78

11.2 The spine and its constituent paths. 80

12.1 One of several examples of a ∆. 88

13.1 D[H ′] 108

13.2 Definition ??. 115

14.1 The 2-crossing-critical graphs that are not 2-connected. 121

14.2 2-connected, not 3-connected, 2-crossing-critical graphs, 2 non-planar
cleavage units 123

v

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
19

3,
 D

ec
em

be
r 

13
, 2

01
3



vi LIST OF FIGURES

14.3 2-connected, not 3-connected, 2-crossing-critical graphs, 3 cleavage units,
2 of which are non-planar. 123

15.1 The possible (T,U)-configurations. 146

15.2 The thick edge is a bear hug. The dotted edges tw and vz might be
subdivided, and the dashed edge uw need not be present. If uw is not
present, then {ux, uy} is a simultaneously deletable pair of bear hugs. 147

15.3 When s = b, Gi−1 is a subgraph of the illustrated planar graph. 149

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
19

3,
 D

ec
em

be
r 

13
, 2

01
3



CHAPTER 1

Introduction

For a positive integer k, a graph G is k-crossing-critical if the crossing number
cr(G) is at least k, but every proper subgraph H of G has cr(H) < k. In general,
it is not true that a k-crossing-critical graph has crossing number exactly k. For
example, any edge-transitive non-planar graph G satisfies cr(G − e) < cr(G), for
any edge e of G, so every such graph is k-crossing-critical for any k satisfying
cr(G − e) < k ≤ cr(G). If G is the complete graph Kn, then cr(Kn) − cr(Kn − e)
is of order n2, so Kn is k-crossing-critical for many different values of k.

Insertion and suppression of vertices of degree 2 do not affect the crossing
number of a graph, and a k-crossing-critical graph has no vertices of degree 1 and
no component that is a cycle. Thus, if G is a k-crossing-critical graph, the graph
G′ whose vertex set consists of the nodes of G (i.e., the vertices of degree different
from 2) and whose edges are the branches of G (i.e., the maximal paths all of
whose internal vertices have degree 2 in G) is also k-crossing-critical. Our interest
is, therefore, in k-crossing-critical graphs with minimum degree at least 3.

By Kuratowski’s Theorem, the only 1-crossing-critical graphs are K3,3 and K5.
The classification of 2-crossing-critical graphs is currently not known. The earliest
published remarks on this classification of which we are aware is by Bloom, Kennedy,
and Quintas [7], where they exhibit 21 such graphs. Kochol [20] gives an infinite
family of 3-connected, simple 2-crossing-critical graphs, answering a question of
Širáň [33] who gave, for each n ≥ 3, an infinite family of 3-connected n-crossing-
critical graphs. Richter [29] shows there are just eight cubic 2-crossing-critical
graphs.

About 15 years ago, Oporowski gave several conference talks about showing
that every large peripherally-4-connected, 2-crossing-critical graph has a very par-
ticular structure which was later denoted as ‘being composed of tiles’. The method
suggested was to show that if a peripherally-4-connected, 2-crossing-critical graph
has a subdivision of a particular V2k (that is, k is fixed), then it has the desired
structure and that only finitely many peripherally-4-connected, 2-crossing-critical
graphs do not have a subdivision of V2k. (The graph V2n is obtained from a 2n-cycle
by adding the n diagonals. Note that V4 is K4 and V6 is K3,3.)

Approximately 10 years ago, it was proved by Ding, Oporowski, Thomas, and
Vertigan [13] that, for any k, a large (as a function of k) 3-connected, 2-crossing-
critical graph necessarily has a subdivision of V2k. It remains to show that having
the V2k-subdivision implies having the desired global structure. Their proof involves
first showing a statement about non-planar graphs that is of significant independent
interest: for every k, any large (as a function of k) “almost 4-connected” non-planar
graph contains a subdivision of one of four non-planar graphs whose sizes grow with
k. One of the four graphs is V2k. This theorem is then used for the crossing-critical
application mentioned above.
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2 1. INTRODUCTION

Tiles have come to be a very fruitful tool in the study of crossing-critical graphs.
Their fundamentals were laid out by Pinontoan and Richter [27], and later they
turned out to be a key in Bokal’s solution of Salazar’s question regarding average
degrees in crossing-critical graphs [8, 28, 31]. These results all rely on the ease
of establishing the crossing number of a sufficiently large tiled graph, and they
generated considerable interest in the reverse question: what is the true structure
of crossing-critical graphs? How far from a tiled graph can a large crossing-critical
graph be? Hliněný’s result about bounded path-width of k-crossing-critical graphs
[18] establishes a rough structure, but is it possible that, for small values of k, tiles
would describe the structure completely? It turns out that, for k = 2, the answer is
positive. A more detailed discussion of these and other matters relating to crossing
numbers can be found in the survey by Richter and Salazar [30].

Our goal in this work, not quite achieved, is to classify all 2-crossing-critical
graphs. The bulk of our effort is devoted to showing that if G is a 3-connected
2-crossing-critical graph that contains a subdivision of V10, then G is one of a
completely described infinite family of 3-connected 2-crossing-critical graphs. These
graphs are all composed from 42 tiles. This takes up Chapters 3 – 13. This combines
with [13] to prove that a “large” 3-connected 2-crossing-critical graph is a member
of this infinite family.

The remainder of the classification would involve determining all 2-crossing-
critical graphs that either are not 3-connected or are 3-connected and do not have
a subdivision of V10. In Chapter 14, we deal with the 2-crossing-critical graphs
that are not 3-connected: they are either one of a small number of known particular
examples, or they are 2-connected and easily obtained from 3-connected examples.

There remains the problem of determining the 3-connected 2-crossing-critical
graphs that do not contain a subdivision of V10. In the first five sections of Chapter
15, we explain how to completely determine all the 3-connected 2-crossing-critical
graphs from peripherally-4-connected graphs that either have crossing number 1 or
are themselves 2-crossing-critical. In the sixth and final subsection, we determine
which peripherally-4-connected graphs do not contain a subdivision of V8 and either
have crossing number 1 or are themselves 2-crossing-critical. Combining the two
parts yields a definite (and practical) procedure for finding all the 3-connected 2-
crossing-critical graphs that do not contain a subdivision of V8. This leaves open
the problem of classifying those that contain a subdivision of V8 but do not have a
subdivision of V10. In Sections 16.1 and 16.2, we show that there are only finitely
many. (Although this follows from [11], the approach is different and it keeps our
work self-contained.)

There is hope for a complete description. In her master’s essay, Urrutia-
Schroeder [36] begins the determination of precisely these graphs and finds 326
of them. Oporowski (personal communication) had previously determined 531 3-
connected 2-crossing-critical graphs, of which 201 contain a subdivision of V8 but
not of V10. Austin [3] improves on Urrutia-Schroeder’s work, correcting a minor
error (only 214 of Urrutia-Schroeder’s graphs are actually 2-crossing-critical) and
finding several others, for a total of 312 examples. Only 8 of Oporowski’s examples
are not among the 312. A few have been determined by us as stepping stones in our
classification of those that have a subdivision of V10. We have hopes of completing
the classification.
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1. INTRODUCTION 3

The principal facts that we prove in this work are summarized in the following
statement.

Theorem 1.1 (Classification of 2-crossing-critical graphs). Let G be a 2-cros-
sing-critical graph with minimum degree at least 3. Then either:

• if G is 3-connected, then either G has a subdivision of V10 and a very
particular tile structure or has at most 3 million vertices; or
• G is not 3-connected and is one of 49 particular examples; or
• G is 2- but not 3-connected and is obtained from a 3-connected example

by replacing digons by digonal paths.

We remark again that vertices of degree 2 are uninteresting in the context of
crossing-criticality, so we assume all graphs have minimum degree at least 3.

Chapters 2–13 of this work contain the proof of the following, which is the main
contribution of this work. (The formal definitions required for the statement given
below are presented in Chapter 2.)

Theorem 1.2 (2-crossing-critical graphs with V10). Let G be a 3-connected, 2-
crossing-critical graph containing a subdivision of V10. Then G is a twisted circular
sequence (T1, T2, . . . , Tn) of tiles, with each Ti coming from a set of 42 possibilities.

This is part of the first item in the statement of Theorem 1.1.
Chapter 14 is devoted to 2-crossing-critical graphs that are not 3-connected.

(We remind the reader of Tutte’s theory of cleavage units and introduce digonal
paths in Chapter 14.) The results there are summarized in the following.

Theorem 1.3 (2-crossing-critical graphs with small cutsets). Let G be a 2-
crossing-critical graph with minimum degree at least 3 that is not 3-connected.

(1) If G is not 2-connected, then G is one of 13 graphs. (See Figure 14.1.)
(2) If G is 2-connected and has two nonplanar cleavage units, then G is one

of 36 graphs. (See Figures 14.2 and 14.3.)
(3) If G is 2-connected with at most one nonplanar cleavage unit, then G has

precisely one nonplanar cleavage unit and is obtained from a 3-connected,
2-crossing-critical graph by replacing pairs of parallel edges by digonal
paths.

Chapter 15 shows how to reduce the determination of 3-connected 2-crossing-
critical graphs to “peripherally-4-connected” 2-crossing-critical graphs. A graph G
is peripherally-4-connected if G is 3-connected and, for every 3-cut X in G, any
partition of the components into nonnull subgraphs H and J has one of H and J
being a single vertex. The main result here is the following.

Theorem 1.4. Every 3-connected, 2-crossing-critical graph is obtained from a
peripherally-4-connected, 2-crossing-critical graph by replacing each degree 3 vertex
with one of at most 20 different graphs, each having at most 6 vertices.

We combine this with Robertson’s characterization of V8-free graphs to explain
how to determine all the 3-connected 2-crossing-critical graphs that do not have
a subdivision of V8. This requires a further reduction to “internally 4-connected”
graphs.

Chapter 16 shows that a 3-connected, 2-crossing-critical graph with a subdivi-
sion of V8 but no subdivision of V10 has at most three million vertices. The general
result we prove there is the following.
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4 1. INTRODUCTION

Theorem 1.5. Suppose G is a 3-connected, 2-crossing-critical graph. Let n ≥ 3
be such that G has a subdivision of V2n but not of V2(n+1). Then |V (G)| = O(n3).
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CHAPTER 2

Description of 2-crossing-critical graphs with V10

In this section, we describe the structure of the 2-crossing-critical graphs that
contain V10. As mentioned in the introduction, they are composed of tiles. This
concept was first formalized by Pinontoan and Richter [27, 28] who studied large
sequences of equal tiles. Bokal [8] extended their results to sequences of arbitrary
tiles, which are required in this section. In those results, “perfect” tiles were intro-
duced to establish the crossing number of the constructed graphs. However, this
property required a lower bound on the number of the tiles that is just slightly too
restrictive to include all our graphs. As we are able to establish the lower bound on
the crossing number of all these graphs in a different way (Theorem 5.5), we sum-
marize the concepts of [8] without reference to “perfect” tiles. Where the reader
feels we are imprecise, please refer to [8] for details.

Definition 2.1. (1) A tile is a triple T = (G,λ, ρ), consisting of a graph
G and two sequences λ and ρ of distinct vertices of G, with no vertex of
G appearing in both λ and ρ.

(2) A tile drawing is a drawing D of G in the unit square [0, 1] × [0, 1] for
which the intersection of the boundary of the square with D[G] contains
precisely the images of the vertices of the left wall λ and the right wall
ρ, and these are drawn in {0} × [0, 1] and {1} × [0, 1], respectively, such
that the y-coordinates of the vertices are increasing with respect to their
orders in the sequences λ and ρ.

(3) The tile crossing number tcr(T ) of a tile T is the smallest number of
crossings in a tile drawing of T .

(4) The tile T is planar if tcr(T ) = 0.
(5) A k-drawing of a graph or a k-tile-drawing of a tile is a drawing or tile-

drawing, respectively, with at most k crossings.

It is a central point for us that tiles may be “glued together” to form larger
tiles. We formalize this as follows.

Definition 2.2. (1) The tiles T = (G,λ, ρ) and T ′ = (G′, λ′, ρ′) are
compatible if |ρ| = |λ′|.

(2) A sequence (T0, T1, . . . , Tm) of tiles is compatible if, for each i = 1, 2, . . . ,m,
Ti−1 is compatible with Ti.

(3) The join of compatible tiles (G,λ, ρ) and (G′, λ′, ρ′) is the tile (G,λ, ρ)⊗
(G′, λ′, ρ′) whose graph is obtained from G and G′ by identifying the
sequence ρ term by term with the sequence λ′; left wall is λ; and right
wall is ρ′.

(4) As ⊗ is associative, the join ⊗T of a compatible sequence T = (T0, T1, . . . ,
Tm) of tiles is well-defined as T0 ⊗ T1 ⊗ · · · ⊗ Tm.
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6 2. DESCRIPTION OF 2-CROSSING-CRITICAL GRAPHS WITH V10

Note that identifying wall vertices in a join may introduce either multiple edges
or vertices of degree two. If we are interested in 3-connected graphs, we may
suppress vertices of degree two, but we keep the multiple edges.

We have the following simple observation.

Observation 2.3. Let (T0, T1, . . . , Tm) be a compatible sequence T of tiles.
Then

tcr(⊗T ) ≤
m∑
i=0

tcr(Ti).

An important operation on tiles that we need converts a tile into a graph.

Definition 2.4. (1) A tile T is cyclically compatible if T is compatible
with itself.

(2) For a cyclically-compatible tile T , the cyclization of T is the graph ◦T
obtained by identifying the respective vertices of the left wall with the
right wall. A cyclization of a cyclically-compatible sequence of tiles is
defined as ◦T = ◦(⊗T ).

The following useful observation is easy to prove. Typically, we will apply this
to the tile ⊗T obtained from a compatible sequence T of tiles.

Lemma 2.5 ([8, 28]). Let T be a cyclically compatible tile. Then cr(◦T ) ≤
tcr(T ).

We now describe various operations that turn one tile into another.

Definition 2.6. (1) For a sequence ω, ω̄ denotes the reversed sequence.

(2) • The right-inverted tile of a tile T = (G,λ, ρ) is the tile T
l

= (G,λ, ρ̄);

• the left-inverted tile is
l
T = (G, λ̄, ρ);

• the inverted tile is
l
T
l

= (G, λ̄, ρ̄); and
• the reversed tile is T↔ = (G, ρ, λ). (T↔ made an item.)

(3) A tile T is k-degenerate if T is planar and, for every edge e of T ,

tcr(T
l − e) < k.

Note that our k-degenerate tiles are not necessarily perfect, as opposed to the
definition in [8]. However, the following analogue of [8, Cor. 8] is still true.

Lemma 2.7. Let T = (T0, . . . , Tm), m ≥ 0, be a cyclically-compatible sequence
of k-degenerate tiles. Then ⊗(T ) is a k-degenerate tile.

Proof. By Lemma 2.5, ⊗T is planar. Let e be any edge of ⊗T . Let Ti be

the tile of T containing e. Let T ′ = (T0, . . . , Ti−1, Ti
l − e, lTi+1

l
, . . . ,

l
Tm
l
), so

⊗T ′ = ⊗T l − e; in particular, they have the same tile crossing number. As Ti
l

is

k-degenerate, tcr(Ti
l − e) < k. Since all other tiles of T ′ are planar, Lemma 2.5

implies tcr(⊗T l − e) ≤ tcr(Ti
l − e) < k. �

The following is an obvious corollary.

Corollary 2.8. Let T be a k-degenerate tile so that cr(◦(T l)) ≥ k. Then

◦(T l) is a k-crossing-critical graph.

Definition 2.9. (1) T is a compatible sequence (T0, T1, . . . , Tm), then:
• the reversed sequence T ↔ is the sequence (T↔m , T↔m−1, . . . , T

↔
0 );
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2. DESCRIPTION OF 2-CROSSING-CRITICAL GRAPHS WITH V10 7

• the i-flip T i is the sequence (T0, . . . , Ti
l
,
l
Ti+1, Ti+2 . . . , Tm); and

• the i-shift Ti is the sequence (Ti, . . . , Tm, T0, . . . , Ti+1).
(2) Two sequences of tiles are equivalent if one can be obtained from the other

by a series of shifts, flips, and reversals.

Note that the cyclizations of two equivalent sequences of tiles are the same
graph.

Definition 2.10. The set S of tiles consists of those tiles obtained as combina-
tions of two frames, illustrated in Figure 2.1, and 13 pictures, shown in Figure 2.2,
in such a way, that a picture is inserted into a frame by identifying the two squares.
A given picture may be inserted into a frame either with the given orientation or
with a 180◦ rotation (some examples are given in Figure 2.3).

Figure 2.1. The two frames.

Figure 2.2. The thirteen pictures.

We remark that each picture produces either two or four tiles in S; see Figure
2.3

Lemma 2.11. Let T be a tile in the set S. Then both T and
l
Ti
l

are 2-
degenerate.

Proof. Figure 2.4 shows that all the tiles are planar. The claim for T implies

the result for
l
Ti
l
, so it is enough to prove the result for an arbitrary T ∈ S. Let

e be an arbitrary edge of T . We consider cases, depending on whether e is either
dotted, thin solid, thick solid, thin dashed, or thick dashed in Figure 2.4. Using
this classification, we argue that tcr(T − e) < 2.
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8 2. DESCRIPTION OF 2-CROSSING-CRITICAL GRAPHS WITH V10

Figure 2.3. Each picture produces either two or four tiles.

Figure 2.4. The different kinds of edges in the pictures.

If e is a dotted edge, then T−e has a wall with a single vertex and tcr(T
l−e) =

0.
If e is a thin solid edge, then there is a 1-tile-drawing of T

l
with two dotted

edges of T crossing each other.
If e is a thick solid edge, then there is a unique thin dashed edge f adjacent to

e, and there exists a 1-tile-drawing of T
l − e with f crossing the dotted edge not

on the same horizontal side of T as f .
If e is a thin dashed edge, then there is a unique thick dashed edge e′ such

that e and e′ are in the same face of the exhibited planar drawing of T , as well
as a unique dotted edge f , that is not in the same horizontal side of T as e. For

such e and e′, there exists a 1-tile-drawing of T
l− e with e′ crossing f , as well as a

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
19

3,
 D

ec
em

be
r 

13
, 2

01
3



2. DESCRIPTION OF 2-CROSSING-CRITICAL GRAPHS WITH V10 9

1-tile-drawing of T
l − e′ with e crossing f . As each thick dashed edge corresponds

to at least one thin dashed edge, this concludes the proof. �

We now define the set of graphs that is central to this work.

Definition 2.12. The set T (S) consists of all graphs of the form ◦((⊗T )
l
),

where T is a sequence (T0,
l
T
l
1, T2, . . . ,

l
T
l
2m−1, T2m) so that m ≥ 1 and, for each

i = 0, 1, 2, . . . , 2m, Ti ∈ S.
The rim of an element of T (S) is the cycle R that consists of the top and

bottom horizontal path in each frame (including the part that sticks out to either
side) and, if there is a parallel pair in the frame, one of the two edges of the parallel
pair.

The following is an immediate consequence of Lemmas 2.7 and 2.11.

Corollary 2.13. Let G ∈ T (S). For every edge e of G, cr(G− e) < 2.

In Theorem 5.5, we complete the proof that each graph G in T (S) is 2-crossing-
critical by proving there that cr(G) ≥ 2.

We are now able to state the central result of this work.

Theorem 2.14. If G is a 3-connected 2-crossing-critical graph containing a
subdivision of V10, then G ∈ T (S).

This theorem is proved in the course of Chapters 3 – 13. We remark that not
every graph in T (S) contains a subdivision of V10.

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
19

3,
 D

ec
em

be
r 

13
, 2

01
3



CHAPTER 3

Moving into the projective plane

It turns out that considering the relation of a 2-crossing-critical graph to its
embeddability in the projective plane is useful. This perspective was employed by
Richter to determine all eight cubic 2-crossing-critical graphs [29]. It is a triviality
that, if G has a 1-drawing, then G embeds in the projective plane (put the crosscap
on the crossing). Therefore, any graph G that does not embed in the projective
plane has crossing number at least 2. Moreover, Archdeacon [1, 2] proved that
it contains one of the 103 graphs that do not embed in the projective plane but
every proper subgraph does. Each obstruction for projective planar embedding has
crossing number at least 2. Of these, only the ones in Figure 3.1 are 3-connected
and 2-crossing-critical. (The non-projective planar graphs that are not 3-connected
are found by different means in Section 14.) These are the ones labelled — left to
right, top to bottom — D17, E20, E22, E23, E26, F4, F5, F10, F12, F13, and G1
in Glover, Huneke, and Wang [15].

Figure 3.1. The 3-connected, 2-crossing-critical graphs that do
not embed in RP 2.

Definition 3.1. Let G be a graph embedded in a (compact, connected) surface
Σ. Then:

(1) the representativity rep(G) of G is the largest integer n so that every non-
contractible, simple, closed curve in Σ intersects G in at least n points
(this parameter is undefined when Σ is the sphere);

(2) G is n-representative if n ≥ r(G);

10
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3. MOVING INTO THE PROJECTIVE PLANE 11

(3) G is embedded with representativity n if rep(G) = n.

Representativity is also known as face-width and gained notoriety in the Graph
Minors project of Robertson and Seymour. We only require very elementary aspects
of this parameter; the reader is invited to consult [12] or [26] for further information
on representativity and Graph Minors.

Barnette [4] and Vitray [37] independently proved that every 3-representative
embedding in the projective plane topologically contains one of the 15 graphs ([37,
Figure 2.2]). Vitray pointed out in a conference talk [38] that each of these
15 graphs has crossing number at least 2. Therefore, any graph that has a 3-
representative embedding in the projective plane has crossing number at least 2.
One immediate conclusion is that there are only finitely many 2-crossing-critical
graphs that embed in RP 2 and do not have a representativity at most 2 embedding
in RP 2, and, not only are there only finitely many of these, but they are all known
and are shown in Figure 3.2. Vitray went on to show that the only 2-crossing-
critical graph whose crossing number is not equal to 2 is C32C3, whose crossing
number is 3.

Figure 3.2. The 2-crossing-critical 3-representative embeddings
in RP 2.

Since every graph that has an embedding in the projective plane with represen-
tativity at most 1 is planar, it remains to explore those 2-crossing-critical graphs
that have an embedding in RP 2 with representativity precisely 2. To cement some
terminology and notation, we have the following.

Definition 3.2. Let n ≥ 3 be an integer. The graph V2n is the Möbius ladder
consisting of:

• the rim R of V2n, which is a 2n-cycle (v0, v1, v2, . . . , v2n−1, v0); and,
• for i = 0, 1, 2, . . . , n− 1, the spoke vivn+i.

Suppose V2n
∼=H ⊆ G. (The notation L∼=H means that H is a subdivision of L.

Thus, V2n
∼=H ⊆ G means H is a subgraph of G and is also a subdivision of V2n.)

• The H-nodes are the vertices of H corresponding to v0, v1, . . . , v2n−1 in
V2n; the H-nodes are also labelled v0, v1, . . . , v2n−1.
• For i = 0, 1, 2, . . . , 2n − 1, the H-rim branch ri is the path in H corre-

sponding to the edge vivi+1 of V2n.
• For i = 0, 1, 2, . . . , n − 1, the H-spoke is the path si in H corresponding

to the edge vivn+i in V2n.
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12 3. MOVING INTO THE PROJECTIVE PLANE

• We also use H-rim and R for the cycle in H corresponding to the rim of
V2n.

Whenever we discuss elements of a subdivision H of the Möbius ladder V2n,
we presume the indices are read appropriately. For the H-nodes vk and the H-rim
branches rk, the index k is to be read modulo 2n. For the H-spokes s`, the index
` is to be read modulo n. Thus, for example, s5+n = s5 and v8+2n = v8, while
r8+n 6= r8.

Let G be a 2-crossing-critical graph embedded in RP 2 with representativity 2.
Let γ be a simple closed curve in RP 2 meeting G in precisely the two points a and
b. We further assume V2n

∼=H ⊆ G, with n ≥ 3. Because G − a and G − b have
1-representative embeddings in the projective plane, they are both planar. We note
that, for n ≥ 3, V2n is not planar; therefore, a, b ∈ H.

Remark 3.3. Throughout this work, we abuse notation slightly. If K is any
graph and x is either a vertex or an edge of K, then we write x ∈ K, rather than
the technically correct x ∈ V (K) or x ∈ E(K). We have taken care so that, in any
instance, the reader will never be in doubt about whether x is a vertex or an edge.

If n ≥ 4, the deletion of a spoke of V2n leaves a non-planar subgraph; thus,
when n ≥ 4, we conclude a, b ∈ R. If γ does not cross R at a, say, then deleting
the H-spoke incident with a (if there is one), and shifting γ away from a leaves a
subdivision of K3,3 in RP 2 that meets the adjusted γ only at b. But then this K3,3

has a 1-representative embedding in RP 2, showing K3,3 is planar, a contradiction.
Therefore, γ must cross R at a and b. As any two non-contractible curves cross an
odd number of times, R is contractible and so bounds a closed disc D and a closed
Möbius strip M.

Let P and Q be the two ab-subpaths of R, let α = γ ∩ D and β = γ ∩M.
(We alert the reader that the notations D, M, α, β, and γ will be reserved for
these objects.) Since each spoke is internally disjoint from γ, the spoke is either
contained in D or contained in M. Since the spokes interlace on R, at most one
can be embedded in D.

Moreover, observe that α divides D into two regions, one bounded by P ∪α and
the other bounded by Q ∪ α. Thus, if a spoke — label it s0 — is embedded in D,
then s0 has both attachments in just one of P and Q, say P . In this case, P contains
either all the H-nodes v0, v1, . . . , vn or all the H-nodes vn, vn+1, . . . , v2n−1, v0. It
follows that, for n ≥ 4, there are only two (up to relabelling) representativity 2
embeddings of V2n in the projective plane. See Figure 3.3. We remark that it is
possible that one or both of a and b might be an H-node.

We introduce a notation that will be used extensively in this work.

Definition 3.4. The set of 3-connected, 2-crossing-critical graphs is denoted
M3

2.

It is a tedious (and unimportant) exercise to check the observation that none
of the graphs in M3

2 found among the obstructions to having a representativity 2
embedding in RP 2 has a subdivision of V10. We record it in the following assertion.

Theorem 3.5. Let G ∈ M3
2 and V10

∼=H ⊆ G. Then G has a representativity
2 embedding in RP 2.

We will also need information about 1-drawings of V2n, for n ≥ 4. These are
similarly straightforward facts that can be proved by considering K3,3’s in V2n.
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3. MOVING INTO THE PROJECTIVE PLANE 13

s0

b

α

β

a

a

b

v1 v2 v3 v4

v0 v5

v6 v8 v9v7

α

β

b

α

β

a

a

b

α

v0

v7

v1 v2 v3 v4

v5 v6 v8 v9

β

Figure 3.3. Standard labellings of the representativity 2 embed-
dings of V10.

Lemma 3.6. Let n ≥ 4 and let D be a 1-drawing of V2n. Then there is an i so
that ri crosses one of ri+n−1, ri+n, and ri+n+1.
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CHAPTER 4

Bridges

The notion of a bridge of a subgraph of a graph is a valuable tool that allows
us to organize many aspects of this work. This section is devoted to their definition
and an elucidation of their properties that are relevant to us. Bridges are discussed
at length in [35] and, under the name J-components, in [34].

Definition 4.1. Let G be a graph and let H be a subgraph of G.

(1) For a set W of vertices of G, ‖W‖ consists of the subgraph of G with
vertex set W and no edges.

(2) An H-bridge in G is a subgraph B of G such that either B is an edge not
in H, together with its ends, both of which are in H, or B is obtained
from a component K of G − V (H) by adding to K all the edges from
vertices in K to vertices in H, along with their ends in H.

(3) For anH-bridge B inG, a vertex u of B is an attachment of B if u ∈ V (H);
att(B) denotes the set of attachments of B.

(4) If B is an H-bridge, then the nucleus Nuc(B) of B is B − att(B).
(5) For u, v ∈ V (G), a uv-path P in G is H-avoiding if P ∩H ⊆ ‖{u, v}‖.
(6) Let A and B be either subsets of V (G) or subgraphs of G. An AB-path is

a path with an end in each of A and B but otherwise disjoint from A∪B.
If, for example, A is the single vertex u, we write uB-path for {u}B-path.

We will be especially interested in the bridges of a cycle.

Definition 4.2. Let C be a cycle in a graph G and let B and B′ be distinct
C-bridges.

(1) The residual arcs of B in C are the B-bridges in C ∪B; if B has at least
two attachments, then these are the maximal B-avoiding subpaths of C.

(2) The C-bridges B and B′ do not overlap if all the attachments of B are in
the same residual arc of B′; otherwise, they overlap.

(3) The overlap diagram OD(C) of C has as its vertices the C-bridges; two
C-bridges are adjacent in OD(C) precisely when they overlap.

(4) The cycle C has bipartite overlap diagram, denoted BOD , if OD(C) is
bipartite; otherwise, C has non-bipartite overlap diagram, denoted NBOD .

The following is easy to see and well-known.

Lemma 4.3. Let C be a cycle in a graph G. The distinct C-bridges B and B′

overlap if and only if either:

(1) there are attachments u, v of B and u′, v′ of B′ so that the vertices u, u′, v, v′

are distinct and occur in this order in C (in which case B and B′ are skew
C-bridges); or

(2) att(B) = att(B′) and |att(B)| = 3 (in which case B and B′ are 3-
equivalent).
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4. BRIDGES 15

The following concept plays a central role through the next few sections of this
work.

Definition 4.4. Let C be a cycle in a graph G and let B be a C-bridge. Then
B is a planar C-bridge if C ∪B is planar. Otherwise, B is a non-planar C-bridge.

Note that there is a difference between C ∪ B being planar and, in some em-
bedding of G in RP 2, C ∪B being plane, that is, embedded in some closed disc in
RP 2. If C ∪B is plane, then B is planar, but the converse need not hold.

We now present the major embedding and drawing results that we shall use.
The theorem is due to Tutte, while the corollary is the form that we shall frequently
use.

Theorem 4.5. [35, Theorems XI.48 and XI.49] Let G be a graph.

(1) G is planar if and only if either G is a forest or there is a cycle C of G
having BOD and all C-bridges planar.

(2) G is planar if and only if, for every cycle C of G, C has BOD.

For the corollary, we need the following important notion.

Definition 4.6. Let H be a subgraph of a graph G and let D be a drawing of
G in the plane. Then H is clean in D if no edge of H is crossed in D.

Corollary 4.7. Let G be a graph and let C be a cycle with BOD. If there is
a C-bridge B so that every other C-bridge is planar and there is a 1-drawing of
C ∪B in which C is clean, then cr(G) ≤ 1.

Proof. Let × denote the crossing in a 1-drawing D of C ∪B in which C is clean.
As C is not crossed in D, × is a crossing of two edges of B. Let G× denote the graph
obtained from G by deleting those two edges and adding a new vertex adjacent to
the four ends of the deleted edges. Then C has BOD in G× and every C-bridge
in G× is planar. By Theorem 4.5 (2), G× is planar. Any planar embedding of G×

easily converts to a 1-drawing of G.

We will also need the following result.

Lemma 4.8 (Ordering Lemma). Let G be a graph, C a cycle in G, B a set
of non-overlapping C-bridges. Let P and Q be disjoint paths in C, with V (C) =
V (P ∪Q). Suppose that each B ∈ B has at least one attachment in each of P and
Q. Let PB and QB be the minimal subpaths of P and Q, respectively, containing
P ∩B and Q ∩B, respectively. Then:

(1) the {PB} and {QB} are pairwise internally disjoint and there is an order-
ing

(B1, . . . , Bk)

of B so that

P = PB1
. . . PB2

. . . PBi . . . PBk and Q = QB1
. . . QB2

. . . QBi . . . QBk ;

and
(2) if, for each B,B′ ∈ B, att(B) 6= att(B′), the order is unique up to inver-

sion.
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16 4. BRIDGES

Proof. Suppose B,B′ ∈ B are such that PB and PB′ have a common edge e.
Then B and B′ have attachments x1, x2, x

′
1, x
′
2 in both components of P − e and

attachments x, x′ in Q. If |{x1, x
′
1, x2, x

′
2, x, x

′}| = 3, then they have 3 common
attachments and so overlap, a contradiction. Otherwise, some y ∈ {x′1, x′2, x′} is
not in {x1, x2, x}. Then y is in one residual arc A of x1, x2, x in C and not both of
the other two of {x′1, x′2, x′} are in A. So again B,B′ overlap, a contradiction from
which we conclude PB and PB′ are internally disjoint.

Let C = P−1R1QR2. Suppose B,B′ ∈ B are such that P = . . . PB . . . PB′ . . .
and Q = . . . QB′ . . . QB . . .. We claim that either PB = PB′ or QB = QB′ . If not,
then there is an attachment uP of one of B and B′ in P that is not an attachment
of the other and likewise an attachment uQ of one of B and B′ in Q that is not
an attachment of the other. Note that uP and uQ are not attachments of the same
one of B and B′, as otherwise the orderings in P and Q imply B and B′ overlap.

For the sake of definiteness, we assume uP ∈ att(B), so that uQ ∈ att(B′).
Let wP ∈ att(B′) ∩ P and let wQ ∈ att(B) ∩ Q. The ordering of B and B′ in P
and Q imply that, in C, these vertices appear in the cyclic order wP , uP , uQ, wQ.
Since uP , uQ, wP , wQ are all different, we conclude that B and B′ overlap on C, a
contradiction.

It follows that, by symmetry, we may assume PB = PB′ . As PB and PB′ are
internally disjoint, they are just a vertex. So if P = . . . PB . . . PB′ . . . and Q =
. . . QB′ . . . QB . . ., we may exchange PB and P ′B , to see that P = . . . PB′ . . . PB . . .
and Q = . . . QB′ . . . QB . . . . We conclude there is an ordering of B as claimed.

Let (B1, . . . , Bk) and (Bπ(1), . . . , Bπ(k)) be distinct orderings so that P =
PB1 , . . . , PBk , P = PBπ(1)

, . . . , PBπ(k)
, Q = QB1 . . . QBk andQ = QBπ(1)

, . . . , QBπ(k)
.

There exist i < j so that π(i) > π(j). We may choose the labelling (P versus Q)
so that the preceding argument implies that PBi = PBj = u. If QBi = QBj , then
QBi = QBj = w and att(Bi) = att(Bj), which is (2). Therefore, we may assume
there is an attachment y of one of Bi and Bj that is not an attachment of the
other. Let z be an attachment of the other. Since Q is either (Q1, y,Q2, z,Q3) or
(Q−1

3 , z,Q−1
2 , y,Q−1

1 ), the only possibility is that π is the inversion (k, k−1, . . . , 1).
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CHAPTER 5

Quads have BOD

There are two main results in this section. One is to show that each graph in
the set T (S) is 2-crossing-critical and the other, rather more challenging and central
to the characterization of 3-connected 2-crossing-critical graphs with a subdivision
of V10, is to show that all H-quads and some H-hyperquads have BOD. We start
with the definition of quads and hyperquads.

Definition 5.1. Let G be a graph and V10
∼=H ⊆ G.

(1) For a path P and distinct vertices u and v in P , [uPv] denotes the uv-
subpath of P , while [uPv〉 denotes [uPv] − v, 〈uPv] is [uPv] − u, and
〈uPv〉 is 〈uPv]− v.

(2) When concatenating a uv-path P with a vw-path Q, we may write either
PQ or [uPvQw]. If u = w and P and Q are internally disjoint, then
both PQ and [uPvQu] are cycles. The reader may have to choose the
appropriate direction of traversal of either P or Q in order to make the
concatenation meaningful.

(3) If L is a subgraph of G and P is a path in G, then L − 〈P 〉 is obtained
from L by deleting all the edges and interior vertices of P . (In particular,
this includes the case P has length 1, in which case L− 〈P 〉 is just L less
one edge.)

(4) For i = 0, 1, 2, 3, 4, the H-quad Qi is the cycle ri si+1 ri+5 si.
(5) For i = 0, 1, 2, 3, 4, the H-hyperquad Qi is the cycle (Qi−1 ∪Qi)− 〈si〉.
(6) The Möbius bridge of Qi is the Qi-bridge MQi in G such that H ⊆ Qi ∪

MQi .

(7) The Möbius bridge of Qi is the Qi-bridge MQi
in G for which (H−〈si〉) ⊆

Qi ∪MQi
.

The following notions will help our analysis.

Definition 5.2. Let G be a graph, V2n
∼=H ⊆ G, n ≥ 3, and let K be a

subgraph of G. Then:

(1) a claw is a subdivision of K1,3 with centre the vertex of degree 3 and
talons the vertices of degree 1;

(2) an {x, y, z}-claw is a claw with talons x, y, and z;
(3) an open H-claw is the subgraph of H obtained from a claw in H consisting

of the three H-branches incident with an H-node, which is the centre of
the open H-claw, but with the three talons deleted;

(4) K is H-close if K ∩ H is contained either in a closed H-branch or in a
open H-claw.

(5) A cycle C in K is a K-prebox if, for each edge e of C, K− e is not planar.

The following is elementary but not trivial.
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18 5. QUADS HAVE BOD

Lemma 5.3. Let C be an H-close cycle, for some H ∼=V6. Then C is a (C∪H)-
prebox.

Proof. For e ∈ E(C), if e /∈ H, then evidently (C ∪H)− e contains H, which is
a V6; therefore (C ∪H) − e is not planar. So suppose e ∈ H. Since C is H-close,
C ∩H is contained in either a closed H-branch b or an open H-claw Y . There is
an H-avoiding path P in C − e having ends in both components of either b− e or
Y − e. In the former case, (H − e) ∪ P , and hence (C ∪H)− e, contains a V6. In
the latter case, (Y − e) ∪ P contains a different claw that has the same talons as
Y , so again (H − e) ∪ P , and (C ∪H)− e, contains a V6.

Lemma 5.4. Let K be a graph and C a cycle of K. If C is a K-prebox, then,
in any 1-drawing of K, C is clean.

Proof. Let D be a 1-drawing of K and let e be any edge of C. Since K − e is
not planar, D(K − e) has a crossing. It must be the only crossing of D(K) and,
therefore, e is not crossed in D(K).

We can now show that any of the tiled graphs described in Section 13 in fact
have crossing number 2, thereby completing the proof that they are all 2-crossing-
critical.

Theorem 5.5. If G ∈ T (S), then G ∈M3
2.

Proof. By Lemmas 2.7 and 2.11 and Corollary 2.8, we know that if K is a proper
subgraph of G, then cr(K) ≤ 1. Thus, it suffices to prove that cr(G) ≥ 2.

There are two edges in a tile that are not in the corresponding picture and are
not part of a parallel pair. An edge of G is a ∆-base if it is one of these edges.
A ∆-cycle is a face-bounding cycle in the natural projective planar embedding of
G containing precisely one ∆-base. Recall that the rim R of G is described in
Definition 2.12.

There are at least three ∆-cycles contained inG and any two are totally disjoint.
From each ∆-cycle we choose either of its RR-paths (by definition, these are R-
avoiding) as a “spoke”, and, with R as the rim, we find 8 different subdivisions
of V6. There are two of these that are edge-disjoint on the spokes, so if D is a
1-drawing of G, the crossing must involve two edges of R.

Claim 1. If e is a rim edge in one of the 13 pictures, then e is in an H ′-close
cycle Ce, for some H ′∼=V6 in G.

The point of this is that Lemmas 5.3 and 5.4 imply that Ce is clean in D.
This is also obviously true for the other edges of the rim that are in digons. The
conclusion is that we know the two crossing edges must be from among the ∆-bases.
We shall show below that no two of these can cross in a 1-drawing of G, the desired
contradiction.

Proof of Claim 1. Let e be in edge in the rim R of G that is in the picture T ,
let r be the component of T ∩ R containing e, and let r′ be the other component
of T ∩ R. There is a unique cycle in T − r′ containing e; this is the cycle Ce. Let
e′ be the one of the two ∆-bases incident with T that has an end in r. Choose the
RR-subpath of the e′-containing ∆-cycle that is disjoint from r. For any other two
of the ∆-cycles, choose arbitrarily one of the RR-subpaths. These three “spokes”,
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5. QUADS HAVE BOD 19

together with R, constitute a subdivision H ′ of V6 for which Ce is H ′-close, as
required.

The proof is completed by showing that no two ∆-bases can cross in a 1-drawing
of G. If there are at least five tiles, then it is easy to find a subdivision of V8 so
that the two ∆-bases are on disjoint H-quads and therefore cannot be crossed in
a 1-drawing of G. Thus, we may assume there are precisely three tiles and the
crossing ∆-bases e1 and e2 are, therefore, in consecutive ∆-cycles.

Let T be the picture incident with both e1 and e2. Choose a subdivision H ′ of
V6 containing R but so that T ∩H ′ = T ∩R. There is a unique 1-drawing D of H ′

with e1 and e2 being the crossing pair. For i = 1, 2, let the H ′-branch containing
ei be bi. The end ui of ei that is in T is in the interior of bi.

The vertices u1 and u2 are two of the four attachments of T in G. Let w1 and
w2 be the other two, labelled so that w1 is in the same component of T ∩R as u2.
It follows that w2 is in the same component of T ∩R as u1. In T , there is a unique
pair of totally disjoint R-avoiding u1w1- and u2w2-paths P1 and P2, respectively.
The crossing in D is of e1 with e2, so [u1b1w2] and [u2b2w1] are both not crossed
in D. Therefore, D[P1] and D[P2] are both in the same face F of D.

Since the two paths P1 and P2 are totally disjoint(text deleted), D[P1] and
D[P2] are disjoint arcs in F ; the contradiction arises from the fact that their ends
alternate in the boundary of F , showing there must be a second crossing.

One important by-product of cleanliness is that it frequently shows a cycle has
BOD.

Lemma 5.6. Let C be a cycle in a graph G. Let D be a 1-drawing of G in
which C is clean. If there is a non-planar C-bridge, then C has BOD and exactly
one non-planar bridge.

Proof. Let B be a non-planar C-bridge. Then D[C ∪B] has a crossing, and, since
C is clean in D, the crossing does not involve an edge of C. Therefore, it involves
two edges of B. This is the only crossing of D, so inserting a vertex at this crossing
turns D into a planar embedding of a graph G×. As C is still a cycle of G×, C
has BOD in G× and all C-bridges in G× are planar. But ODG×(C) is the same as
ODG(C) and all C-bridges other than B are the same in G and G×.

We shall routinely make use of the following notions.

Definition 5.7. Let G be a connected graph and let H be a subgraph of G.
Then:

(1) H# is the subgraph of G induced by E(G) \ E(H); and
(2) if G is embedded in RP 2, then an H-face is a face of the induced embed-

ding of H in RP 2.

We will often use this when B is a C-bridge, for some cycle C in a graph G,
in which case B# is the union of C and all C-bridges other than B. The following
two lemmas are useful examples.

Lemma 5.8. Let G be a graph embedded in RP 2 with representativity 2 and let
γ be a non-contractible curve in RP 2 so that G∩γ = {a, b}. Let C be a contractible
cycle in G and let B be a C-bridge so that Nuc(B)∩{a, b} 6= ∅. Then B# is planar.
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20 5. QUADS HAVE BOD

Proof. This is straightforward: B# = G−Nuc(B) ⊆ G− ({a, b}∩NucB) and the
latter has a representativity at most 1 embedding in RP 2. Therefore it is planar.

The following result, when combined with the (not yet proved) fact that H-
quads and some H-hyperquads have BOD, yields the fact, often used in the sections
to follow, that deleting some edge results in a 1-drawing in which a particular H-
quad or H-hyperquad must be crossed.

Lemma 5.9. Let G be a graph with cr(G) ≥ 2 and let C be a cycle in G. If C
has BOD in G, then, for any planar C-bridge B, C is crossed in any 1-drawing of
B#.

Proof. Suppose there is a 1-drawing D of B# with C clean. Since C has BOD
and G is not planar, there is a non-planar C-bridge B′. Because C is clean, any
crossing in D[C ∪B′] involves two edges of B′. The only crossing in D involves two
edges of B′, so every other C-bridge in B# is planar. Since B is planar, it follows
from Corollary 4.7 that cr(G) ≤ 1, a contradiction.

We remark that MQ is a non-planar Q-bridge whenever Q is an H-quad or
H-hyperquad.

Corollary 5.10. Let G ∈ M3
2 and V10

∼=H ⊆ G. If the H-quad Qi and H-
hyperquad Qj are disjoint, Qj has BOD, and there is a planar Qj-bridge B, then
Qi has BOD and there is precisely one non-planar Qi-bridge.

Proof. Let B be a planar Qj-bridge. Because G is 2-crossing-critical, there is a

1-drawing D of B#. By Lemma 5.9, Qj is crossed in D. Note that H − 〈sj〉 ⊆
B#. In any 1-drawing of H − 〈sj〉 in which Qj is crossed, the crossing is between
rj−2∪rj−1∪rj∪rj+1 and rn+j−2∪rn+j−1∪rn+j∪rn+j+1. Since Qi is edge-disjoint
from these crossing rim segments, Qi is clean in D.

The two graphs ODG(Qi) and ODB#(Qi) are isomorphic: the Qi-bridges in
both G and B# are the same, except MQi in G becomes MQi −Nuc(B) in B# and
they have the same attachments. Since Qi is clean in D, ODB#(Qi) is bipartite.
Furthermore, the crossing in D is between two edges of Qj , so D shows that every
Qi-bridge other than MQi is planar.

We next introduce boxes, which are cycles that, it turns out, cannot exist in
a 2-crossing-critical graph G. On several occasions in the subsequent sections, we
prove a result by showing that otherwise G has a box.

Definition 5.11. Let C be a cycle in a graph G. Then C is a box in G if C
has BOD in G and there is a planar C-bridge B so that C is a B#-prebox.

Lemma 5.12. Let G ∈M3
2. Then G has no box.

Proof. Suppose C is a box in G. Then C has BOD and there is a planar C-bridge
B so that C is a B#-prebox. As B# is a proper subgraph of G, there is a 1-drawing
D of B#. By Lemma 5.4, D[C] is clean. This contradicts Lemma 5.9.

We can now determine the complete structure of a 2-connected H-close sub-
graph.
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5. QUADS HAVE BOD 21

Lemma 5.13. Let G ∈M3
2 and V2n

∼=H ⊆ G with n ≥ 4. If K is a 2-connected
H-close subgraph of G, then K is a cycle.

Proof. If K∩H consists of at least two vertices, then we include in K the minimal
connected subgraph of the H-branch or open H-claw containing K ∩H. Since K
is H-close, there is a K-bridge MK in G so that H ⊆ K ∪MK . Let e be an edge
of any H-spoke totally disjoint from K. Note that MK − e is a K-bridge in G− e
and that MK has the same attachments in G as MK − e has in G− e.

Since K is 2-connected, every edge of K is in an H-close cycle contained in
K. Thus, for any 1-drawing D of G − e, Lemmas 5.3 and 5.4 imply that D[K] is
clean. There is a face F of D[K] containing D[MK − e]. As D[K] is clean and K
is 2-connected, F is bounded by a cycle C of K.

Lemma 5.3 implies the cycle C is a (C ∪H)-prebox. If K is not just C, then
there is a C-bridge B contained on the side of D[C] disjoint from MK . Evidently
B is a planar C-bridge.

Lemma 5.6 implies C has BOD. Since C is a (C∪H)-prebox, C is a B#-prebox.
We conclude that C is a box, contradicting Lemma 5.12. This shows that K = C.

The second of the following two corollaries is used several times later in this
work. We recall from Definition 4.1 that, for a set W of vertices, ‖W‖ is the
subgraph with vertex set W and no edges.

Corollary 5.14. Let G ∈ M3
2, let V2n

∼=H ⊆ G with n ≥ 4, let B be an
H-bridge.

(1) If x, y ∈ att(B) are such that ‖{x, y}‖ is H-close, then there is a unique
H-avoiding xy-path in G.

(2) There do not exist vertices x, y, z ∈ att(B) so that ‖{x, y, z}‖ is H-close.

Proof. Suppose P1 and P2 are distinct H-avoiding xy-paths. There is either a
closed H-branch or an open H-claw containing an xy-path; this subgraph of H
contains a unique xy-path P . Then P ∪P1 ∪P2 is a 2-connected H-close subgraph
of G and so, by Lemma 5.13, is a cycle. But it contains three distinct xy-paths, a
contradiction.

For the second point, suppose by way of contradiction that such x, y, z exist.
Let Y be an {x, y, z}-claw in B. There is a minimal connected subgraph Z of
H contained either in a closed H-branch or in an open H-claw and containing x,
y, and z. We note that Z is either a path or an {x, y, z}-claw. Thus, Y ∪ Z is
2-connected and is H-close. It is a cycle by Lemma 5.13, but the centre of Y has
degree 3 in Y ∪ Z, a contradiction.

Corollary 5.15. Let G ∈ M3
2, let V10

∼=H ⊆ G, and let B be a Q-local H-
bridge, for some H-quad Q. If s is an H-spoke and r is an H-rim branch, both
contained in Q, then |att(B) ∩ s| ≤ 2 and |att(B) ∩ (Q− [r])| ≤ 2.

Proof. The first claim follows immediately from Corollary 5.14. For the second,
suppose there are three such attachments x, y, and z. Corollary 5.14 implies they
are not all in the other H-rim branch r′ of Q, so at least one of x, y, and z is in
the interior of some H-spoke of Q.

Suppose first that some H-spoke s in Q is such that 〈s〉 ∩ {x, y, z} = ∅. Then
let H ′ = H − 〈s〉, let B′ be the H ′-bridge containing B, and let r′ and s′ be the
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22 5. QUADS HAVE BOD

two H-branches in Q other than r and s. Then x, y, and z are all attachments of
B′ and they are all in the same open H ′-claw containing (r′ ∪ s′)− r, contradicting
Corollary 5.14.

Otherwise, we may suppose both H-spokes s and s′ in Q have one of x, y, and
z in their interiors. We may suppose s has no other one of x, y and z. Choose
the labelling so that x ∈ 〈s〉. Let r′ be the H-rim branch in Q other than r and
again let H ′ = H − 〈s〉 and B′ be the H ′-bridge containing B. Then y and z are
attachments of B′, as is the H-node in s ∩ r′. But now these three attachments of
B′ contradict Corollary 5.14.

We want to find cycles having BOD in our G ∈ M3
2 that is embedded with

representativity 2 in the projective plane. The following will be helpful.

Lemma 5.16. Let G be a graph embedded in RP 2 and let C be a contractible
cycle in G. Suppose B is a C-bridge so that C ∪ B has no non-contractible cycles
and let F be the C-face containing B. If B′ is another C-bridge embedded in F ,
then B and B′ do not overlap on C.

Proof. Let x and y be any distinct attachments of B and let P be a C-avoiding
xy-path in B. Then C ∪ P has three cycles, all contractible by hypothesis. We
claim that one bounds a closed disc ∆ so that C ∪ P ⊆ ∆. If P is contained in the
disc ∆ bounded by C, then we are done. In the remaining case, let C ′ be one of
these cycles containing P . If the closed disc ∆′ bounded by C ′ contains C, then we
are done. Otherwise, ∆ ∩∆′ is a path in C and then ∆ ∪∆′ is the desired closed
disc.

As no other C-bridge in F can have attachments in the interiors of both the
two xy-subpaths of C and, therefore, there is no C-bridge embedded in F that is
skew (see Lemma 4.3 (1)) to B.

Likewise, if x, y, z are three distinct attachments of B, then there is a disc ∆′

containing the union of C with a C-avoiding {x, y, z}-claw in B. This disc shows
that no other C-bridge embedded in F can have all of x, y, z as attachments and,
therefore, no C-bridge embedded in F is 3-equivalent (see Lemma 4.3 (2)) to B.

The following is an immediate consequence of Lemma 5.16 and the fact that C
has only two faces.

Corollary 5.17. Let G be a graph embedded in RP 2 and let C be a cycle of
G bounding a closed disc in RP 2. If at most one C-bridge B is such that C ∪ B
contains a non-contractible cycle, then C has BOD and, for every other C-bridge

B′, C ∪B′ is planar.

The following result is surprisingly useful in later sections.

Lemma 5.18. Let G ∈ M3
2 and suppose G is embedded with representativity 2

in the projective plane. Let γ be a non-contractible curve in the projective plane so
that |γ∩G| = 2 and let C be a cycle of G so that γ∩C = ∅. If there is a non-planar
C-bridge B, then γ∩G ⊆ B, C has BOD, and, for every other C-bridge B′, C ∪B′
is planar.

Proof. Let a and b be the two points in γ ∩G. We note that G− a and G− b are
planar, as they have representativity 1 embeddings in RP 2. Thus, if, for example,
a /∈ B, then C ∪B ⊆ G− a and so C ∪B is planar, a contradiction.
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5. QUADS HAVE BOD 23

If B′ is any other C-bridge, then a, b /∈ C ∪B′ and, therefore, C ∪B′ is disjoint
from γ. Since any non-contractible cycle must intersect γ, C ∪ B′ has no non-
contractible cycles. The result is now an immediate consequence of Corollary 5.17.

Here is a simple result that we occasionally use.

Lemma 5.19. Suppose G ∈ M3
2 and V2n

∼=H ⊆ G, with n ≥ 4. Let B be an
H-bridge.

(1) Then |att(B)| ≥ 2.
(2) If |att(B)| = 2, then B is isomorphic to K2.
(3) If |att(B)| = 3, then B is isomorphic to K1,3.

Proof. Note that att(B) = B∩B# and G = B∪B#. If |att(B)| ≤ 1, then G is not
2-connected. If |att(B)| = 2 and Nuc(B) has a vertex, then G is not 3-connected.

Now suppose |att(B)| = 3 and B is not isomorphic to K1,3. Let Y be an att(B)-
claw contained in B. As B# ∪ Y is a proper subgraph of G, it has a 1-drawing D1;
Y is clean in D1, as H must be self-crossed. On the other hand, if s is an H-spoke
disjoint from B, there is a 1-drawing D2 of G − 〈s〉. Again, the crossing in D2

involves two edges of H − 〈s〉, so B is clean. We can substitute D2[B] for D1[Y ] to
convert D1 into a 1-drawing of G, a contradiction.

The following lemma is the last substantial one we need before proving that
every H-quad has BOD.

Lemma 5.20. Let G be a graph that is embedded in RP 2 and let C be a cycle
of G. Let B be a C-bridge so that Nuc(B) contains a non-contractible cycle. Then
C is contractible, C has BOD, and every C-bridge other than B is planar.

Proof. Let N be a non-contractible cycle in Nuc(B) and let B′ be a C-bridge
different from B. Then C ∪ B′ is disjoint from N . Since any two non-contractible
cycles in RP 2 intersect, C ∪ B′ does not contain a non-contractible cycle. Clearly
this implies C is contractible and the remaining items are an immediate consequence
of Corollary 5.17.

We prove below that every H-quad has BOD and that at least two hyperquads
have BOD. A standard labelling of the embedded V10 will help make the details of
the statement comprehensible. We have seen that, up to relabelling, there are two
representativity 2 embeddings of V10 in RP 2. There is a simple non-contractible
curve γ in RP 2 meeting G in two points a and b. These are both in the rim R of
H and either none or one of the H-spokes is outside the Möbius band M bounded
by R. Let α and β be the two ab-subarcs of γ, labelled so that β ⊆M.

Definition 5.21. Let G be a graph and let V10
∼=H ⊆ G. If G is embedded

in RP 2 so that one H-spoke is not in M, then H has an exposed spoke and the
exposed spoke is the H-spoke not in M.

In this case, the standard labelling is chosen so that the exposed spoke is s0

and so that v0, v1, v2, v3, v4, v5 are all incident with one of the two faces of H ∪ γ
incident with s0.

The faces of H ∪ γ are bounded by the cycles:

(1) [a, r9, v0] s0 [v5, r5, b, α, a];
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24 5. QUADS HAVE BOD

(2) r0 r1 r3 r3 r4 s0;
(3) [a, r9, v0] r0 s1 [v6, r5, b, β, a];
(4) Q1, Q2, Q3;
(5) r4 [v5, r5, b, β, a, r9, v9] s4; and
(6) [b, r5, v6] r6 r7 r8 [v9, r9, a, α, b].

This case is illustrated in the diagram to the left in Figure 3.3.
In the case all the H-spokes are in M, the labelling of H may be chosen so that

the faces of H ∪ γ are bounded by:

(1) [a, r9, v0]r0 r1 r2 r3[v4, r4, b, α, a];
(2) [a, r9, v0, s0, v5, r4, b, β, a];
(3) Q0, Q1, Q2, Q3;
(4) [v4, r4, b, β, a, r9, v9, s4, v4]; and
(5) [b, r4, v5] r5 r6 r7 r8 [v9, r9, a, α, b].

This case is illustrated in the diagram to the right in Figure 3.3.
We need one more technical lemma before the main result of this section.

Lemma 5.22. Let G ∈M3
2, let V10

∼=H ⊆ G, and let i, j ∈ {0, 1, 2, 3, 4} be such
that Qi and Qj have precisely one H-spoke in common. If Qi has BOD and si is

in a planar Qi-bridge, then (MQj
)# is planar.

Proof. Let e be any edge of si and let D be a 1-drawing of G− e. By Lemma 5.9,
Qi is crossed in D. Thus, the crossing of D involves an edge of MQj

, showing that

(MQj
)# is planar.

The following is the main result of this section.

Theorem 5.23. Let G ∈ M3
2 and V10

∼=H ⊆ G. Let G be embedded with
representativity 2 in the projective plane, with the standard labelling. Then:

(1) each H-quad Q of G has BOD and exactly one non-planar bridge;
(2) Q2 has BOD;
(3) for each i ∈ {0, 1, 3, 4}, (MQi

)# is planar;

(4) if there is an exposed spoke, then Q3 has BOD;
(5) if there is no exposed spoke, then at least one of Q1 and Q3 has BOD.
(6) if there is no exposed spoke and Q1 does not have BOD, then there is a

Q1-bridge B different from MQ1
so that B ⊆ D and either:

(a) a = v0 and B has an attachment at a, an attachment in r5 r6, and
att(B) ⊆ {a} ∪ r5 r6; or

(b) b = v5 and B has an attachment at b, an attachment in r0 r1, and
att(B) ⊆ {b}∪ r0 r1. (The analogous statement holds for Q3 in place
of Q1.)

The following definitions will be useful throughout the remainder of this work.

Definition 5.24. Let G be a graph embedded in RP 2 and let C be a cycle of
G bounding a closed disc ∆ in RP 2. A C-bridge B is C-interior if B is contained
in ∆ and C-exterior otherwise.

Proof of Theorem 5.23. We distinguish two cases.

Case 1: H has an exposed spoke.
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5. QUADS HAVE BOD 25

We adopt the standard labelling, so s0 is the exposed spoke. We note that Q2

is disjoint from G∩γ and, therefore, Lemma 5.18 implies Q2 has BOD and precisely
one non-planar bridge, which is part of (1).

The arguments for Q1, Q3, Q2, Q3 are all analogous and so we do Q2. Since
s0 is exposed, the cycle [a, r9, v0]s0 r4 s4[v9, r9, a] is not contractible and is disjoint
from Q2. Lemma 5.20 shows Q2 has BOD and precisely one non-planar bridge,
proving (2) and (4). We have also proved (3) for j = 3 and (1) for Q1 and Q3.

To complete the proof of (1) in Case 1, it remains to deal withQ0 andQ4. These
two cases are symmetric and so it suffices to prove Q0 has BOD and only one non-
planar bridge. We note that Q3 is completely disjoint from Q0 and we have shown
that Q3 has BOD. Let B be the Q3-bridge containing s3. As Q3 is contractible and
B is Q3-interior, we conclude that B is planar. Therefore, Corollary 5.10 implies
Q0 has BOD, and each Q0-bridge except MQ0 is planar, as required for (1).

For (3), it remains to prove that, for j ∈ {0, 1, 4}, (MQj
)# is planar. We apply

Lemma 5.22: for j = 0 or 4, we take i = 2; for j = 1, we take i = 3. In all cases,
the result follows.

Case 2: H has no exposed spoke.

Lemma 5.18 shows Q1, Q2, and Q2 all have BOD and just one non-planar
bridge. This proves (2) and part of (1). We use this in Corollary 5.10 to see that
Q4 has BOD and just one non-planar bridge, another part of (1). Also, taking i = 2
and j ∈ {0, 4} in Lemma 5.22, we see that (MQj

)# is planar, part of (3).

If Q3 has BOD, then Corollary 5.10 implies Q0 has BOD, so in order to show
Q0 has BOD, we may assume Q3 has NBOD. There is an analogous situation for
Q3 and Q1. We first prove (6) for Q3; we will use this to prove both Q0 has BOD
and (5).

If v4 6= b and v9 6= a, then Lemma 5.18 shows that Q3 has BOD and exactly
one non-planar bridge. So suppose either (or both) v4 = b or v9 = a. If every Q3-
bridge other than MQ3

has only contractible cycles, then Q3 has BOD by Corollary

5.17. Thus, some Q3-bridge B other than MQ3
is such that Q3 ∪ B contains a

non-contractible cycle. Evidently, B is Q3-exterior. If B ⊆M, then again Q3 ∪ B
has only contractible cycles. Thus, B ⊆ D.

Any Q3-exterior bridge B contained in the face of H ∪ γ bounded by

[a, r9, v0]r1 r2 r3[v4, r4, b, α, a]

has all its attachments in {a} ∪ r2 r3. Note that B is planar; moreover, if a is not
an attachment, then Q3 ∪B has no non-contractible cycle and, therefore, does not
overlap any other Q3-exterior bridge. We have the analogous conclusions if B is
contained in the face of H ∪ γ bounded by [b, r5, v6]r6 r7 r8[v9, r9, a, α, b].

We conclude that either B has a as an attachment and also has an attachment
in r2 r3 or, symmetrically, B has b as an attachment and also has an attachment in
r7 r8. This proves (6).

We now prove (5). If {v0, v5} ∩ {a, b} = ∅, then Q1 has BOD and just one
non-planar bridge; likewise if {v4, v9} ∩ {a, b} = ∅, then Q3 has BOD and just one
non-planar bridge. Up to symmetry, the only other possibility is that v0 = a and
v4 = b.

Now suppose that Q1 also has NBOD. Then (6) implies that there must be, up
to symmetry, a Q1-bridge B1 different from MQ1

having attachments at a and in
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26 5. QUADS HAVE BOD

r5 r6. Likewise, there is an H-bridge B3 different from MQ3
having attachments at

b and in r7 r8. As B1 cannot have an attachment at b, B1 6= B3. Considering the
embedding of G in RP 2, we see that both B1 and B3 must be embedded in the face
ofH∪γ incident with [b, r4, v5]r5 r6 r7 r8[v9, r9, a, α, b]. IfB1, say, has an attachment
other than a and v7, then the H-avoiding path in B3 from b to any attachment in
r7 r8 crosses B1, a contradiction. So att(B1) = {a, v7}, att(B3) = {b, v7}, and, by
Lemma 5.19, both B1 and B2 are just edges.

Now recall that Q2 has BOD and, letting B2 be the Q2-bridge containing s2,

Lemma 5.9 implies Q2 is crossed in a 1-drawing D of B#
2 . The crossing must be

between the paths r0 r1 r2 r3 and r5 r6 r7 r8.
There are two maximal uncrossed subpaths of R in D and we know that v0 and

v9 are on one uncrossed segment, say S1, of R, while v4 and v5 are on S2. Suppose
first that v7 is on S1. Then the cycle [v0, B1, v7]r6 r5 r4 s4 r0 separates v8 from v3

in D, yielding the contradiction that s3 is crossed in D. On the other hand, if v7

is on S2, then the same cycle separates v6 from v1, yielding the contradiction that
s1 is crossed in D.

We conclude that not both Q1 and Q3 can have NBOD which is (5). By
symmetry, we may assume Q1 has BOD. Then Lemma 5.22 shows (MQ3

)# is planar.

Furthermore, Corollary 5.10 implies Q3 has BOD and precisely one non-planar
bridge.

What remains is to prove that Q0 has BOD and precisely one non-planar bridge
and that there is precisely one non-planar Q1-bridge. Recall that symmetry implies
this will show the same things for Q3 and Q3, completing the proofs of (1) and (3).

From (6), we may assume that v9 = a and that there is aQ3-bridgeB3 attaching
at a and in r2 r3. Let w be any attachment of B3 in r2 r3, let P be an H-avoiding
v9w-path in B3, and let Q be the subpath of r2 r3 joining w to v4. Then the
cycle [v9, P, w,Q, v4, s4, v9] is non-contractible in RP 2 and is disjoint from Q0. By
Lemma 5.20, Q0 has BOD and has just one non-planar bridge.

As for Q1, we consider two cases. If Q3 has BOD, then Lemma 5.22 implies
(MQ1

)# is planar. If Q3 has NBOD, then (6) implies either v9 = a or v4 = b. In

both cases, Nuc(MQ1
) ∩ {a, b} 6= ∅, so Lemma 5.8 implies (MQ1

)# is planar, as

required.

The following technical corollary of Theorem 5.23 and Lemmas 5.6 and 5.9 will
be used in a few different places later.

Corollary 5.25. Let G ∈M3
2 and V10

∼=H ⊆ G. With indices read modulo 5,
suppose, i ∈ {0, 1, 2, 3, 4} is such that Qi has BOD and, where {j, k} = {i+2, i+3},
suppose further that Qj has NBOD. Then si is in a planar Qi-bridge Bi and Qk has
BOD. Moreover, if ei is any edge of Bi and Di is a 1-drawing of G−ei, then either
ri−1 ri crosses whichever of ri+3 and ri+6 is in Qj or ri+4 ri+5 crosses whichever

of ri−2 and ri+1 is in Qj.

The two possibilities for Di in the case j = i+ 2 are illustrated in Figure 5.1.

Proof of Corollary 5.25. By way of contradiction, suppose si is not in a planar
Qi-bridge. We observe that s0 must be exposed, as otherwise we have the contra-
diction that, for every ` ∈ {0, 1, 2, 3, 4}, s` is in a planar Q`-bridge. It follows that,
for ` ∈ {2, 3}, s` is in a planar Q`-bridge. Thus, i /∈ {2, 3}.
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5. QUADS HAVE BOD 27

vi+1

vi+2

vi+3

vi+4

vi+6

vi+7

vi+8

vi+9

vi+1 vi+6

vi+4
vi+9

vi+8

vi+3

vi+2 vi+7

Figure 5.1. The two possibilities for Di when j = i+ 2.

Let ` ∈ {2, 3} be such that i and ` are not consecutive in the cyclic order
(0, 1, 2, 3, 4). Let e` be the edge of s` incident with v` and let D` be a 1-drawing of
G− e`. By Lemma 5.9, Q` is crossed in D`.

If Q` is self-crossed in D`, then D` shows that the Qi-bridge containing si is
planar. Thus, we have that Q` is not self-crossed in D`. One of s`−1 and s`+1 is
exposed in D`. If this exposed spoke is not also in Qi, then again si is in a planar
Qi-bridge; therefore, we must have that the exposed spoke is in Qi. For the sake
of definiteness, we assume that s`−1 is exposed, which implies that ` = i+ 2.

As the only non-planar Qi-bridge is MQi
, we must have an H-avoiding path P

from the interior of si to the interior of one of r`−1 r` r`+1 and r`+4 r`+5 r`+6. The
drawing D` restricts the possibility to the interior of one of r`−1 r` and r`+4 r`+5.
But now the embedding in RP 2 implies i = 0. This implies j ∈ {2, 3}; however,
neither Q2 nor Q3 has NBOD. Therefore, si is in a planar Qi-bridge.

Because MQj
− ei and MQj

have the same attachments, ODG−ei(Qj) and

ODG(Qj) are isomorphic. As the latter is not bipartite, neither is the former. By

Lemma 5.6, Qj is not clean in Di. Thus, either rj−1 rj or rj+4 rj+5 is crossed in

D2. These are edge-disjoint from Qi.
Lemma 5.9 implies that Qi is also crossed in Di. Since Qi is crossed and, from

the preceding paragraph, something outside of Qi is crossed, either

ri−1 ri crosses ri+3 ∪ ri+6

or
ri+4 ri+5 crosses ri−2 ∪ ri+1 ,

as required.

Since Q2 always has BOD, Corollary 5.25 implies at least one of Q0 and Q4

has BOD. Together with the fact that, in all cases, at least one of Q1 and Q3 has
BOD, we conclude that at least three of the H-hyperquads have BOD.

The last result in this section will be useful early in the next section.

Corollary 5.26. Let G ∈ M3
2 and let V10

∼=H ⊆ G and suppose G has a
representativity 2 embedding in the projective plane, with the standard labelling.
Suppose, for some i, B is an H-bridge having an attachment in both 〈ri−1 si−1〉
and 〈rn+i si+1〉.
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28 5. QUADS HAVE BOD

(1) if i 6= 0, then B ⊆ D.
(2) If i = 0, then either Q3 has NBOD or B consists only of the edge v6v9.

Proof. For (1), we may assume B ⊆M. The two representativity 2 embeddings
of V10 in RP 2 show that B can only be embedded in a face bounded by either
[a, r9, v0]r1 s1[v6, b, β, a] or [b, β, a, r9, v9]s4 r4[v5, r5, b] and that s0 is necessarily ex-
posed in RP 2. Notice that i = 0 in both cases, proving (1).

Now assume i = 0 and suppose Q3 has BOD. From Theorem 5.23, we know
that Q2 also has BOD. For j ∈ {2, 3}, let ej be the edge of sj incident with vj and

let Dj be a 1-drawing of G− ej . Because sj is in a Qj-interior bridge, from Lemma

5.9, we know that Qj is crossed in Dj .

If Q0 is clean in Dj , then no face of Dj is incident with vertices in both 〈r9 s4〉
and 〈s1 r5〉. Therefore, Dj [B] cannot be crossing-free in Dj , a contradiction. Thus,

Q0 is crossed in Dj . The two possibilities for D2 are shown in Figure 5.2, while the
two possibilities for D3 are shown in Figure 5.3.

v0

v1

v3
v8

v9 v4

v5
v3

v6

v8v0v5

v4 v9

v6 v1

Figure 5.2. The two possibilities for D2.

Let P be an H-avoiding path in G joining a vertex in each of 〈r9 s4〉 and
〈s1 r5〉. The left-hand version of D2 has no face incident with both these paths,
and so we must have the right-hand version of D2. Thus, D2 implies P has one
end in 〈v0, r9, v9] and one end in 〈v1, s1, v6]. The right-hand version of D3 has no
face incident with these paths, so it must be the left-hand version of D3. The only
possibility there for the ends of P are v6 and v9, as claimed.

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
19

3,
 D

ec
em

be
r 

13
, 2

01
3



5. QUADS HAVE BOD 29

v0 v5v0v5

v6

v1

v2

v7

v4 v9

v1

v6

v7

v2

v9 v4

Figure 5.3. The two possibilities for D3.
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CHAPTER 6

Green cycles

In this section, we begin our study of the rim edges of H. Ultimately, we will
partition them into three types: “green”, “yellow”, and “red”, and it will be the
red ones that we focus on to find the desired tile structure. In this section, however,
we begin with the study of green edges. We shall show that the cycles C we label
green and yellow cannot be crossed in any 1-drawing of H ∪ C.

Definition 6.1. An edge e of a non-planar graph G is red in G if G − e is
planar.

We will eventually prove that every edge of R is either in a green cycle, or in a
yellow cycle, or red. The main result in this section, one of the three main steps of
the entire proof, is that no edge of R is in two green cycles.

Definition 6.2. Suppose G is a graph and V10
∼=H ⊆ G. Suppose further

that G is embedded in RP 2 with representativity 2 and that M is the Möbius band
bounded by the H-rim R.

(1) A cycle C in G is H-green if C is the composition P1P2P3P4 of four paths,
such that:
(a) P1 ⊆ R and P1 has length at least 1;
(b) P2P3P4 is R-avoiding;
(c) P2 ∪ P4 ⊆ H;
(d) P3 is H-avoiding (and, therefore, is either trivial or contained in an

H-bridge); and
(e) either

(i) P1 contains at most 3 H-nodes or
(ii) P1 is exceptional , that is, for some i ∈ {0, 1, 2, . . . , 9} and in-

dices read modulo 10,

P1 = ri ri+1 ri+2 .

(2) An edge of R is H-green if it is in an H-green cycle.
(3) A vertex v of R is H-green if both edges of R incident with v are in the

same H-green cycle.

There is a natural symmetry between P2 and P4: if C is an H-green cycle,
consisting of the composition P1P2P3P4 as in Definition 6.2, then P−1

1 P−1
4 P−1

3 P−1
2

is another H-green cycle. Thus P−1
4 and P2 can both be considered to be P2. As

the orientations of the individual Pi will not be of any importance (except in as
much as they are required to make C a cycle), we may say P2 and P4 are symmetric.

Note that the exceptional case 1(e)ii is the only one in which P1 has 4 H-nodes.

Lemma 6.3. Suppose G is a graph and V10
∼=H ⊆ G. Let C be any H-green

cycle expressed as the composition P1P2P3P4 as in Definition 6.2.

30
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6. GREEN CYCLES 31

(1) If i ∈ {2, 4}, then Pi has an end in R and is either trivial or contained in
an H-spoke.

(2) The path P3 is not trivial.
(3) If P2 and P4 are both non-trivial, then they are contained in different

H-spokes.

Proof. (1) For sake of definiteness, we assume i = 2. If P2 is not trivial, then
there is an edge e in P2. From the definition, e is in H but not in R. Therefore,
there is a spoke s containing e. If P2 has a vertex u not in s, then P2 is a path
contained in H and containing e and u. This implies that one end of s, a vertex of
R, is internal to P2, contradicting the fact that P2P3P4 is R-avoiding. So P2 ⊆ s,
as required. Since P1 ⊆ R and P2 has an end in common with P1, P2 has an end
in R.

(2) Suppose P3 is trivial. Then P2P4 is an R-avoiding path joining the ends of
P1. Each of P2 and P4 is either trivial or in a spoke and, since P2P4 is R-avoiding,
either both are trivial or P2P4 is contained in a single spoke. If both are trivial,
then P1 is the cycle P1P2P3P4, which is impossible, since P1 is properly contained
in the cycle R. Each of P2 and P4 has an end in R (or is trivial) and P2P4 has
both ends in common with P1, so P2P4 is the entire spoke. But then P1 contains
six H-nodes, a contradiction.

(3) For j = 2, 4, Pj is non-trivial by hypothesis. Therefore, (1) shows it is
contained in an H-spoke s. As it has a vertex in common with P1, Pj has a vertex
in R. This vertex is an H-node incident with s. If P2 and P4 are contained in the
same spoke s, then, as in the proof of (2), they contain different H-nodes. But then
P1 contains six H-nodes, contradicting Definition 6.2.

There is a small technical point that must be dealt with before we can success-
fully analyze the relation of an H-green cycle to the embedding of G in RP 2.

Definition 6.4. Let Π be a representativity 2 embedding of a graph G in RP 2

and let V10
∼=H ⊆ G. Then Π is H-friendly if, for each H-green cycle C of G and

any non-contractible simple closed curve γ in RP 2 meeting Π(G) in precisely two
points, Π[C] is contained in the closure of some face of Π[H] ∪ γ.

Lemma 6.5. Suppose G ∈M3
2 and V10

∼=H ⊆ G. Let Π be any representativity
2 embedding of G in RP 2, let γ be a non-contractible simple closed curve in RP 2

meeting Π(G) in precisely two points, and let C be an H-green cycle in G. Give H
the standard labelling relative to γ.

(1) Either Π[C] is contained in the closure of some face of Π[H]∪γ or v6v9 is
an edge of G embedded in M and C = r6 r7 r8[v9, v6v9, v6]. In particular,
if Π[H] ⊆M, then Π is H-friendly.

(2) If Π is not H-friendly, then there is an H-friendly embedding of G in RP 2

obtained from Π by reembedding only v6v9.
(3) In particular, there is an H-friendly embedding of G in RP 2.

Proof. Suppose Π[C] is not contained in the closure of any face of Π[H]∪γ and let
P1P2P3P4 be the decomposition of C as in Definition 6.2. As P3 is (H∪γ)-avoiding
and non-trivial by Lemma 6.3 (2), there is an (H ∪ γ)-face F3 containing P3. Note
that, if P2 is not trivial, then Lemma 6.3 (1) asserts it is contained in an H-spoke
s and it contains an end of P3, so P2 is contained in the boundary of F3. Likewise
for P4. We assume by way of contradiction that P1 6⊆ cl(F3).
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32 6. GREEN CYCLES

Claim 1. Then:

(1) P1 = r6 r7 r8;
(2) s0 is exposed;
(3) either a = v9 or b = v6; and
(4) if F3 ⊆ D, then both v6 = b and v9 = a.

Proof. We first consider the case F3 ⊆ D. Both ends of P1 are contained in
one of the ab-subpaths of R. If P1 is not contained in the boundary of F3, then
it must contain the other complete ab-subpath of R. As each of these has at least
4 H-nodes, the only possibility is that it is precisely 4 H-nodes. In this case, P1

must be exceptional and s0 must be exposed. In particular, P1 = r6 r7 r8 and P3

has ends v6 and v9. The paths P2 and P4 are both trivial. Moreover, as P1 is not
incident with F3, we must have v6 = b and v9 = a.

In the other case, F3 ⊆ M. If F3 is contained in the interior of an H-quad,
then P1 joins two vertices in the same quad and is not contained in the quad.
In this case, P1 must have at least 5 H-nodes, which is impossible. Therefore,
F3 is not contained in the interior of an H-quad, and so is bounded by one of
[a, r9, v0]r0 s1[v6, r5, b, β, a] and [a, r9, v9]s4 r4[v5, r5, b, β, a]. (Recall β = γ ∩M.)
Notice that s0 is exposed.

These cases are symmetric; for sake of definiteness, we presume F3 is bounded
by [a, r9, v0]r0 s1[v6, r5, b, β, a]. The path P1 has at most 4 H-nodes and joins two
vertices on Q0. If P1 ⊆ Q0, then Π[C] is contained in the closure of one of the
two (Π[H] ∪ γ)-faces whose boundary is contained in Π[Q0] ∪ γ; thus, P1 6⊆ Q0.
Therefore, P1 has at least 4 H-nodes; by definition it has at most 4, so P1 has
precisely 4 H-nodes. In particular, P1 can only be r6 r7 r8 and v9 = a. �

Because s0 is exposed, Theorem 5.23 implies that both Q2 and Q3 have BOD.
Let e be any edge in s2 and let D2 be a 1-drawing of G − e. Since Q2 has BOD,
Lemma 5.9 shows Q2 is crossed in D2, so r0 r1 r2 r3 crosses r5 r6 r7 r8. This implies
that neither s0 nor s4 is exposed in D2 and, therefore, P3 cannot be in the same
(H − 〈s0〉)-bridge as s0.

Let B0 and B be the (H − 〈s0〉)-bridges containing s0 and P3, respectively.
These evidently overlap on Q0 and they both overlap MQ0

−e (in G−e). Therefore,

Q0 has NBOD. Since MQ0
−e is a non-planar Q0-bridge in G−e, Lemma 5.6 implies

that Q0 is not clean in D2.
As Q0 and Q2 have only s1 in common and both are crossed in D2, s1 must

be exposed in D2. It follows that D2[P3] is in the face of D2[H − 〈s2〉] bounded by
s1 r6 r7 r8 r9 r0.

The same arguments apply with Q3 in place of Q2, showing that D3[P3] is in
the face of D3[H − 〈s3〉] bounded by s4 r4 r5 r6 r7 r8. These two drawings imply
that att(B) ⊆ r6 r7 r8.

If F3 ⊆ D, then F3 is bounded by r9 s0 r5[v6, α, v9] (recall α = γ ∩D). Thus,
att(B) = {v6, v9} and Lemma 5.19 implies that P3 is just the edge v6v9. In this
case, Claim 1 implies P3 can obviously be embedded in the other face of H ∪ γ
contained in D and incident with both v6 and v9.

If F3 ⊆M, then F3 is bounded by either

[a, r9, v0]r0 s1[v6, r5, b, β, a] or [a, r9, v9]s4 r4 [v5, r5, b, β, a] .
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6. GREEN CYCLES 33

Again, this implies that att(B) ⊆ {v6, v9}, so P3 is just the edge v6v9. In this case,
Claim 1 implies only that either v6 = b or v9 = a. Again these cases are symmetric,
so we assume v9 = a.

We remark that if v ∈ A∩B, then (v) is an AB-path and this is the only path
containing v that is an AB-path. We now return to the proof.

We wish to reembed v6v9 in the (H ∪ γ)-face incident with v6, v7, v8, and v9.
We need only verify that there is no H-avoiding [b, r5, v6〉 〈v6, r6, v7, r7, v8, r8, v9]-
path. But such a path would have to appear in D3, where it can only also be in the
face of D3[H − 〈s3〉] bounded by s4 r4 r5 r6 r7 r8. But then it crosses v6v9 in D3, a
contradiction completing the proof.

We are now prepared for our analysis of H-green cycles.

Lemma 6.6. Let G ∈M3
2, V10

∼=H ⊆ G, and let Π be an H-friendly embedding
of G in RP 2. Let C be an H-green cycle expressed as the composition P1P2P3P4

as in Definition 6.2. Then:

(1) P1 is contained in one of the two ab-subpaths of R;
(2) if C ⊆ M and s is any H-spoke contained in M that is totally disjoint

from C, then C is a (C ∪ (H − 〈s〉))-prebox;
(3) if C is not contained in M and s is any H-spoke contained in M having

one end in the interior of P1, then C is a (C ∪ (H − 〈s〉))-prebox;
(4) there is a C-bridge MC so that H ⊆ C ∪MC ;
(5) C is contractible, C has BOD, and all C-bridges other than MC are planar;
(6) C is a (C ∪H)-prebox;
(7) MC is the unique C-bridge (that is, there are no planar C-bridges);
(8) C bounds a face of Π;
(9) there are at most two H-nodes in the interior of P1; and

(10) in any 1-drawing of H ∪ C, C is clean.

Proof. Because Π is H-friendly, there is a face F of (H∪γ) whose closure contains
C.

(1) This is an immediate consequence of Definition 6.4, as the boundary ∂ of
any face of H ∪ γ has each component of ∂ ∩R contained in one of the ab-subpaths
of R.

(2) and (3) Note that H−〈s〉 contains a subdivision of V8. In particular, if e
is an edge of C not in R, then H−〈s〉 is a non-planar subgraph of (C∪(H−〈s〉))−e,
as required. If e ∈ C is in R, then we claim the cycle R′ = (R− 〈P1〉) ∪ P2P3P4 is
the rim of a V6. We see this in the two cases.

Case 1: (2) In this case, there are three H-spokes t1, t2, t3 other than s contained
in M. Each ti has an end vi in R − 〈P1〉 and a maximal R′-avoiding subpath t′i
containing vi. It is straightforward to verify that R′ ∪ t′1 ∪ t′2 ∪ t′3 is a subdivision
of V6, as required.

Case 2: (3) In the exceptional case P1 = ri ri+1 ri+2, s is different from all of si,
si+3, and si+4, so R′ ∪ si ∪ si+3 ∪ si+4 is the required V6. (Note that one of si and
si+3 can be the exposed spoke and part of that spoke might be in either P2 or P4,
but whatever part is not in P2 ∪ P4 makes the third spoke.)

In the remaining case, there are two H-spokes si and si+1 that are completely
disjoint from C. Any other H-spoke s′, different from s, si, and si+1, and contained
in M, will connect to R′ to make a third spoke, either because both its ends are in
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34 6. GREEN CYCLES

R′ or because one end is in R′ and the other end is in P1 and one of the paths in
P1 − e joins the other end of s to a vertex in R′.

(4) Let MC be the C-bridge containing the ab-subpath Q of R that is P1-
avoiding. We claim H ⊆ C ∪MC . Observe that the maximal P1-avoiding subpath
Q′ of R containing Q is contained in MC and, therefore, R ⊆ C ∪MC . Note that
every H-spoke has at least one end in Q′ that is not in P1 and, therefore, that end
is in Nuc(MC). Thus, if P3 is not contained in M, it is obvious that H ⊆ C ∪MC .
So suppose P3 is contained in M. The H-spokes other than those that contain P2

and P4 are obviously in MC , and the ones containing P2 and P4 are in the union
of MC and C.

(5) If either P1 has at most 3 H-nodes, or s0 is not exposed, or P1 is neither
r1 r2 r3 nor r6 r7 r8, then there is an H-spoke s contained in M and totally disjoint
from C. The spoke s combines with the one of the two subpaths of R joining the
ends of s that is disjoint from P1 to give a non-contractible cycle disjoint from C.
The claim now follows immediately from Lemma 5.20.

We now treat the case s0 is exposed and P1 is either r1 r2 r3 or r6 r7 r8. In this
case, F is a face of H ∪ γ contained in D. Let B′ be a C-bridge other than MC . If
B′ ⊆ cl(F ), then C∪B′ ⊆ cl(F ) and cl(F ) is a closed disc in RP 2. Therefore, C∪B′
has no non-contractible cycles in RP 2. Otherwise, B′ is contained in the closure of
one of the H-faces bounded by Q1 or Q2 or Q3. For each i ∈ {1, 2, 3}, let Fi be the
H-face bounded by Qi. Then cl(Fi) ∩ cl(F ) is a path and, therefore, cl(Fi) ∪ cl(F )
is a closed disc containing C ∪B′ and again C ∪B′ has no non-contractible cycles.
The result now follows from Corollary 5.17.

(6) In the case P3 ⊆ M, at most the H-spokes containing P2 and P4 meet
C. There are at least two others contained in M that are disjoint from C; let s
be one of these. By (2), for any edge e of C, (C ∪ (H − 〈s〉))− e is not planar, so
(C ∪H)− e is not planar.

Now suppose P3 ⊆ D. If some H-spoke s contained in M has an end in the
interior of P1, then (3) implies that, for any edge e of C, (C ∪ (H − 〈s〉))− e is not
planar, so (C ∪H)− e is not planar.

In the alternative, no H-spoke contained in M has an end in the interior of P1.
If e is not in P1, then H ∩M, which is a V8 or V10, is contained in (C ∪H)− e, so
we may assume e ∈ P1. But then (R−〈P1〉)∪P2P3P4 and the H-spokes contained
in M make a V8 or V10, showing (C ∪H)− e is not planar.

(7) Observe that (5) shows any other C-bridge is planar and that C has BOD.
If B is any other C-bridge, then C is a B#-prebox by (6) and, therefore, is, by
definition, a box, contradicting Lemma 5.12.

(8) This is an immediate consequence of the facts that C is contractible (5)
and there is only one C-bridge (7).

(9) Suppose by way of contradiction that vi−1, vi, vi+1 are internal to P1.
Notice that P1 is not exceptional. We claim that Qi is a box, contradicting Lemma
5.12.

For s ∈ {si−1, si, si+1}, s is contained in one of the two faces of R (i.e., the
Möbius band M and the disc D). By (8), C is the boundary of some face F of
G. Clearly F and s are in different R-faces, so one is in M and the other is in
D. Therefore, all of si−1, si, and si+1 are contained in the same one of M and D.
Since D contains at most one H-spoke, it must be that all three are contained in
M. Clearly, this implies F ⊆ D and, therefore, P2P3P4 ⊆ D.
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6. GREEN CYCLES 35

There is another H-spoke s contained in M that is totally disjoint from Qi.
As P2P3P4 ⊆ D, R ∪ P2P3P4 ∪ s contains a non-contractible cycle including both
P2P3P4 and s that is totally disjoint from Qi. Thus, Lemma 5.20 implies Qi has
BOD and all Qi-bridges except MQi

are planar.

We claim Qi is a (Qi∪MQi
)-prebox. Note that Qi∪MQi

contains H−〈si〉 and

so the deletion of any edge in si−1 ∪ si+1 leaves a V6. By (3), C is a C ∪ (H −〈si〉)-
prebox, so the deletion of any edge e in ri−1 ∪ ri leaves a non-planar subgraph in
(C − e)∪ (H −〈si〉), which is contained in (Qi− e)∪MQi

. That is, if e ∈ ri−1 ∪ ri,
then (Qi − e) ∪MQi

is not planar.

We must also consider an edge in ri+4 ∪ ri+5 (these indices are read modulo
10). Let R′ be the cycle made up of the following four parts: the two paths in
R−〈P1〉− 〈ri+4 ri+5〉, P2P3P4, and si−1 ri−1 ri si+1. To get the V6, add to R′ both
H-spokes totally disjoint from P1 and either of the two R′-avoiding subpaths of P1

whose ends are in R′. Thus, if e ∈ ri+4 ri+5, then (Qi − e) ∪MQi
is not planar,

completing the proof that Qi is a (Qi ∪MQi
)-prebox. (See Figure 6.1.)

ri+4 ri+6ri+5

ri−1 ri ri+1

CD

Figure 6.1. The case e ∈ ri+4 ri+5 for Q̄i being a (Q̄i ∪MQ̄i)-
prebox. Only two of the three spokes are shown.

Since the Qi-bridge B containing si is contained in the closed disc in RP 2

bounded by Qi, B is planar and, therefore, Qi is a box, the desired contradiction.
(10) Let D be a 1-drawing of H ∪ C. Let P1P2P3P4 be the decomposition of

C into paths as in Definition 6.2, so P1 ⊆ R and P3 is H-avoiding. If C is crossed
in D, then it is P1 that is crossed, while P2P3P4, being R-avoiding, is not crossed
in D. We claim that there is an H-spoke vivi+5 disjoint from C that is not exposed
in D. The existence of s and the fact that C is crossed in D shows that no face of
R ∪ s is incident with both ends of P1 and, therefore, P2P3P4 must cross R ∪ s in
D, the desired contradiction.

To prove the claim, we consider two cases. If P1 has at most 3 H-nodes, then
this is obvious, since only one H-spoke can be exposed. In the alternative, P1 is
exceptional, say P1 = ri ri+1 ri+2. As the spoke exposed in D is incident with an
end of the H-rim branch that is crossed, we see that si+4 is not the exposed spoke
and is disjoint from P1, as required.

The next result is the main result of this section and the first of three main
steps along the way to obtaining the classification of 3-connected, 2-crossing-critical
graphs having a subdivision of V10. The other two major steps are, for G ∈ M3

2
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36 6. GREEN CYCLES

containing a subdivision H of V10: (i) G has a representativity 2 embedding in
RP 2 so that H ⊆ M; and (ii) G contains a subdivision of V10 with additional
properties (that we call “tidiness”). It is this tidy V10 for which the partition of
the edges of the rim into the red, yellow, and green edges that allows us to find the
decomposition into tiles.

Theorem 6.7. If G ∈M3
2 and V10

∼=H ⊆ G, then no two H-green cycles have
an edge of R in common.

Proof. Suppose e0 ∈ R is in distinct H-green cycles. By Lemma 6.5 (3), there is
an H-friendly embedding Π of G in RP 2. By Lemma 6.6 (8), any H-green cycle
bounds a face of Π[G]. As e0 is in R and R is the boundary of both the (closed)
Möbius band M and the (closed) disc D, one of these faces, call it FM, is contained
in M, while the other, call it FD, is contained in D. For n ∈ {M,D}, let Cn be the
green cycle bounding Fn and let P n

1 P
n
2 P

n
3 P

n
4 be the path decomposition of Cn as

in Definition 6.2; in particular, P n
1 ⊆ R and P n

3 is H-avoiding.
Note PD

2 P
D
3 P

D
4 is disjoint from M (except for its ends) and PM

2 PM
3 PM

4 is
contained in M. Thus, CD ∩ CM = PD

1 ∩ PM
1 . Lemma 6.6 (9) implies that, for

n ∈ {M,D}, P n
1 has at most 4 H-nodes. We conclude that PD

1 ∪ PM
1 is not all of

R, and so CD ∩ CM is a path. Therefore, there is a unique cycle C in CD ∪ CM

not containing e0 and, furthermore, C bounds a closed disc in RP 2 having e0 in its
interior.

On the other hand, Lemma 6.6 (1) shows there is an ab-subpath A1 of R that
contains PD

1 . Since e0 ∈ PD
1 ∩ PM

1 , it is also the case that PM
1 ⊆ A1. Let A be

the other ab-subpath of R, so that A is (CD ∪ CM)-avoiding. In particular, there
is a C-bridge MC containing A. By Lemma 6.6 (7), for n ∈ {M,D}, A is in the
unique Cn-bridge MCn

. Since MCn
(and therefore A) is not contained in the face of

G bounded by Cn, we conclude that A is not in the disc bounded by C. Therefore,
MC is different from the C-bridge BC containing e0.

Claim 1. For each H-spoke s, some H-node incident with s is not in CM∪CD.

Proof. By Lemma 6.6 (9), there exists an i so that PD
1 ⊆ ri ri+1 ri+2. In

particular, e0 is in ri ∪ ri+1 ∪ ri+2. Thus, PM
1 has an edge in at least one of ri,

ri+1, and ri+2.
Lemma 6.6 (8) implies that CM bounds a face of G. Therefore, CM is contained

in the closure cl(F ) of a face F of Π[H] and F ⊆ M. Thus, PM
1 is contained in

one of the two components of cl(F ) ∩ R. Since such a component is contained in
consecutive H-rim branches, if PM

1 contains an edge in rj , then PM
1 is contained

in either rj−1 rj or rj rj+1. From the preceding paragraph, PM
1 is contained in one

of ri−1ri, riri+1, ri+1ri+2, and ri+2ri+3.
We conclude that PD

1 ∪PM
1 is contained in either ri−1 ri ri+1 ri+2 or ri ri+1 ri+2

ri+3 showing that no H-spoke has both ends in PD
1 ∪ PM

1 . �

Claim 2. (1) H ⊆ C ∪MC ∪BC .
(2) If s is an H-spoke contained in M disjoint from CM, then (C ∪MC)− 〈s〉

is not planar.

Proof. For (1), we note that it is clear that R ⊆ C ∪MC ∪BC . Now let s be
an H-spoke. Suppose first that s ⊆M. By Claim 1, there is an H-node v incident
with s and not in CM∪CD. If s∩CM is at most an end of s, then it is evident that
s ⊆MC . If s∩CM is more than just an end of s, then s consists of a CM-avoiding
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6. GREEN CYCLES 37

subpath s′ joining v to a vertex in CM, together with the path CM ∩ s (which is by
Lemma 6.3 (1)) either PM

2 or PM
4 ). But then it is again evident that s ⊆ C ∪MC .

Otherwise, s is exposed, in which case we have the same argument, but replacing
CM with CD, completing the proof of (1).

For (2), a V6 is found whose rim is (R−
〈
PM

1

〉
) ∪ PM

2 PM
3 PM

4 . The spokes are
contained in the three other spokes in M, namely they are the parts that are not
in PM

2 ∪ PM
4 . �

Claim 3. C has BOD.

Proof. Let S be the set of H-spokes contained in M and disjoint from CM.
As CM meets at most two H-spokes in M, |S| ≥ 2. If some s ∈ S is also disjoint
from CD, then R ∪ s contains a non-contractible cycle disjoint from C, in which
case Lemma 5.20 shows C has BOD, as claimed.

So we may assume that no element of S is also disjoint from CD. Let s be any
element of S; then s ∩ CD is a vertex v of PD

1 . Let e be the edge of s incident
with v. In order to show that C has BOD, we will show that: (i) the overlap
diagrams ODG−e(C) and ODG(C) are the same; and (ii) ODG−e(C) is bipartite.
For (i), note that CD bounds a face in RP 2 and that 〈s〉 is in the boundary of two
(H ∪ γ)-faces. Thus, there can be no C-bridge that overlaps MC in G because of
its attachment at v. That is, ODG−e(C) and ODG(C) are the same.

For (ii), Lemma 6.6 (2) applied to CM and (3) applied to CD, combined with
Lemma 5.4, shows CD and CM are both clean in De. Therefore, C is clean in De.
By Claim 2 (2), (C ∪MC) − e is not planar, so Lemma 5.6 shows C has BOD in
G− e. Therefore, C has BOD in G. �

Claim 4. C is a C ∪H-prebox.

Proof. Note that CD ∪ CM ⊆ C ∪ H. If e ∈ C, then let i ∈ {M,D} be
such that e ∈ Ci. Lemma 6.6 (6) says that Ci is a (Ci ∪H)-prebox and, therefore,
(Ci ∪H)− e is not planar. Since (Ci ∪H)− e ⊆ (C ∪H)− e, we conclude that C
is a (C ∪H)-prebox. �

Claim 5. G = C ∪MC ∪BC .

Proof. By way of contradiction, suppose there is another C-bridge B′. Let
F be the (H ∪ γ)-face containing B′. Then C ∪ B′ is contained in the closed disc
that is the union of the closure of F and the disc bounded by C, showing B′ is
planar. By Claim 4 and the fact that C∪H ⊆ B′#, Lemma 5.4 says that C is clean
in a 1-drawing of B′#, of which there is at least one, since G is 2-crossing-critical.
This yields a 1-drawing of C ∪MC with C clean. By Claim 3, C has BOD, BC
is planar because it is contained in the closed disc bounded by C, and above we
showed that every other C-bridge is planar; Corollary 4.7 implies cr(G) ≤ 1, a
contradiction. �

We are now on the look-out for a box in G; it is not true that C is necessarily
one. Our next claim gives a sufficient condition under which we can find some box
and the following two claims show that, in all other cases, C is a box.

Claim 6. Suppose all of the following:

(1) there is an i so that PM
3 is in a Qi-local H-bridge;

(2) PM
2 contains vi and is a non-trivial subpath of si; and

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
19

3,
 D

ec
em

be
r 

13
, 2

01
3



38 6. GREEN CYCLES

(3) vi+2 is in the interior of PD
1 .

Then G has a box.

Proof. We note that (2) implies si ⊆M.

Subclaim 1. Both si+1 and si+2 are contained in M.

Proof. Suppose first that si+2 is exposed. Then (3) implies PD
2 and PD

4 are
both trivial. That is, CD = PD

1 P
D
3 . But PD

3 is H-avoiding and overlaps si+2 on R
(because PD

1 has at most four H-nodes, only two of which can be in the interior of
PD

1 ). Thus, PD
3 and si+2 cross in RP 2, a contradiction. Therefore, si+2 ⊆M.

Next, suppose si+1 is exposed. Then, by symmetry, we may assume i = 4 or
i = 9. In either case, PM

1 and PD
1 are in different ab-subpaths of R and so do not

have an edge in common, a contradiction. Hence si+1 is also contained in M. �

Let u be the common end of PM
2 and PM

3 and let w be the common end of PM
4

and PM
1 . By (2), u ∈ 〈si〉 and, by (1) and (2), w ∈ ri. Observe that the edge e0

common to CM and CD is in [vi, ri, w].
Let C ′ be the cycle

[
vi+5, si, u, P

M
3 PM

4 , w, ri, vi+1

]
ri+1 si+2 ri+6 ri+5. We note

that there are two obvious C ′-bridges: the C ′-interior bridge BC′ containing the
edge of si+1 incident with vi+6; and the C ′-exterior bridge MC′ for which H −
〈si+1〉 ⊆ C ′ ∪MC′ . To show C ′ is a box, it suffices to show that C ′ has BOD and
C ′ is a (C ′ ∪MC′)-prebox.

Notice that vi+2 is in the interior of PD
1 by hypothesis and vi+1 is in the interior

of PD
1 because e0 ∈ ri. Lemma 6.6 (9) implies that the only H-nodes in the interior

of PD
1 are vi+1 and vi+2. In particular, vi and vi+3 are in R−

〈
PD

1

〉
, as are all the

ends of si+3 and si+4.
To see that C ′ has BOD, we produce a non-contractible cycle in Nuc(MC′).

Lemma 5.20 then implies C ′ has BOD and precisely one non-planar bridge. We
start with the two paths PD

2 P
D
3 P

D
4 and si+4, and easily complete the required cycle

using two paths in R, one containing ri+3 and the other containing ri+9.
It remains to show that C ′ is a (C ′ ∪MC′)-prebox. Since V8

∼=H − 〈si+1〉 ⊆
C ′ ∪MC′ , it is obvious that, if e ∈ C ′ and e /∈ R, then (C ′ ∪MC′) − e contains a
V6 and so is not planar. So suppose e ∈ C ′ and e ∈ R. There are two cases.

If e ∈ ri ri+1, then take (R −
〈
PD

1

〉
) ∪ PD

2 P
D
3 P

D
4 as the rim. We choose as

spokes si, si+3, and si+4.
If e ∈ ri+5 ri+6, then the rim consists of the two paths PD

2 P
D
3 P

D
4 and C ′ −

〈ri+5 ri+6〉, together with the two subpaths of R joining them, one containing vi+3,
vi+4, and vi+5, and the other containing vi+7, vi+8, vi+9, and vi. In this case, the
spokes are si+3, si+4, and PM

2 . �

In the remaining case, we show that C is a box. The following simple observa-
tions get us started, the first being the essential ingredient.

Claim 7. Either:

(1) there is an i so that
• PM

3 is in a Qi-local H-bridge;
• si contains an edge of CM; and
• vi+2 is in the interior of PD

1 ;
or (symmetrically)

(2) there is an i so that
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6. GREEN CYCLES 39

• PM
3 is in a Qi-local H-bridge;

• si+1 contains an edge of CM; and
• vi−1 is in the interior of PD

1 ;
or

(3) there are three H-spokes not having an edge in CM and not having an
incident vertex in the interior of PD

1 .

Proof. Lemma 6.6 (9) implies there are at most two H-nodes in the interior
of PD

1 . Therefore, if no H-spoke contains an edge of CM, then (3) holds. So we
may suppose CM has an edge in some H-spoke.

Suppose first that s0 is exposed, CM has an edge in s1 and e0 is in either
[a, r9, v0, r0, v1] or [b, r5, v6]. Therefore, PD

1 has one end in either [a, r9, v0, r0, v1〉
or [b, r5, v6〉. Lemma 6.6 (9) implies at most two H-nodes can be in the interior of
PD

1 , so no end of s3 can be in the interior of PD
1 . We conclude that s0, s3 and s4

are the required three spokes yielding (3).
Symmetry treats the same case on the other side.
In the remaining case, PM

3 is contained in a Qi-local H-bridge and both si and
si+1 are contained in M. The edge e0 is in either ri or ri+5. If the only H-nodes in
the interior of PD

1 are incident with either si or si+1, then the other three H-spokes
suffice for (3).

Thus, by symmetry we may assume an end of si+2 is in the interior of PD
1 .

This implies that an end of si+1 is also in the interior of PD
1 . Lemma 6.6 (9) shows

these are the only H-nodes in the interior of PD
1 . If si does not contain an edge of

CM, then the three spokes other than si+1 and si+2 suffice for (3), while if si does
contain an edge of CM, then we have (1). �

Claims 6 and 7 show we need only consider the third possibility in Claim 7 to
find a box.

Claim 8. If there are three H-spokes not having any edge in CM and not
having an incident H-node in

〈
PD

1

〉
, then C is a box.

Proof. By Claim 3 and the fact that BC is a planar C-bridge, it suffices to
show C is a (C ∪MC)-prebox. For each e ∈ C, we show that (C ∪MC)−e contains
a V6.

We note that 3-connection and the fact that CM and CD both bound faces
implies CM ∩ CD is just e0 and its ends. That is, BC consists of just e0 and its
ends. Thus, Claim 5 implies that G − e0 = C ∪MC . In particular, every spoke is
in C ∪MC .

Let w be any H-node that is not in C. There are two wC-paths in R − e0;
let them be Rx with end x ∈ C and Ry with end y ∈ C. Thus, R consists of the
C-avoiding path Rx ∪Ry, a subpath of C, the edge e0, and another subpath of C.
The cycle C consists of two xy-paths; let them be ND containing PD

2 P
D
3 P

D
4 and

NM containing PM
2 PM

3 PM
4 . We note that ND ⊆ D and NM ⊆M.

Subclaim 2. Let s be an H-spoke with no edge in CM and not having an
incident H-node in

〈
PD

1

〉
.

(1) If s ⊆M, then s ∩ C is either empty, x, or y.
(2) If s ⊆ D (that is, s = s0 is exposed), then s ∩ C contains at most one of

v0 and v5.

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
19

3,
 D

ec
em

be
r 

13
, 2

01
3



40 6. GREEN CYCLES

Proof. For (1), the alternative is that s contains a vertex u in
〈
NM

〉
. By

hypothesis, s has no edge in CM and, therefore, s has no edge in C. Being in NM,
the vertex u is either in R or in PM

2 PM
3 PM

4 .
Suppose that u is in PM

2 PM
3 PM

4 . If u is in PM
3 , then, since PM

3 is H-avoiding,
u is an end of PM

3 , and so is in PM
2 ∪ PM

4 . Thus, if u is in PM
2 PM

3 PM
4 , then u is

in PM
2 ∪ PM

4 . Since both PM
2 and PM

4 are contained in H, are R-avoiding, and
neither has an edge of s, the one containing u is trivial and u is in R.

Thus, in every case u is in R and so is an H-node. It follows that one of[
x,NM, u

]
and

[
u,NM, y

]
contains PM

2 PM
3 PM

4 and the other is contained in R.

We choose the labelling so that
[
x,NM, u

]
⊆ R.

As we follow R−e0 from w to x and continue to u along NM, we see there is an
edge of C incident with x and not in R. That it is in ND implies it is in PD

2 P
D
3 P

D
4 .

All the vertices in
[
x,NM, u

〉
are incident with two rim edges in what we have just

traversed. In particular, e0 is not incident with any of these vertices and, therefore,[
x,NM, u

]
is contained in CD. More precisely,

[
x,NM, u

]
is contained in PD

1 . As
we continue along R past u, we either find e0 is incident with u or the other edge
of C incident with u is in R. In either case, u is in

〈
PD

1

〉
, a contradiction.

For (2), suppose v0 and v5 are both in C. Then PM
1 ∪PD

1 contains both v0 and
v5. By Definition 6.2 (1e), v0 and v5 are not both in the same one of PM

1 and PD
1 ,

so one is in PM
1 and the other is in PD

1 . By symmetry, we may assume v0 is in PM
1 .

Because Π is H-friendly, PM
1 is contained in either [a, r9, v0, r0, v1] or, if a = v0, r9

(these being the only two faces of Π[H] ∪ γ in M that can be incident with v0).
Recall that e0 is in both PM

1 and PD
1 . If PM

1 ⊆ [a, r0, v0, r0, v1], then e0 is in ei-
ther r9 or r0 and PD

1 is, by Definition 6.2 (1e), contained in either [a, r9, v0]r0 r1[v2,
r2, v3〉 or r0 r1 r2 [v3, r4, v4〉, and v5 is not in C. If PM

1 ⊆ r9, then e0 is in r9, so PD
1

is contained in r9 r8 r7 [v7, r6, v6〉, and again v5 is not in C. �

The case e ∈ ND is easy: the rim of the V6 is (R −
〈
PM

1

〉
) ∪ PM

2 PM
3 PM

4 and
we choose as spokes any three of the H-spokes that are contained in M. (If one
intersects CM, then only the part of the spoke that is CM-avoiding will be the
actual spoke of the V6.)

If e ∈ NM, then the rim R′ of the V6 is (R−
〈
PD

1

〉
)∪PD

2 P
D
3 P

D
4 and the spokes

are the three H-spokes from the hypothesis. If all three hypothesized H-spokes
are contained in M, then it is evident from Subclaim 2 (1) that we have indeed
described a V6 in (C ∪MC)− e.

So suppose that one of the H-spokes in the hypothesis is the exposed spoke s0.
From Subclaim 2 (2), either s0 is disjoint from C or precisely one H-node incident
with s0 is in C. We may choose the labelling so that v0 is not in C.

If v5 is not in C, then s0 is disjoint from C. Subclaim 2 (1) shows the other
two hypothesized H-spokes meet C in at most x or y; it is now obvious that the
three hypothesized H-spokes combine with R′ to make a V6.

Finally, suppose v5 is in C. Because CD is H-green, PD
1 ⊆ r2 r3 r4 [v5, r5, b].

In particular, s1 is disjoint from CM. If s2 has no edge in CM, then R′ ∪ s1 ∪ s2,
together with the portion of s0 from v0 to CD is a V6 avoiding NM. If s2 has an
edge in CM, then CM is in the Π[H]-face bounded by Q2. In this case, we may
replace s2 with s4 r4 to obtained the desired V6. �

Evidently, Claims 6, 7, and 8 show that G has a box, contradicting Lemma
5.12.
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CHAPTER 7

Exposed spoke with
additional attachment not in Q0

The main result of this section is the proof of the following technical theorem,
which limits possibilities for the V10-bridges. This will be used in the next section
when we get our second major step by showing that there is a representativity 2
embedding of G in RP 2 for which all the H-spokes are contained in the Möbius
band.

Theorem 7.1. Suppose G ∈ M3
2 and V10

∼=H ⊆ G. Let Π be an H-friendly
embedding of G in RP 2, with the standard labelling. Then there is no H-bridge
having attachments in both 〈s0〉 and 〈r1 r2 r3〉.

At one point in the proof of this theorem, we need the following lemma. Most
of it is used again several times.

Lemma 7.2. Let G be a graph and let V8
∼=H ⊆ G. Let P be an H-avoiding path

in G joining distinct vertices x and y of R and let P ′ be one of the two xy-subpaths
of R. Let D be a 1-drawing of H ∪ P .

(1) If P ′ has at most two H-nodes or, for some i, P ′ = ri ri+1, then P ′ is not
crossed in D.

(2) If there are only the two H-nodes vi, vi+1 in the interior of P ′ and P ′ has
at most one other H-node, then ri+4 is not crossed in D.

(3) Suppose ri ri+1 ⊆ P ′, P ′ 6⊆ ri ri+1, but P ′ ⊆ ri ri+1[vi+2, ri+2, vi+3〉.
(a) Then ri ri+1 is not crossed in D.
(b) If P ′ is crossed in D, then si+3 is exposed in D and P ′∩ ri+2 crosses

ri−1.

Proof. Let x and y be the ends of P and let R′ = (R−〈P ′〉)∪P . For (1) and (2),
we find three spokes to add to R′ to find a subdivision of V6 disjoint from P ′ — or
at least some part of P ′. The part of P ′ disjoint from the V6 cannot be crossed in
any 1-drawing of H.

For (1), if P ′ contains at most one H-node, then this is easy: any three H-
spokes not having an end in P ′ will suffice. If P ′ = ri ri+1, then the three H-spokes
si, si+2, and si+3 suffice.

In the remaining case, P ′ has precisely two H-nodes. We may express P ′ in
the form

P ′ = [x, rj−1, vj ]rj [vj+1, rj+1, y] ,

where either of [x, rj−1, vj ] and [vj+1, rj+1, y] might be a single vertex. In this
case, the spokes are sj+2, sj+3 and sj+1[vj+1, rj+1, y], showing that [x, rj−1, vj ]rj
is not crossed in D, while replacing sj+1[vj+1, rj+1, y] with [x, rj−1, vj ]sj shows
[vj+1, rj+1, y] is not crossed in D. This completes the proof of (1).

41
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42 7. EXPOSED SPOKE WITH ADDITIONAL ATTACHMENT NOT IN Q0

For (2), replace R′ with (R′ − 〈ri+4〉)∪ (si ri si+1). We now need three spokes.
If there is a third H-node in P ′, then symmetry allows us to assume it is vi−1. In
either case, we choose si−1, [vi+1, ri+1, y], and si+2 as the three spokes for the V6.
This V6 avoids ri+4, showing it is not crossed in D.

For (3), x = vi and the hypotheses imply that y ∈ 〈ri+2〉. For (3a), we may
use the spokes si, si+2[vi+2, ri+2, y], and si+3 to see that ri ri+1 is not crossed in
D, as required.

For (3b), suppose P ′ is crossed in D. Part (3a) shows that it must be P ′ ∩ ri+2

that is crossed and (2) shows that ri+5 = ri−3 is not crossed in D. We need only
show that ri−2 is also not crossed in D. If it were, then [vi+2, ri+2, y] crosses ri−2.
But then the cycle ri+3 ri+4 ri−3 ri−2 si−1 separates vi = x from y in D, showing
that P is also crossed in D, a contradiction.

Proof of Theorem 7.1. This is obvious if no spoke is exposed in Π, so we may
suppose s0 is exposed.

Claim 1. There is no H-avoiding 〈s0〉 〈v1, r1, v2]- or 〈s0〉 [v3, r3, v4〉-path.

Proof. By symmetry, it suffices to prove only one. By way of contradiction,
we suppose that there is an H-avoiding path P from x ∈ 〈s0〉 to y ∈ 〈v1, r1, v2].

Let e ∈ s3 and consider a 1-drawing D of G− e. By Lemma 5.9 and Theorem
5.23 (4), we know that Q3 is crossed in D. This implies that r1 r2 r3 r4 crosses
r6 r7 r8 r9. This already implies neither s0 nor s1 is exposed in D. Furthermore,
the crossing is of two edges in R and, since P is H-avoiding, we conclude that D[P ]
is not crossed in D. Therefore, the end of P in 〈v1, r1, v2] must occur in the interval
of r1 r2 r3 r4 between the crossing and v5; that is, the crossing must involve an edge
of r1. In particular, r2 r3 r4 r5 is not crossed in D.

Since Q3 is crossed in D and r1 is crossed in D, the other crossing edge is in
r7 r8. Thus it is in r6 r7 r8. It follows that s2 is exposed in D. Thus, the cycle
r4 r5 s1 r0 r9 s4 separates x from y in D, showing P is crossed in D, a contradiction.

�

It follows from Claim 1 that, if there is an H-avoiding path P0 joining x ∈ 〈s0〉
to y ∈ 〈r1 r2 r3〉, then y ∈ 〈r2〉. Let K = H ∪ P0. See Figure 7.1.

v1

x

y
a

b

b

a

v0 v3 v4

v6

P0

v2 v5

v8v7 v9

Figure 7.1. The subgraph K of G in RP 2.
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7. EXPOSED SPOKE WITH ADDITIONAL ATTACHMENT NOT IN Q0 43

Let J1 and J2 be the two cycles r0 r1 [v2, r2, y, P0, x, s0, v0] and r4 r3 [v3, r2, y, P0,
x, s0, v5], respectively.

Claim 2. The cycles J1 and J2 both bound faces of G in RP 2.

Proof. These cycles are both H-green, so this is just Lemma 6.6 (8). �

The following claim completes the determination of the (H ∩M)-bridge con-
taining s0.

Claim 3. The (H − 〈s0〉)-bridge containing s0 is s0 ∪ P0.

Proof. Suppose not and let B be the (H − 〈s0〉)-bridge containing s0. Then
Lemma 5.19 implies that B has an attachment z other than v0, y, and v5. By
Claim 2, z ∈ [a, r9, v0〉 ∪ 〈v5, r5, b]; by symmetry we may assume the former. Let P
be a K-avoiding z 〈s0〉-path.

Suppose z = v9. Let e be the edge of s0 incident with v0. We show that
cr((K ∪P )− e) ≥ 2. As this is a proper subgraph of G, we contradict the fact that
G is 2-crossing-critical. In P ∪ (s0 − e) ∪ P0, there is a claw Y with talons z = v9,
y and v5. We show cr((H − 〈s0〉) ∪ Y ) ≥ 2.

By way of contradiction, we suppose D is a 1-drawing of (H−〈s0〉)∪Y . As H−
〈s0〉 ∼=V8, Lemma 7.2 (1) implies that (using the labelling from H) [y, r2, v3] r3 r4

is not crossed in D, while (2) of the same lemma implies neither r6 nor r8 is crossed
in D. Part (3a) implies r9 r0 r1 is not crossed, while (3b) implies (since r9 is not
crossed) that [v2, r2, y] is not crossed. The only remaining possibilities for crossed
(H −〈s0〉)-rim branches are r5 and r7. But no 1-drawing of H −〈s0〉 has these two
rim-branches crossed, the desired contradiction.

So z 6= v9. But then we may replace s0 with the zv5-path s′0 in P ∪ s0 and
replace P0 with the ys′0-path in P0 ∪ s0 to get a new subdivision H ′ of V10. We
notice that Lemma 6.5 (1) implies that Π is H ′-friendly. However, the analogue J ′1
of J1 does not bound a face, contradicting Claim 2. �

Claim 4. There is a unique 1-drawing of K. In this 1-drawing, s0 is exposed.

The 1-drawing of K is illustrated in Figure 7.2.

Proof. If D is a 1-drawing of K, then Claim 2 and Lemma 6.6 (10) imply
neither J1 nor J2 is crossed in D. It follows that none of r0, r1, r2, r3, and r4 is
crossed in D. Lemma 3.6 implies r7 cannot be crossed in D, so Q2 is clean in D.
Therefore, s0 must be in a face of D[R∪Q2] incident with r2. This is only possible
if s0 is exposed, which determines D. �

For j ∈ {2, 3}, let Dj be a 1-drawing of G− 〈sj〉.

Claim 5. The crossing in D2[(H − s2) ∪ P0] is of r5 with [y, r2, v3]. Likewise,
the crossing in D3[(H − s3) ∪ P0] is of r9 with [v2, r2, y].

The 1-drawings of Claim 5 are illustrated in Figure 7.3.

Proof. We treat the case j = 2; the case j = 3 is very similar. By Theorem
5.23 (2), Q2 has BOD, so Lemma 5.9 implies Q2 is crossed in D2. This implies that
s0 is not exposed in D2. The H-avoiding path P0 joins x ∈ 〈s0〉 to y ∈ 〈r2〉, so y
must be on a face incident with s0. It follows that Q0 must be crossed in D2. This
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44 7. EXPOSED SPOKE WITH ADDITIONAL ATTACHMENT NOT IN Q0

v1 v6
v9

v4

v5

v2 v3

v7 v8

v0

Figure 7.2. The 1-drawing of K.

x v8

v9

v0

v1

v3

v4

v5

y
v2

v7

v6

y

v6

v7

v8

v9v4

xv5 v0
v2

v1

v3

Figure 7.3. The 1-drawings D2[(K − 〈s2〉) ∪ P0] and D3[(K −
〈s3〉) ∪ P0].

implies that s1 is exposed. We deduce that either r5 crosses r1 ∪ r2 or r0 crosses
r6∪r7. In the latter case, D2[P0] must cross D2[H−s2], a contradiction, so it must
be the former.

As D2[P0] is not crossed, y occurs between v1 and the crossing in r1 ∪ r2, as
required. �

The following claims help us obtain the structure of (MQ0
)#; we will use this

to find a 1-drawing of G, which is the final contradiction.

Claim 6. Suppose B is a Q0-bridge having an attachment in each of r9 and
r5. Then B is one of MQ0

, v6v9, v0v6, and v5v9.

Proof. We note that s0 ∪ P0 ⊆ MQ0
. Either B = MQ0

, or, in the drawing

D2, B is in a face of D2[(H−s2)∪P0] incident with both r9 and r5. There are only
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7. EXPOSED SPOKE WITH ADDITIONAL ATTACHMENT NOT IN Q0 45

two such faces, namely F , bounded by Q4, and F ′, the other face incident with
r9. Whichever face B is in, its attachments are in the intersection of Q0 with the
boundary of the containing face. Thus, if B is in F , then att(B) ⊆ r4 s4 r9. In this
case, the only possibility for an attachment in r5 is v5, so v5 ∈ att(B). If, on the
other hand, B is in F ′, then att(B) ⊆ r9 r0 s1. In this case, v6 ∈ att(B). Similarly,
D3 shows either B = MQ0

, or att(B) ⊆ r0 s1 r5 and v0 ∈ att(B), or att(B) ⊆
s4 r4 r5 and v9 ∈ att(B). Comparing these possibilities, we conclude that one of
the following four cases holds for att(B): att(B) = {v0, v5}; att(B) = {v6, v9};
v5, v9 ∈ att(B) and att(B) ⊆ r4 ∪ s4; and v0, v6 ∈ att(B) and att(B) ⊆ r0 ∪ s1.

We claim v0v5 is not an H-bridge. For if it were, let D be a 1-drawing of
G− v0v5. Then s0 ∪P0 is not crossed in D and Claim 3 says the (H − 〈s0〉)-bridge
containing s0 is s0∪P0. In particular, s0 consists of the two edges v0x and xv5, and
x has degree 3 in G. Thus, we can draw v0v5 alongside s0, yielding a 1-drawing of
G, a contradiction.

We must show that, if v0, v6 ∈ att(B) and att(B) ⊆ r0 ∪ s1, then B = v0v6.
Likewise, if v5, v9 ∈ att(B) and att(B) ⊆ r4 ∪ s4, then B = v5v9. We consider the
former case, the latter being completely analogous. Corollary 5.15 shows that B
can have at most one other attachment. Lemma 5.19 shows that either B = v0v6

or B is a claw with talons v0, v6, and z ∈ 〈v0, r0, v1, s1, v6〉. Since we are trying to
show B = v0v6, we assume the latter. Let e be the edge of B incident with z and let
D be a 1-drawing of G− e. Since K ⊆ G− e, D extends the 1-drawing illustrated
in Figure 7.2. We modify D to obtain a 1-drawing of G, which is impossible.

Observe that B − z is an H-avoiding v0v6-path P (having length 2); there is
only one place D[P ] can occur in Figure 7.2. Notice that B is a Q0-local H-bridge
and, furthermore, P overlaps MQ0

.
Theorem 5.23 shows Q0 has BOD in G; let (B,M) be the bipartition of

OD(Q0), with B ∈ B. Then MQ0 ∈ M. Every Q0-bridge is drawn in D, with
the exception that we have B − e in place of B.

Because we cannot add e back into D to get a 1-drawing of G, there must be
an H-avoiding path P ′ in G− e joining the two components of [v0, r0, v1, s1, v6]− z
so that D[P ′] is on the same side — henceforth, the inside — of D[Q0] as P . Let
B′ be the Q0-bridge containing P ′. If B′ has just v0 and v6 as attachments, then
let D be a 1-drawing of G − v0v6. As we did above for v0v5, we can add v0v6

alongside P to recover a 1-drawing of G. Therefore, B′ does not have just v0 and
v6 as attachments.

It follows that B′ overlaps B, so it is inM. Therefore, it does not overlap MQ0
;

in particular, it cannot have an attachment in both [v6, s1, v1〉 and [v0, r0, v1〉. We
conclude that, for some q ∈ {r0, s1} ; and (ii) att(B′) ⊆ q. Let q′ be such that
{q, q′} = {r0, s1}.

Let B1, B2, . . . , Bk be a path in OD(Q0)− {MQ0
, B} so that B′ = B1.

Subclaim 1. For i = 1, 2, . . . , k, att(Bi) ⊆ q.
Proof. Above, we chose q to contain att(B′), which is the case i = 1. Notice

that B1, B3, . . . are all on the same side of D[Q0] as B′ and P , while B2, B4,
. . . are all on the other side of D[Q0]. The former are all inM, while the latter are
in B. Let i be least so that Bi has an attachment outside q. Then it also has an
attachment in 〈q〉 (in order to overlap Bi−1).

If Bi is inside D[Q0], then Bi does not overlap MQ0
, so it has no attachment

in q′ − q. As Bi cannot cross P in D, att(Bi) ⊆ q, a contradiction.

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
19

3,
 D

ec
em

be
r 

13
, 2

01
3



46 7. EXPOSED SPOKE WITH ADDITIONAL ATTACHMENT NOT IN Q0

If Bi is outside D[Q0], then either att(Bi) ⊆ s1, so q = s1 and we are done, or
att(Bi) ⊆ r0∪ [v0, s0, x], so, in particular, q = r0. Furthermore, Bi does not overlap
B. Therefore, Bi has no attachment in 〈v0, s0, x], so att(Bi) ⊆ r0. �

Let L be the component of OD(Q0) − {MQ0
, B} containing B′. We can flip

the Q0-bridges in L so that they exchange sides of D[Q0], yielding a new 1-drawing
of G− e with fewer Q0-bridges in M on the same side of D[Q0] as P . Inductively,
this shows there is a 1-drawing D′ of G − e in which all Q0-bridges in the face of
D′[K ∪ P ] bounded by r0 s1 P are in B. As none of these overlaps B, we may add
e into D′ to obtain a 1-drawing of G, a contradiction. �

Let e5 be the edge in r5 that is crossed in D2 and let e9 be the edge in r9 that
is crossed in D3. For i = 5, 9, let ui be the end of ei nearer to vi in ri and let wi be
the other end of ei. See Figure 7.4. We highlight some relevant “cut” properties of
these edges in the next three claims.

y

v6

v7

v8

v9v4

xv5 v0
v2

v1

v3

x v8

v9

v0

v1

v3

v4

v5

y
v2

v7

v6

u5

w5 u9

w9

Figure 7.4. The 1-drawings D2[(K − 〈s2〉) ∪ P0] and D3[(K −
〈s3〉) ∪ P0].

Claim 7. Any r9-avoiding 〈s4 r4] 〈r0 s1]-path in (MQ0
)# contains e5. In par-

ticular, there are not two edge-disjoint r9-avoiding 〈s4 r4] 〈r0 s1]-paths in (MQ0
)#.

Proof. Suppose P is a r9-avoiding 〈s4 r4] 〈r0 s1]-path. Let e be any edge of s2

and let D be any 1-drawing of G− e. By Claim 5, D2[(H−〈s2〉)∪P0] is illustrated
in Figure 7.3. But here we see that the cycle C = [v0, s0, x]P0 [y, r2, v3]s3 r8 r9

separates 〈s4 r4] and 〈r0 s1]. Note that C consists of r9 and a Q0-avoiding v0v9-
path in MQ0

. Therefore, P is disjoint from C, and so it must cross C in D2. As

this can only happen at the crossing in D2, it must be that the edge of r5 crossed
in D2 is in P . �

Analogously, deleting e ∈ s3 provides a proof of the following claim.

Claim 8. Any r5-avoiding [s4 r4〉 [r0 s1〉-path in (MQ0
)# contains e9. In par-

ticular, there are not two edge-disjoint r5-avoiding [s4 r4〉 [r0 s1〉-paths in (MQ0
)#.
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7. EXPOSED SPOKE WITH ADDITIONAL ATTACHMENT NOT IN Q0 47

The final claim is a central point about MQ0
.

Claim 9. Let P1 and P2 be the two paths of Q0 − {e5, e9}. Then there is no
P1P2-path in

(MQ0
)# − {e5, e9, v6v9} .

Proof. Assume that there is a P1P2-path P in (MQ0
)#−{e5, e9}. For i = 1, 2,

let zi be the end of P in Pi.
Suppose first that z1 is in 〈s4 r4〉. If z2 is in [v6, r5, w5], then P [z2, r5, v6] is an

r9-avoiding 〈s4 r4] 〈r0 s1]-path in (MQ0
)# that also avoids e5, contradicting Claim 7.

If z2 is not in [v6, r5, w5], then there is an r5-avoiding [s4 r4〉 [r0 s1〉-path in (MQ0
)#

that also avoids e9, contradicting Claim 8. Therefore, z1 is in P1 − 〈s4 r4〉; that is
z1 is in [v9, r9, u9] ∪ [v5, r5, u5]. Symmetrically, z2 is in [w9, r9, v0] ∪ [w5, r5, v6].

If z1 is in [v5, r5, u5], then Claim 7 implies z2 is not in [w5, r5, v5]. Therefore,
z2 is in [w9, r9, v0]. By Claim 6, P is one of v6v9, v0v6, and v5v9. Clearly, neither
z1 nor z2 is v6 and neither is v9, so none of these outcomes is possible.

Therefore, z1 is in [v9, r9, u9]. Claim 8 implies z2 is not in [w9, r9, v0]. By
Claim 6, the only possibility is that z1 = v9 and z2 = v6 and P is just the edge
v6v9, as required. �

We will show that there is an embedding Π′ of G in RP 2 and a non-contractible
simple closed curve γ′ in RP 2 so that γ′ ∩ G consists of one point in each of the
interiors of Π′[e5] and Π′[e9]. Standard surgery then implies that cr(G) ≤ 1 (see,
for example, [29]).

Consider the two faces of Π[K] incident with both e5 and e9. Let FQ0
be the

one bounded by Q0. Let F ′ be the other; it is bounded by the cycle s0 r5 r6 r7 r8 r9,
which we call C ′. Both Q0 and C ′ contain both e5 and e9. What we would like to
prove is that, for each such face F with boundary C, there is no K-avoiding path
contained in F and having an end in each of the two components of C − {e5, e9}.
Although not necessarily true for Π, it is true for an embedding obtained from Π
by possibly re-embedding the edges v0v6 and v5v9.

Let us begin with the possible re-embeddings. We deal with v0v6; the argument
for v5v9 is completely analogous. If v0v6 is not embedded in F ′, then do nothing
with it. Otherwise, it is embedded in F ′ and we claim we can re-embed it in FQ0

.

The embedding Π shows that v0v6 is contained in one of the two faces of K ∪γ
into which F ′ is split. Therefore, v0 and v6 must be on the same ab-subpath of R.
This implies that either v0 = a or v6 = b, or both. In order not to be able to embed
v0v6 in FQ0

, there must be a Q0-avoiding path P contained in FQ0
joining 〈r0 s1〉

to 〈r5 r4 s4 r9〉.
We first consider where D2[P ] can be. There are only two possibilities: it is

either in the face of D2[K − 〈s2〉] bounded by [v2, r2,×, r5, v6]s1 r1; or in the face
incident with both r0 and s1. The latter cannot occur, as v0v6 is also in that face
and they overlap on the boundary of this face. So it must be the former.

However, in this case, both v0v6 and P are in the face of D3[K−〈s3〉] bounded
by Q0, and they overlap on Q0, the final contradiction that shows that P does not
exist, so we can re-embed v0v6 in FQ0

. Let Π′ be the embedding of G obtained by

any such re-embeddings of v0v6 and v5v9.
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48 7. EXPOSED SPOKE WITH ADDITIONAL ATTACHMENT NOT IN Q0

The faces FQ0
and F ′ of Π[K] are also faces of Π′[K] with the same boundaries;

we will continue to use these names for them, while Q0 and C ′ are still their
boundaries.

We now show that there is no K-avoiding path in FQ0
joining the two paths P1

and P2 of Q0 − {e5, e9}. Such a path is necessarily in (MQ0
)#. By Claim 9, such

a path is necessarily v6v9. But Π is H-friendly, so v6v9 is not embedded in M and
so, in particular, is not embedded in FQ0

. Thus, v6v9 is also not in this face of Π′,

whence there is no P1P2-path in FQ0
, as required.

Now consider the possibility of a K-avoiding path in F ′ having its ends in each
of the two paths in C ′ −{e5, e9}. Such a path is in a C ′-bridge B embedded in F ′.
By Claim 3, B has no attachment in 〈s0〉. Thus, B has an attachment either in
[v0, r9, w9] or in [v5, r5, u5].

We claim it must also have an attachment in 〈r6 r7 r8〉. If not, then all its
attachments are in

[v0, r9, w9] ∪ [v5, r5, u5] ∪ [w5, r5, v6] ∪ [v9, r9, u9] .

But then B is a Q0-bridge. If it has an attachment in both r5 and r9, then Claim 6
implies B is one of v0v6, v5v9, and v6v9. The first two are not embedded in the Π′-
face F ′ and the last does not have attachments in both components of C ′−{e5, e9}.
In the alternative, either att(B) ⊆ r5 or att(B) ⊆ r9, and then we contradict either
Claim 7 or Claim 8.

So B has an attachment in 〈r6 r7 r8〉. If B has an attachment in [v0, r9, w9],
then D3[B] must have a crossing, which is not possible. If B has an attachment
in [v5, r5, u5], then D2[B] must have a crossing, which is not possible. Therefore,
there is no such B, as claimed.

For each of the faces FQ0
and F ′ of Π′ and any points x and y in the interiors of

Π′[e5] and Π′[e9], the preceding paragraphs show that there is a G-avoiding simple
xy-arc in the face. The union of these two arcs is a simple closed curve γ′ in G that
meets Π′[G] in just the two points x and y.

In a neighbourhood of x, there are points of e5 on both sides of γ′. If γ′ were
contractible in RP 2, then {e5, e9} would be an edge-cut of size 2 in the 3-connected
graph G, which is impossible. So γ′ is non-contractible. But this is also impossible,
as it meets G precisely in x and y, showing that G has a 1-drawing, the final
contradiction.
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CHAPTER 8

G embeds with all spokes in M

In this section, we prove that if G ∈ M3
2 and V10

∼=H ⊆ G, then G has a
representativity 2 embedding in RP 2 with H ⊆M. This is an important step as it
provides the embedding structure we need to find the tiles.

It turns out that we need something stronger than H ⊆M. We must also show
that, in addition to H ⊆ M, the representativity 2 embedding of G is such that
MQ4

is the only Q4-local H-bridge B for which Q4 ∪B contains a non-contractible
cycle. (We remind the reader that Q4 is special. Each H-quad bounds a face of
Π[H]. In the standard labelling, the only one of these five faces that contains an
arc of γ is the one bounded by Q4.)

Theorem 8.1. Suppose G ∈M3
2 and V10

∼=H ⊆ G. Then G has a representa-
tivity 2 embedding Π in RP 2 so that, with the standard labelling:

(1) s0 is not exposed in Π, that is, Π[H] ⊆M; and,
(2) if B is a Q4-local H-bridge other than MQ4

, then Π[Q4 ∪B] has no non-
contractible cycle.

In principle, these two arguments are consecutive: we first show we can arrange
H ⊆M, and then deal with the Q4-bridges. However, the arguments are essentially
the same. Therefore, we shall have parallel statements and arguments, one for
getting the five H-spokes in M and one for getting such an embedding with Q4

nicely behaved. (If we knew that G had an embedding with H not contained in M,
then we could do both simultaneously.)

Definition 8.2. A friendly, standard quadruple, denoted ((G,H,Π, γ)), con-
sists of G ∈ M3

2, V10
∼=H ⊆ G, an H-friendly embedding Π of G, and a non-

contractible, simple closed curve γ meeting Π[G] in precisely two points, used as
the reference for giving H the standard labelling relative to Π. We abbreviate
friendly, standard quadruple as fsq .

Observe that Theorem 3.5 impliesG has a representativity 2 embedding in RP 2.
Lemma 6.5 (3) implies G has an H-friendly embedding Π. Any non-contractible
simple closed curve γ in RP 2 meeting G in precisely two points yields a standard
labelling of H relative to Π and γ. Summarizing, we have the following observation.

Lemma 8.3. If G ∈ M3
2 and V10

∼=H ⊆ G, then there is an fsq ((G,H,Π, γ)).

Let Q∗ be Q0 if s0 is exposed in Π and let Q∗ be Q4 if s0 is not exposed
in Π, that is, if Π[H] ⊆ M. Our first step is to show that OD(Q∗) is (nearly)
bipartite. Theorem 5.23 (1) implies OD(Q4) is bipartite. For Q∗ = Q0, this is
more involved. In the following statement, v1v4 and v6v9 are meant to be possible
Q0-bridges consisting of a single edge joining the two indicated vertices. They need
not exist in G.

49

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
19

3,
 D

ec
em

be
r 

13
, 2

01
3



50 8. G EMBEDS WITH ALL SPOKES IN M

Lemma 8.4. Let ((G,H,Π, γ)) be an fsq. If s0 is exposed in Π, then OD(Q0)−
{v1v4, v6v9} is bipartite.

The following observations will be needed throughout the proof of Theorem 8.1
and, in particular, the proof of Lemma 8.4.

Definition 8.5. Let ((G,H,Π, γ)) be an fsq and let Q∗ be either Q0 (if s0 is
exposed) or Q4 (otherwise). Then N — a function of ((G,H,Π, γ)) — denotes the
set of Q∗-bridges B other than MQ∗ for which Π[Q∗ ∪ B] has a non-contractible

cycle. In the case Q∗ = Q0, any of v1v4 and v6v9 that occurs in G is a Q0-bridge
B for which Π[Q0 ∪B] has a non-contractible cycle, and we do not include these in
N .

We remark that, if s0 is exposed in Π, then Theorem 7.1 implies the (H ∩M)-
bridge B0 containing s0 is distinct from MQ0

. In this case, B0 ∈ N . If s0 is not

exposed in Π, then Q∗ = Q4. If N = ∅, then Π satisfies the conclusions of Theorem
8.1. Therefore, in this case, we may assume N 6= ∅.

Before we can prove Lemma 8.4, we need some results common to both cases.
An easy corollary of the following lemma will be used to deal with the main

case in the proof of Lemma 8.4.

Lemma 8.6. Let D be a 1-drawing of V8 (with the usual labelling) in which Q1

is crossed. Then:

(1) Q3 bounds a face of D; and
(2) if Q0 is crossed in D, then either r1 crosses r4 or r5 crosses r0.

Proof. As Q1 is crossed in D, either r1 crosses r4 r5 r6 in D or r5 crosses r0 r1 r2

in D. This already shows that Q3 bounds a face of D.
As Q0 is crossed in D, either r7 r0 or r3 r4 is crossed in D. Compare each of

these with the possible crossing of Q1. In the former case, r0 crosses r5, while in
the latter case r4 crosses r1.

The following is the simple corollary that we will use.

Corollary 8.7. Let G ∈ M3
2 and V10

∼=H ⊆ G. Let D2 be a 1-drawing of
G− 〈s2〉. Then:

(1) Q4 bounds a face of D2[H − s2]; and
(2) if Q0 is crossed in D2, then either r6 r7 crosses r1 or r1 r2 crosses r5 (see

Figure 8.1 for the possibilities for D2[H − 〈s2〉]).
Likewise, if D3 is a 1-drawing of G−〈s3〉 in which Q0 is crossed, then

the two possibilities for D3[H − 〈s3〉] are illustrated in Figure 8.2.

Proof. Theorem 5.23 implies Q2 has BOD. Lemma 5.9 implies Q2 is crossed in
D2. The results now follow immediately from Lemma 8.6.

Let r∗ denote r9 ∪ r0 in the case Q∗ = Q0 and r9 in the case Q∗ = Q4. We also
let r∗+5 denote the other component of Q∗ ∩R.

Lemma 8.8. Let ((G,H,Π, γ)) be an fsq. If B ∈ N , then Π[B] ⊆ D, att(B) ⊆
r∗ ∪ r∗+5, and B has an attachment in each of r∗ and r∗+5.

Proof. If Π[B] ⊆M, then Π[Q∗ ∪B] is contained in a closed disc and, therefore,
has only contractible cycles, a contradiction. Thus, Π[B] ⊆ D. It now follows
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8. G EMBEDS WITH ALL SPOKES IN M 51

v0 v5v0v5

v4

v9

v8

v3

v6 v1

v9

v4

v3

v8

v1 v6

Figure 8.1. The two possibilities for D2.

v0 v5v0v5

v6

v1

v2

v7

v4 v9

v1

v6

v7

v2

v9 v4

Figure 8.2. The two possibilities for D3.

that att(B) is contained in the intersection of Q0 with the boundary of D; that is,
att(B) ⊆ r∗ ∪ r∗+5.

Suppose by way of contradiction that att(B) ⊆ r∗. Let r̄∗ be a minimal subpath
of r∗ containing att(B). Then there is a non-contractible cycle C contained in B∪r̄∗.

Let F be the closed (Π[H]∪γ)-face containing Π[B]. Then F contains Π[B∪r̄∗],
so the non-contractible cycle Π[C] is contained in the closed disc F , a contradiction.
So att(B) is not contained in r∗ and, likewise, it is not contained in r∗+5.

Let ((G,H,Π, γ)) be an fsq, with s0 exposed in Π. Suppose D2 is a 1-drawing
of G− 〈s2〉 in which Q0 is crossed. Corollary 8.7 implies that D2[H − 〈s2〉] is one
of the two drawings illustrated in Figure 8.1. The outside of D2[Q0] is the face of
D2[Q0] containing D2[s3]. The inside is the other face of D2[Q0]. Likewise, if D3

is a 1-drawing of G− 〈s3〉 in which Q0 is crossed, then the outside of D3[Q0] is the
face of D3[Q0] containing D3[s2].

Lemma 8.9. Let ((G,H,Π, γ)) be an fsq, with s0 exposed in Π. For i = 2, 3, let
Di be a 1-drawing of G− 〈si〉 in which Q0 is crossed. Suppose B is a Q0-bridge in
N .

(1) If D2[B] is outside of D2[Q0], then B ∈ {v1v5, v0v6}.
(2) If D3[B] is outside of D3[Q0], then B ∈ {v0v4, v5v9}.
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52 8. G EMBEDS WITH ALL SPOKES IN M

Proof. We prove (1); (2) is completely analogous. We remark that B 6= B0 as
D2[s0] is inside D2[Q0]. Lemma 8.8 shows that either: (i) att(B) ⊆ [b, r5, v6] ∪
[v9, r9, a] and B has attachments in both [b, r5, v6] and [v9, r9, a]; or (ii) att(B) ⊆
[a, r9, v0]r1∪r4[v5, r5, b] and B has attachments in both [a, r9, v0]r1 and r4[v5, r5, b].

Suppose first that D2 is the left-hand possibility illustrated in Figure 8.1. Con-
sidering D2, we see that v1 is one attachment of B and the others are in r4 r5.

Now consider the possibilities for D3[B]. We see that D3[B] can be outside
D3[Q0] in only one of the two possible D3’s, namely the right-hand one, and then
only if att(B) = {v1, v4}. But in this case B is just the edge v1v4, which is not in
N . So D3[B] is inside D3[Q0]. It now follows from this and the previous paragraphs
that att(B) ⊆ {v1} ∪ r5.

Putting this information into Π, we see that the only possibility for B, which
is embedded in D and not in M, is that B = v1v5.

In the case D2 is the right-hand possibility in Figure 8.1, D2 shows that
att(B) ⊆ {v6} ∪ r9 r0. Since v6v9 /∈ N , B 6= v6v9, so D3[B] is not outside D3[Q0].
Therefore, D3 shows att(B) ⊆ {v6} ∪ r0.

Again we recall that B is embedded in D in RP 2. If B is embedded in the
face bounded by [a, r9, v0, s0, v5, r5, b, α, a], then b = v6 and the only other possi-
ble attachment for B is v0, as required. If B is embedded in the face bounded
by [b, r5, v6]r6 r7 r8[v9, r9, a, α, b], then a = v0 and again this is the only possible
attachment other than v6, as required.

Let N be the graph
⋃
B∈N

B .

Lemma 8.10. Let ((G,H,Π, γ)) be an fsq. Then there are not disjoint (N ∩
r∗)(N ∩ r∗+5)-paths in N . In particular, if Q∗ = Q0 and |N | ≥ 2, then either every
B ∈ N has only v0 as an attachment in r9 r0 or every B ∈ N has only v5 as an
attachment in r4 r5.

Proof. Suppose by way of contradiction that P1 and P2 are disjoint r∗r∗+5-paths
in N , with, for j = 1, 2, Pj having the end pj in r∗ and the end qj in r∗+5. Choose
the labelling so that, in r∗, p1 is closer to v9 than p2 is. There are three possibilities
for how P1 and P2 are embedded by Π: both in the (closed) disc contained in D
bounded by [a, r9, v0]r0 r1 r2 r3 r4 [v5, r5, b]α (recall that α = γ ∩ D); both in the
disc in D bounded by [b, r5, v6]r6 r7 r8[v9, r9, a]α; or one in each of these discs. In
all cases, we conclude that q1 is closer in r∗+5 to v6 than q2 is. Summarizing, we
have the following.

Fact 1 Any two disjoint r∗r∗+5-paths in N overlap on Q∗.

For Q∗ = Q4 we are done: Corollary 8.7 implies D2[Q4] bounds a face of
D2[H−〈s2〉]. Both P1 and P2 have ends in both r∗ and r∗+5, so both must be inside
D2[Q4], yielding the contradiction that they cross in D2[Q4].

Now suppose Q∗ = Q0. For i = 2, 3, Di[Q0] is not self-crossing; thus Fact 1
implies that Di[P1] and Di[P2] are on different sides of Di[Q0]. If Q0 is clean in
Di, then we have a contradiction, as no face of Di[H − 〈si〉] is incident with both
r∗ and r∗+5 except the ones bounded by Q4 and Q0.

Thus, Q0 is crossed in Di. By Lemma 8.9, the one that is outside is one of
v0v4, v0v6, v1v5, and v5v9. We treat in detail that this one is v0v4, as the other
cases are completely analogous. It is in D3 that v0v4 is outside D3[Q0].
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8. G EMBEDS WITH ALL SPOKES IN M 53

Because q1 is closer to v6 than q2 is, q1 cannot be v4; it follows that it is P2

that is v0v4. Lemma 8.9 also implies that P2, that is v0v4, is not outside D2[Q0]
and, therefore, it is inside D2[Q0]. Thus, P1 is outside D2[Q0]. By Lemma 8.9,
P1 is one of v0v6 and v1v5. By choice of the labelling, it cannot be that v1 is an
end of P1, so P1 = v0v6, which is not disjoint from P2 = v0v4, a contradiction. We
conclude that there are not such disjoint paths.

For the “in particular”, there is a cut vertex u of N separating N ∩ (r9 r0) and
N ∩ (r4 r5) in N , as claimed. As s0 is a ([r9 r0]) ([r4 r5])-path in N , we deduce
u ∈ s0. If B0 is not the only member of N , then any other element B of N shares
the vertex u with B0, so u is an attachment of both. But u ∈ s0 implies u ∈ {v0, v5}.

As a final preparatory remark, we have the following.

Lemma 8.11. Let ((G,H,Π, γ)) be an fsq. Let B and B′ be distinct elements of
N . Then:

(1) B and B′ do not overlap on Q∗; and
(2) either B overlaps MQ∗ on Q∗ or Q∗ = Q4 and B is either v4v9 or v0v5.

Proof. In the case Q∗ = Q4, Corollary 8.7 and Lemma 8.8 imply B and B′ are
both drawn inside the face of D2[H − 〈s2〉] bounded by Q4 and, therefore, they do
not overlap, yielding (1) for Q4.

For Q∗ = Q0, if both B and B′ are in the same face of either D2[Q0] or D3[Q0],
then they obviously do not overlap on Q0. Thus, we may assume one is outside
D2[Q0] and the other is inside D2[Q0] and that one is outside D3[Q0] and the other
is inside D3[Q0].

By Lemma 8.9, the one outside D2[Q0] is either v1v5 or v0v6, while the one
outside D3[Q0] is either v0v4 or v5v9. Thus, we may assume B ∈ {v1v5, v0v6} and
B′ ∈ {v0v4, v5v9}. But none of the four possibilities is an overlapping pair, which
is (1) for Q0.

As for overlapping MQ∗ , we suppose first that B has an attachment x in the
interior of one of r∗ and r∗+5. (The “in particular” part of Lemma 8.10 implies this

is always the case when Q∗ = Q0.) In this case, it is a simple exercise to see that
x, together with any attachment of B in the other one of r∗ and r∗+5, are skew to
at least one of the pairs of diagonally opposite corners of Q∗ (in the case of Q4

these pairs are {v9, v5} and {v4, v0}; for Q0, they are {v9, v6} and {v4, v1}). Thus,
B overlaps MQ∗ .

In the remaining case, Q∗ = Q4 and att(B) ⊆ {v9, v0, v5, v4}. If both v9 and
v5 are attachments, then B is again skew to MQ∗ ; the same happens if both v0 and
v4 are attachments. The only remaining cases are: att(B) = {v4, v9} and {v0, v5},
as claimed.

The next result contains the essence of the proof of Lemma 8.4.

Lemma 8.12. Let ((G,H,Π, γ)) be an fsq. Suppose B1 ∈ N , Bk = MQ∗ , and
B1, B2, . . . , Bk is an induced cycle in OD(Q∗). Then either

(1) Q∗ = Q0, k = 3, and B2 ∈ {v1v4, v6v9} or
(2) k is even and Bk−1 ∈ N ∪ {v1v4, v6v9}.

Proof. Case 1. k is odd.
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54 8. G EMBEDS WITH ALL SPOKES IN M

Theorem 5.23 implies OD(Q4) is bipartite. Therefore, Q∗ = Q0 and s0 is
exposed in Π.

For i = 2, 3, let ei be the edge of si incident with vi and let Di be a 1-drawing
of G− ei. Theorem 5.23 implies Qi has BOD; Lemma 5.9 implies Qi is crossed in
Di.

If, for some i ∈ {2, 3}, Q0 is clean in Di, then Lemma 5.6 implies Q0 has BOD,
yielding the contradiction that k is even. Therefore, Q0 is crossed in both D2 and
D3.

Claim 1. If some Bi is either v1v4 or v6v9, then i = 2 and k = 3.

Proof. Since both v1v4 and v6v9 overlap MQ0
, neither is in N , B1 is in N ,

and the cycle is induced, it must be that i = k − 1. For sake of definiteness, we
suppose Bk−1 = v1v4; the alternative is treated completely analogously.

Because Bk−1 = v1v4, we deduce that D2 is the left-hand one of the two
drawings in Figure 8.1, while D3 is the right-hand drawing in Figure 8.2; in both
drawings, Bk−1 is outside Q0.

We note that B0 overlaps v1v4, so if B1 is B0, then k = 3, as claimed. Other-
wise, B1 ∈ N \ {B0}. By Lemma 8.10, either the only attachment of B1 in r9 r0 is
v0 or the only attachment of B1 in r4 r5 is v5. For sake of definiteness, we assume
the former; the latter is completely analogous. In order not to overlap v1v4, the
only attachment for B1 in r4 r5 is v4. Therefore, either k = 3 and we are done, or
B1 is just the edge v0v4. We show that B1 = v0v4 is not possible.

Suppose that B1 = v0v4. Because we know D2, we see that D2[B1] = D2[v0v4]
is inside D2[Q0], while D2[Bk−1] = D2[v1v4] is outside. In D3, both are outside.
But this is impossible, as B1, B2, B3, . . . , Bk−2, Bk−1 alternate sides of Q0 in both
D2 and D3.

We conclude that B1 = v0v4 is impossible and therefore k = 3, as claimed. �

It remains to show that no other possibility can occur with k odd. So suppose
no Bi is either v1v4 or v6v9. Suppose some Bi other than B1 is in N . As Bi overlaps
MQ0

and the cycle B1, B2, . . . , Bk is induced, Lemma 8.11 implies i = k − 1. The

same lemma implies k ≥ 5. Therefore, Lemma 5.16 implies B1, B2, . . . , Bk−2, Bk−1

alternate sides of Π[Q0]. Since k is odd, B1 and Bk−1 are on different sides of
Π[Q0], contradicting the fact that both are in N . Hence no other Bi is in N .

By Lemma 8.9, for at least one i ∈ {2, 3}, Di[B1] is inside Di[Q0]. For the
sake of definiteness, we consider the case i = 2 and D2 is the left-hand drawing of
H − 〈s2〉 in Figure 8.1; the remaining cases are completely analogous. Thus, either
B1 is B0 or B1 is either a Q0- or a Q1-bridge.

Since k is odd, Bk−1 is on the other side of D2[Q0] from B1. Therefore, Bk−1

is outside D2[Q0]. In order to understand how Bk−1 can overlap MQ0
in D2, we

analyze D2[MQ0
].

Let e be the edge of MQ0
that is crossed in D2. The end w of e outside D2[Q0]

is in Nuc(MQ0
). If the other end u of e is not in Nuc(MQ0

), then u = v6 and

[×, r6, v6] is the only part of MQ0
inside D2[Q0]. Otherwise, Nuc(MQ0

)−{e2, e} is

not connected. Since Nuc(MQ0
)−e2 is connected, Nuc(MQ0

)−{e2, e} consists of the

component inside D2[Q0] and the component O outside. In particular, MQ0
−{e2, e}

consists of two Q0-bridges in G−{e2, e}. Let I be the one contained inside D2[Q0]
and let O be the one outside. All attachments of MQ0

are attachments of either I
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8. G EMBEDS WITH ALL SPOKES IN M 55

or O, and possibly both. In the case u = v6, we take I to be the portion of e from
× to v6.

We observe that D2 shows that, except for one end of e, all the attachments of
I are in Q0. On the other hand, Theorem 7.1 implies that MQ0

, and, therefore I,

has no attachment in 〈s0〉. The embedding Π shows that I has no attachment in
〈r0〉: otherwise, I is not just [×, e6, v6] and u 6= v6. Thus, the simple closed curve
s1 r1 r2 r3 s4[v9, r9, a]α[b, r5, v6] bounds a closed disc in RP 2 separating u from 〈r0〉
and is disjoint from Nuc(I) ∪ 〈r0〉. Unless v0 = a, the same simple closed curve
separates u from v0; thus, if v0 is an attachment of I, then a = v0.

Because Bk−1 is outside D2[Q0] and att(Bk−1) ⊆ Q0, there are four candidates
for the face of D2[H − 〈s2〉] that contains Bk−1. The one bounded by Q3 is not
possible: if Bk−1 were in that face, it would not overlap MQ0

, as all the MQ0

attachments there would be in s4 and, therefore, all in O and not in I; both Bk−1

and O being outside D2[Q0] shows they do not overlap.
The face of D2[H − 〈s2〉] incident with [×, r0, v1] is not a possibility for Bk−1

for exactly the same reason: the only attachment of I there can be v1 and v1 is not
part of a pair of attachments of MQ0

that are skew to two attachments of Bi−1,

which are all contained in [×, r0, v1].
The face of D2[H−〈s2〉] incident with r8 r9 is also not a possibility for Bk−1. To

see this, v0 is the only possible attachment of I in the boundary of this face. Thus,
v0 is an attachment of I and Bk−1 must have attachments in each of [v9, r9, v0〉 and
〈v0, r0,×]. However, in Π we must have a = v0 and then there is no way to embed
Bk−1.

Therefore, Bk−1 is in the face of D2[H − 〈s2〉] incident with r5 s1.
By way of contradiction, suppose Bk−1 is outside D3[Q0]. Identical arguments

as those just above show that Bk−1 is in the face of D3[H−〈s2〉] incident with r9 s4.
Because the previous paragraph shows att(Bk−1) ⊆ r4 r5 s1, it cannot overlap MQ0

using an attachment of the portion of MQ0
that is inside D3[Q0] and, therefore, it

cannot overlap MQ0
at all, a contradiction. Therefore, Bk−1 is inside D3[Q0]. This

implies Bk−1 is either a Q0- or Q4-bridge.
If Bk−1 is a Q4-bridge, then att(Bk−1) ⊆ r4 (because of D2). Letting r̄ denote

the minimal subpath of r4 containing att(Bk−1), D2 shows that no attachment of I
is in 〈r̄〉 and, because O and Bk−1 do not overlap (in D2), O also has no attachment
in 〈r̄〉. Consequently, Bk−1 does not overlap MQ0

, a contradiction. Therefore, Bk−1

is a Q0-bridge.
Because Bk−2 is inside D2[Q0], has no attachments in s0, and overlaps Bk−1

as Q0-bridges, we see that Bk−2 is also a Q0-bridge. Continuing back, we see that
each of Bk−3, . . . , B2 is a Q0-bridge and that B1 is outside D3[Q0]. By Lemma
8.9, B1 is either v0v4 or v5v9. But neither of these overlaps B2. This contradiction
shows that, except for the case described in Claim 1, k is even.

Case 2. k is even.

For each i = 2, 3, . . . , k−2, Bi∪Q∗ has no non-contractible cycle in RP 2. Thus,
Lemma 5.16 implies B1 and Bk−1 are on the same side of Q∗ in RP 2; since B1 is Q∗-
exterior, we have that Bk−1 is Q∗-exterior. If Π[Q∗∪Bk−1] has no non-contractible
cycle, then Lemma 5.16 shows that it cannot overlap MQ∗ , a contradiction. In the

case Q∗ = Q4, this implies that Bk−1 is in N , while if Q∗ = Q0, then Bk−1 is in
N ∪ {v1v4, v6v9}.
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56 8. G EMBEDS WITH ALL SPOKES IN M

Proof of Lemma 8.4. We show that any odd cycle C in OD(Q0) contains either
v1v4 or v6v9. Theorem 5.23 (3) implies that OD(Q0)−MQ0

is bipartite. Therefore,

C contains MQ0
. Lemma 8.12 shows that any odd cycle in OD(Q0) containing MQ0

and an element of N has length 3 and contains one of v1v4 and v6v9, as required.
Thus, we may suppose C avoidsN∪{v1v4, v6v9}; let C = (B1, B2, . . . , B2k,MQ0

).

For each i = 1, 2, . . . , 2k, Π[Bi∪Q0] has no non-contractible cycles in RP 2. Lemma
5.16 implies Bi and Bi+1 are on different sides of Π[Q0]. From this, parity implies
that B1 and B2k are on opposite sides of Π[Q0]. On the other hand, they are both
on the side of Π[Q0] not containing MQ0

, a contradiction.

We are now prepared for the proof of Theorem 8.1.

Proof of Theorem 8.1. By Theorem 3.5, G has a representativity 2 embedding
Π in RP 2. For (1), if no spoke is exposed in Π, then we are done; thus, with the
standard labelling, we may suppose that s0 is exposed in Π. From Theorem 7.1,
we know that the Q0-bridge B0 containing s0 is different from MQ0

. From Lemma

8.4, we know that OD(Q0)− {v1v4, v6v9} is bipartite and from Theorem 5.23 (3),
we know that (MQ0

)# is planar.

We need to modify Π so that the set N (Definition 8.5) becomes empty. We
start with terminology that will be useful for the next claims.

Definition 8.13. Let L be a graph. A path (v1, v2, . . . , vk) in L is chordless
in L if there is no edge vivj of L that is not in P except possibly v1vk.

The following is a simple consequence of Lemma 8.12.

Claim 1. (1) If Q∗ = Q0, then every NMQ0
-path in OD(Q0) of length

at least two contains one of v1v4 and v6v9.
(2) If Q∗ = Q4, then every chordless NMQ4-path in OD(Q4) of length at

least two has length exactly two, one end is either v4v9 or v0v5, and that
end does not overlap MQ4

.

Proof. Suppose first that Q∗ = Q0. Let P be any NMQ0
-path in OD(Q0)

that has length at least 2. We may assume P is chordless: otherwise there is a
shorter NMQ0

-path P ′ of length at least 2 and V (P ′) ⊆ V (P ); if P ′ contains either

v1v4 or v6v9, then so does P . By Lemma 8.11 (2), the ends of P are adjacent in
OD(Q0). Thus, P together with this edge of OD(Q0) makes an induced cycle. As
this cycle has only one vertex in N , Lemma 8.12 implies the cycle has length 3 and
contains one of v1v4 and v6v9.

Now suppose that Q∗ = Q4 and P = (B1, B2, . . . , Bk,MQ4
) is a chordless

NMQ4 -path in OD(Q4) of length at least 2. Then B1 ∈ N . Since P is chordless and
Bk /∈ N , Lemma 8.12 (2) implies B1 does not overlap MQ4 . Now Lemma 8.11 (2)
implies B1 is either v4v9 or v0v5. Thus, B2 is skew to B1. Since att(B1) ⊆ att(MQ4

),
B2 is also skew to MQ4

. Since P is chordless, k = 2, as required. �

If Q∗ = Q0, then setM to be the set {MQ0
, v1v4, v6v9}, while if Q∗ = Q4, then

set M to be the set {MQ4 , v4v9, v0v5}. In either case, let M− =M\ {MQ∗}.
Let N+ be the set of Q∗-bridges B so that there is an NB-path in OD(Q∗)

that is disjoint from M. The next lemma shows that N+ consists of the members
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8. G EMBEDS WITH ALL SPOKES IN M 57

of N , which have attachments in both r∗ and r∗+5, and other Q∗-bridges B that
simply extend out along either r∗ or r∗+5. This structure is what will allow us to
find natural “breaking points” a′ and b′ in r∗ and r∗+5, respectively, to allow us to
“flip” the members of N into M, yielding the embedding with H ⊆M and N = ∅.

Claim 2. If B ∈ N+, then att(B) ⊆ r∗ ∪ r∗+5. Furthermore, if B ∈ N+ \ N ,
then either att(B) ⊆ r∗ or att(B) ⊆ r∗+5.

Proof. Let P be a shortest NB-path in OD(Q∗) that is disjoint fromM. We
proceed by induction on the length of P .

If B ∈ N , then the result follows from Lemma 8.8. Otherwise, B /∈ N . The
neighbour B′ of B in P is closer to N than B is, so att(B′) ⊆ r∗ ∪ r∗+5.

If B overlaps MQ∗ , then P extends to a chordlessNMQ∗ -path in OD(Q∗)−M−
of length at least 2. This contradicts Claim 1, showing B does not overlap MQ∗ .

Suppose by way of contradiction that B has an attachment x in the interior
of some H-spoke s contained in Q∗. As B overlaps B′ and att(B′) ⊆ r∗ ∪ r∗+5,
not all attachments of B can be in [s]. But any attachment y of B in Q∗ − [s]
combines with x to show that B is skew to the ends of s and, therefore, overlaps
MQ∗ . Therefore, att(B) ⊆ r∗ ∪ r∗+5.

Next suppose that B has an attachment in 〈r∗〉. If B also has an attachment
in Q∗ − [r∗], then B overlaps MQ∗ (the two identified attachments of B are skew
to the two ends of r∗). Thus, if B has an attachment in 〈r∗〉, then att(B) ⊆ r∗.
Likewise, if B has an attachment in

〈
r∗+5

〉
, then att(B) ⊆ r∗+5.

If B has an attachment in each of r∗ and r∗+5, then the preceding paragraph
shows that att(B) consists of some of the four H-nodes that comprise the ends of
r∗ and r∗+5. Because B overlaps B′, att(B) cannot be just the two ends of one of
the two H-spokes in Q∗. In the remaining case, B is skew to MQ∗ , a contradiction.
Thus, either att(B) ⊆ r∗ or att(B) ⊆ r∗+5. �

Let OD−(Q0) = OD(Q0) − {v1v4, v6v9} and let OD−(Q4) = OD(Q4). By
Lemma 8.4 or Theorem 5.23 (1), OD−(Q∗) is bipartite; let (S, T ) be a bipartition
of OD−(Q∗), with MQ∗ ∈ T . We briefly treat separately the cases Q∗ = Q0 and
Q∗ = Q4.

For the former, every element of N overlaps MQ0
and so N ⊆ S. There is

an embedding Φ of (G − {v1v4, v6v9}) − Nuc(MQ0
) in the plane so that all the

Q0-bridges in N are on the same side of Φ[Q0].
In the case of Q∗ = Q4, N \ {v4v9, v0v5} ⊆ S. There is an embedding Φ of

G−Nuc(MQ4) in the plane so that all the Q4-bridges in N \{v4v9, v0v5} are on the
same side of Φ[Q4]. Any of v4v9 and v0v5 that is also in S can also be embedded
on that same side of Φ[Q4].

Among the attachments of the elements of N+, let a9 be the one in r∗ nearest
v9 and let a4 be the one in r∗+5 nearest v4.

Claim 3. No Q∗-bridge not in M is skew to {a4, a9}.

Proof. It is clear that, in the case Q∗ = Q4, neither v4v9 nor v0v5 is skew to
{a4, a9}. We show that a Q∗-bridge not inM that is skew to {a4, a9} must overlap
some Q∗-bridge in N+; this implies the contradiction that it is in N+.

By the Ordering Lemma 4.8, the elements of N ∩ S occur in order on Q∗ in
Φ. Thus, there is one element B′ of N ∩ S that has both an attachment nearest
to v4 (relative to r∗) and an attachment nearest to v9 (relative to r∗+5). Let x′
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58 8. G EMBEDS WITH ALL SPOKES IN M

and y′ be the attachments of B′ nearest v4 in r∗ and v9 in r∗+5, respectively. In

the case Q∗ = Q0, B0 is a candidate for B′, so, even in this case, we have that
x′ ∈ [v4, r4, v5] and y′ ∈ [v9, r9, v0].

Suppose by way of contradiction that some Q∗-bridge B′′ not in M has at-
tachments x′′ and y′′ in the two components of Q∗ − {a4, a9}. We note that, when
Q∗ = Q4, B′′ 6= v4v9 and B′′ 6= v0v5.

If one of x′′ and y′′ is in the component of Q∗ − {x′, y′} that is disjoint from
s4 − {x′, y′}, then B′′ overlaps B′. Since B′ ∈ N , Lemma 8.11 implies B′′ /∈ N
and, therefore, B′′ ∈ N+. But this contradicts the definition of either a4 or a9

and, therefore, both x′′ and y′′ are contained in the component of Q∗−{x′, y′} that
contains s4 − {x′, y′}. In particular, we may assume y′′ ∈ 〈a4, r4, x

′] ∪ 〈a9, r9, y
′].

For the sake of definiteness, we assume y′′ ∈ 〈a9, r9, y
′].

Some Q∗-bridge B+ in N+ has a9 as an attachment; since y′′ is in 〈a9, r9, y
′],

y′ 6= a9 and, therefore, B+ is not inN . There is a shortest path P = (B′, B1, . . . , Bn)
in OD−(Q∗)−MQ∗ from B′ to some element Bn of N+ so that Bn has an attach-
ment yn in [a9, r9, y

′′〉; choose yn so that it is as close to a9 in [a9, r9, y
′′〉 as possible.

The Q∗-bridge Bn−1 is in N+ and so, by minimality of n, does not have an
attachment in [a9, r9, y

′′〉. Since Bn overlaps Bn−1, there is an attachment zn of
Bn in 〈y′′, r9, x

′]. Since B′′ is skew to {a4, a9}, there is an attachment z′′ of B′′ in
〈a9, r9, v9]s4[v4, r4, a4〉. But now zn, y′′, yn, and z′′ show B′′ overlaps Bn. Since
B′′ /∈M, B′′ is in N+. But this contradicts the definition of a4 or a9. �

The following is immediate from Claim 3.

Claim 4. Each Q∗-bridge not in M has all its attachments in one of the two
a4a9-subpaths of Q∗. 2

The proof now bifurcates into the two cases. We consider first the case Q∗ = Q0

and that s0 is exposed in Π. The following is immediate from Claim 4.

Claim 5. The planar embedding Φ of (G − {v1v4, v6v9}) − Nuc(MQ0
) has

the property that there is a simple closed curve in the plane that meets Φ[(G −
{v1v4, v6v9})−Nuc(MQ∗)] precisely at a4 and a9. 2

We are now prepared to describe a representativity 2 embedding of G in RP 2

so that all H-spokes are in M.
Let Ψ be an embedding of H in RP 2 so that all H-spokes are contained in

the Möbius band MΨ bounded by Ψ[R] and let γΨ be a non-contractible, simple,
closed curve that meets H in precisely the points a4 and a9. The claim is that this
embedding extends to an embedding of G so that γΨ meets G only at a4 and a9.

Claim 4 implies that we can add all the Q0-bridges other than v1v4, v6v9, and
MQ0

to Ψ so that there is no additional intersection with γΨ. It remains to show

that we may also add the at most three remaining Q0-bridges.

Claim 6. At most one of v1v4 and v6v9 is in G.

Proof. Suppose both are in G. We consider a 1-drawing D2 of G−〈s2〉. As Q2

must be crossed in D2 (it has BOD and s2 is contained in a planar Q2-bridge; apply
Lemma 5.9), we conclude that r0 r1 r2 r3 crosses r5 r6 r7 r8 in D2. In particular, s0

and s4 cannot be exposed.
In order for v1v4 to be not crossed in D2, we must have the crossing in r0.

Likewise, v6v9 implies the crossing is in r5. But then neither r1 r2 nor r6 r7 is
crossed, so Q2 is not crossed in D2, a contradiction. �
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8. G EMBEDS WITH ALL SPOKES IN M 59

We note that v1v4 and v6v9 are not symmetric: the embedding Π of G in RP 2

distinguishes these two cases. However, it is easy to add either of these to Ψ so
that the newly added edge is in the closed disc DΨ bounded by Ψ[R] in Ψ.

Finally, it remains to show that we may also add MQ0
to Ψ. Here the argument

depends slightly on which of v1v4 and v6v9 occurs in G. We will assume, for the
sake of definiteness, that it is v1v4 that occurs; the argument in the other case is
completely analogous. We shall simply import Π[MQ0

] in RP 2 as its embedding in

Ψ.
To this end, let B be any H-bridge contained in MQ0

so that Π[B] ⊆ D. We

show that either att(B) ⊆ r0 r1 r2 r3 [v4, r4, a4] or att(B) ⊆ r5 r6 r7 r8 [v9, r9, a9].
We begin by observing that such a B cannot overlap v1v4 (as R-bridges), as

both are are embedded in D by Π. An analogous discussion applies if v1v4 is
replaced by v6v9.

The embedding Π shows B cannot have an attachment in each of 〈r1 r2 r3〉 and
〈r5 r6 r7 r8 r9〉. Likewise, B cannot have an attachment in each of 〈r6 r7 r8〉 and
r0 r1 r2 r3 r4. The next claim treats the remaining possibilities.

Claim 7. The H-bridge B does not have an attachment in each of 〈r1 r2 r3〉
and 〈a4, r4, v5]. Likewise, B does not have an attachment in each of 〈r6 r7 r8〉 and
either r5 or 〈a9, r9, v0].

Proof. Suppose by way of contradiction that B has an attachment x in
〈a4, r4, v5] and an attachment y ∈ 〈r1 r2 r3〉. Let P be an H-avoiding xy-path
in B. Since a4 is an attachment of some element of N+, there is a shortest path S
in OD(Q0)−{v1v4, v6v9,MQ0

} joining some BN in N to a Q0-bridge BN+ so that

BN+ has an attachment in [v4, r4, x〉.
If BN+ ∈ N , then BN+ ⊆ D. Lemma 8.8 shows BN+ has an attachment in each

of r∗ and r∗+5; therefore, BN+ is not contained in the closed disc bounded by P and
a subpath of r1 r2 r3 r4, BN+ and P must cross in Π. Therefore, BN+ ∈ N+ \ N .

The neighbour B′N+ of BN+ in S does not have an attachment in [v4, r4, x〉.
Since BN+ overlaps B′N+ , it follows that BN+ has another attachment in 〈x, r4, v5,
r5, b]. In particular, the edge e of [v4, r4, x] incident with x is H-green because of
BN+ .

On the other hand, if either x 6= v5 or y /∈ 〈r1〉, then P combines with the
xy-subpath of r1 r2 r3[v4, r4, x] to make another H-green cycle containing e, con-
tradicting Theorem 6.7. Therefore, x = v5 and y ∈ 〈r1〉. But then att(B) ⊆ Q0,
contradicting the fact that B ⊆MQ0

.

The “likewise” statement has an analogous proof. �

We now see that Ψ may be extended to include Π[MQ0
], completing the proof

when Q∗ = Q0.
The proof will be completed by now considering the case Q∗ = Q4. The only

difference in how we proceed is to note that the H-bridges v4v9 and v0v5, if they
exist, may be transferred to M at the start. To see this, first observe that v4v9 and
v0v5 overlap on R and so cannot both be embedded in D. If v4v9 is not contained
in M, then we may consider H ′ to be (H − 〈s4〉) + v4v9, relabel H ′ so that v4v9 —
the exposed spoke — is s0 and proceed as above to move v4v9 into M.

The following notions will be helpful for the duration of the work.
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60 8. G EMBEDS WITH ALL SPOKES IN M

Definition 8.14. Let G be a graph, V10
∼=H ⊆ G and let B be an H-bridge

in G.

(1) If there is an i ∈ {0, 1, 2, 3, 4} so that att(B) ⊆ Qi, then B is both a local
H-bridge and a Qi-local H-bridge.

(2) Otherwise, B is a global H-bridge.

Corollary 8.15. Let G ∈ M3
2 and V10

∼=H ⊆ G. Then there is no i so that
Qi has BOD and each edge of ri−2 ri−1 ri ri+1 is in an H-green cycle consisting of
a global H-bridge and a path in R having at most two H-nodes other than vi.

Proof. By way of contradiction, suppose there is such an i. By Theorem 8.1,
G has a representativity 2 embedding in RP 2 so that H ⊆ M. Thus, si is in a
Qi-bridge other than MQi

.

By Lemma 6.6 (10), no edge of ri−2 ri−1 ri ri+1 can be crossed in any 1-drawing
D of G − 〈si〉. By hypothesis, Qi has BOD, so Lemma 5.9 implies Qi is crossed
in D, which further implies that some edge of ri−2 ri−1 ri ri+1 is crossed in D, a
contradiction.
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CHAPTER 9

Parallel edges

In this very short chapter, we present some observations on how parallel edges
can occur in 2-crossing-critical graphs. This will be used in later sections, especially
Section 15, where we determine all the 3-connected, 2-crossing-critical graphs that
do not have a subdivision of V8. There are easy generalizations to k-crossing-critical
graphs.

Definition 9.1. For an edge e of a graph G, µ(e) denotes the number of edges
parallel to e (including e itself).

Observation 9.2. Let G be a 2-crossing-critical graph and let e and e′ be
parallel edges of G. Then:

(1) if G is the underlying simple graph, then G is not planar;
(2) the edge e′ is crossed in any 1-drawing of G− e;
(3) µ(e) ≤ 2;
(4) if e′ is an edge parallel to e, then G− {e, e′} is planar;
(5) if cr(G) > 2, then G is simple; and
(6) if n ≥ 4 and V2n

∼=H ⊆ G, then one of e and e′ is in the H-rim.

Proof. For (1), a planar embedding of G allows us to introduce all the parallel
edges of G with no crossings, showing G is planar, a contradiction.

For (2)–(5), let D be a 1-drawing of G− e and suppose e′ is not crossed in D
Then we may add e alongside D[e′] to obtain a 1-drawing of G, a contradiction.
Since D has at most one crossing, it must be of e′, which is (2). Adding e alongside
D[e′] yields a 2-drawing of G. Thus we have (4) and (5). Also, (3) follows, since
any other edge e′′ parallel to e does not cross e′ in De. Thus, e′′ is not crossed in
De, which contradicts the second sentence, with e′′ in place of e′.

Finally, for (6), we may suppose e is not in H. Lemma 3.6 shows that the
only edges that are in every non-planar subgraph of G− e are those in the H-rim.
Therefore, e′ is in the H-rim. �
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CHAPTER 10

Tidiness and global H-bridges

In this section, we show that, if G ∈ M3
2 and V10

∼=H ⊆ G, then there is a
V10
∼=H ′ ⊆ G with many useful additional characteristics that we call “tidiness”.

The main result is that a tidy subdivision of V10 has only very particular global
bridges, each of which is an edge. We start with a slightly milder version of tidiness.

Definition 10.1. Let Π be a representativity 2 embedding of G in RP 2 and
let V10

∼=H ⊆ G. Then H is Π-pretidy if:

(1) all H-spokes are embedded in M; and
(2) for every H-quad Q and for every Q-bridge B other than MQ, Q∪B has

no non-contractible cycle in Π.

The first step in this section is to find an embedding with a pretidy subdivision
of V10.

Lemma 10.2. Let G ∈M3
2 and V10

∼=H ⊆ G. Then G has a representativity 2
embedding Π in RP 2 so that H is Π-pretidy.

Proof. By Theorem 8.1, G has a representativity 2 embedding Π in RP 2 so that
all the H-spokes are contained in M and so that, for any Q4-bridge B other than
MQ4 , Π[Q4∪B] has no non-contractible cycle. We note that every global H-bridge
is contained in D. We describe a particular representativity 2 embedding Π∗ of
G in RP 2 for which H is Π∗-pretidy. Let γ be the non-contractible simple closed
curve that meets Π(G) at just the two points a and b.

The embedding Π∗ is obtained by adjusting the local H-bridges; we do not
adjust those that are Q4-local. We start with Π∗ being the same as Π on H and all
the Q4-bridges other than MQ4 . Let Q be an H-quad other than Q4. By Theorem
5.23, Q has BOD and all Q-bridges other than MQ are planar. Let (S, T ) be a
bipartition of OD(Q) labelled so that MQ ∈ T . Let ΠQ be a planar embedding of
Q and all the Q-bridges other than MQ so that all the Q-bridges in T \ {MQ} are
on one side of ΠQ[Q] and all the Q-bridges in S are on the other side of ΠQ[Q].

Extend Π∗ to include all the Q-bridges other than MQ by placing the Q-bridges
in S into the H-face in Π∗ bounded by Π∗[Q], using ΠQ. As every Q-bridge in
T \ {MQ} does not overlap MQ, each of these has all its attachments on one of the
four H-branches in Q and these may be embedded in Π∗ on the other side of Π∗[Q],
and without crossing MQ ∪ γ.

The only concern here is that a local H-bridge can be local for distinct H-
quads. Such an H-bridge B must have all its attachments on the same H-spoke si.
We claim it is in T for one of Qi−1 and Qi and in S for the other one of Qi−1 and
Qi.

As G is 3-connected, OD(Qi) is connected (see [6, Thm. 1], where this is
proved for binary matroids). There is a shortest MQiB-path P = (B0, B1, . . . , Bn)
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10. TIDINESS AND GLOBAL H-BRIDGES 63

in OD(Qi) (thus, B0 = MQi and Bn = B). Let k be least so that Bk has an
attachment in 〈si〉.

Claim 1. For j > k, att(Bj) ⊆ si, and k ≤ 1.

Proof. If, for some j > k, Bj has an attachment not in si, then j < n. If Bj
has an attachment in 〈si〉, then Bj is skew to MQi and P is not a shortest MQiB-
path, a contradiction. Thus, there is a least j′ > j so that Bj′ has an attachment
in 〈sj〉. Since Bj′ overlaps Bj′−1 and Bj′−1 has no attachment in 〈si〉, Bj′ has an
attachment not in si. Again, Bj′ is skew to MQi , so P is not a shortest MQiB-path,
a contradiction. Thus, for all j > k, att(Bj) ⊆ si.

If k = 0, then obviously k ≤ 1, so we may assume k ≥ 1. As Bk has an
attachment in 〈si〉 and Bk−1 does not, it follows that Bk has an attachment not in
si. But then Bk is skew to MQi . Because P is a shortest MQiB-path, we deduce
that k ≤ 1. �

The claim shows that the Qi-bridges Bk+1, Bk+2, . . . , Bn are also Qi−1-bridges
and, therefore, (Bk+1, Bk+2, . . . , Bn) is a path in OD(Qi−1). Suppose first that k =
0. Then MQi contains a vertex x in 〈si〉 so that x and vi+1 are skew to B1. There
is a shortest Qi-avoiding path P in MQi joining x to a vertex in Nuc(MQi) ∩ H.
Since P is not in the face of Π[Qi] contained in M, we deduce that P is contained
in the face of Π[Qi−1] contained in M. But then we conclude that P is contained
in a Qi−1-local H-bridge B′, showing that B′ is skew to both MQi−1 and to B1.
We deduce that, in OD(Qi), MQi and B1 are on opposite sides of the bipartition of
OD(Qi), while MQi−1

and B1 are on the same side of the bipartition of OD(Qi−1).
Since B1 and B = Bn have not changed their relative positions, we see that in
one of OD(Qi) and OD(Qi−1), B is on the same side of the bipartition as the
corresponding Möbius bridge, while in the other B and the other corresponding
Möbius bridge are on opposite sides of the bipartition.

The argument works exactly in reverse when k = 1. In this case, B1 is skew to
MQi and B2. Since B1 ⊆ MQi−1

, we conclude that B2 is skew to MQi−1
, and the

result follows analogously to the argument in the preceding paragraph.
Finally, suppose B is a global H-bridge. Then, for each H-quad Q, B ⊆ MQ,

so B does not overlap any of the Q-local H-bridges already embedded in DΠ∗ and,
since Π[B] ⊆ D, B can also be added to Π∗.

We are now ready to move to tidiness.

Definition 10.3. Let V10
∼=H ⊆ G and let Π be a representativity 2 embedding

of G. Then H is Π-tidy if:

(1) H ⊆M;
(2) every local H-bridge is contained in M;
(3) for each H-quad Q, no two Q-local H-bridges overlap; and
(4) there is no H-avoiding path P in D and an index i ∈ {0, 1, 2, . . . , 9} so

that P has both its ends in 〈vi, ri, vi+1, ri+1, vi+2, ri+2, vi+3〉.
If V10

∼=H ⊆ G, then H is tidy if there is a representativity 2 embedding Π of G so
that H is Π-tidy.

Our aim is the following result.

Theorem 10.4. Let G ∈ M3
2 have a subdivision of V10. Then there exists a

representativity 2 embedding Π in RP 2 of G with a Π-tidy subdivision of V10.
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64 10. TIDINESS AND GLOBAL H-BRIDGES

The following concept is central to the proof.

Definition 10.5. Let V10
∼=H ⊆ G. Then Loc(H) denotes the union of H and

all the local H-bridges in G.

Proof of Theorem 10.4. For any V10
∼=H ⊆ G, Lemma 10.2 implies there is a

representativity 2 embedding Π of G in RP 2 so that H is Π-pretidy. Among all H
for which Loc(H) is maximal and all Π so that H is Π-pretidy, we consider the pairs
(H,Π) so that G∩MΠ(H) is maximal. Among all these pairs (H,Π), we choose one
for which the number of edges of G in H-spokes in minimized. We claim that this
H is Π-tidy. We note that (1) is satisfied by the fact that H is Π-pretidy.

If H and Π fail to satisfy either (2) or (4), then either there is an H-quad Q so
that some Q-local H-bridge B is not embedded in MH , or there is an H-avoiding
path P contained in DH and an index i ∈ {0, 1, 2, . . . , 9} so that P has both ends
in 〈ri ri+1 ri+2〉. In the first case, as Q∪B has no non-contractible cycles, the only
possibility is that B has all its attachments in one of the H-rim branches of Q.
Thus, the first case is a special case of the second; we now consider the second case.

Let P ′ be the subpath of 〈ri ri+1 ri+2〉 joining the ends u and w of P , with the
labelling chosen so that u is nearer to vi in P ′ than w is. Note that the cycle P ∪P ′
is an H-green cycle and, therefore, bounds a face of G.

We construct a new subdivision H ′ of V10 in G. The H ′-rim is obtained from the
H-rim by replacing P ′ with P . The spokes si, si+3, and si+4 of H ′ are also spokes
of H ′. The H-spokes si+1 and si+2 might need extension, using the subpaths of
ri ri+1 ri+2 joining u and/or w to either vi+1 or vi+2 as necessary, to become spokes
of H ′. Evidently all H ′-spokes are contained in MH′ , so H ′ ⊆ G∩MH′ ⊆ Loc(H ′).
Furthermore, if F is the (closed) face of G bounded by P ∪P ′, then MH′ = MH∪F .

Claim 1. Loc(H) ⊆ Loc(H ′).

Proof. Let e be an edge of Loc(H). If e ∈MH′ , then e ∈ Loc(H ′), so we may
assume e /∈ MH′ . Let B be the local H-bridge containing e. Since e /∈ MH′ and
MH ⊆ MH′ , we deduce that B ⊆ DH , and so all attachments of B are in some
H-rim branch (recall H is Π-pretidy). Thus, Corollary 5.15 implies B has precisely
two attachments and therefore is just the edge e. Consequently, B is disjoint from
P (it is not in MH′), and so B is an H ′-bridge, whence e ∈ Loc(H ′). �

If P is not contained in a localH-bridge, then, since P ⊆ Loc(H ′), we contradict
maximality of Loc(H). Therefore, P is contained in, and therefore is, a local H-
bridge B. But this implies that H ′ is Π-pretidy and that G has one more edge in
MH′ than it has in MH , contradicting the maximality of G ∩MH . Therefore, (2)
and (4) hold for (H,Π).

It follows that, if H is not Π-tidy, then (3) is violated: there exists an H-quad
Q and two Q-bridges B and B′ in (MQ)# that overlap. As both B and B′ are
contained in M, one, say B, is Q-interior in Π, while B′ is Q-exterior. This implies
that att(B′) ⊆ s, for some H-spoke s ⊆ Q. Corollary 5.15 implies that B′ is just
an edge uw. We note that B has an attachment x in 〈u, s, w〉 and an attachment
y not in [u, s, w].

Let H ′′ be the subdivision of V10 obtained from H by replacing s with (s −
〈u, s, w〉)∪B′. We note that H ′′ is Π-pretidy, Loc(H ′) = Loc(H), and MH′′ = MH ,
so G ∩MH′′ is maximal. However, the H ′′-spokes have in total at least one fewer
edge than the H-spokes, contradicting the choice of H.
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10. TIDINESS AND GLOBAL H-BRIDGES 65

We now turn our attention to the global H-bridges of a tidy H.

Theorem 10.6. Let G ∈ M3
2 and V10

∼=H ⊆ G. If H is tidy, then any global
H-bridge is just an edge, and, in particular, has one of the forms vivi+2, vivi+3, or
has vi as one end and the other end is in 〈ri−3〉 ∪ 〈ri+2〉.

Proof. Let Π be a representativity 2 embedding of G for which H is Π-tidy.
In particular, all H-spokes and all local H-bridges are in M, and, for each i =
0, 1, 2 . . . , 9, no global H-bridge has two attachments in 〈ri ri+1 ri+2〉.

Let B be a global H-bridge. We note that B ⊆ D.

Claim 1. If there is an i so that att(B) ⊆ ri ri+1 ri+2, then either B = vivi+2

or B = vi+1vi+3 or B = vivi+3 or B has vi as one end and the other end is in 〈ri+2〉
or B has vi+3 as one end and the other end is in 〈ri〉.

Proof. Because H is tidy, no two attachments of B are in 〈ri ri+1 ri+2〉. Thus,
at least one of vi and vi+3 is an attachment of B; for the sake of definiteness, let
it be vi. Then tidiness implies no attachment of B can be in 〈ri ri+1〉. As tidiness
also implies ri+2 has at most one, and therefore exactly one, attachment of B, the
result follows. �

Claim 2. If there is no i so that att(B) ⊆ ri ri+1 ri+2, then either att(B) =
{v0, v5, z}, with z ∈ 〈r2〉 ∪ 〈r7〉 or att(B) = {v4, v9, z}, with z ∈ 〈r1〉 ∪ 〈r6〉.

Proof. We may assume that B is embedded in the (H ∪ γ)-face contained in
D and incident with v0, v1, . . . , v4. As H is tidy and B is H-global, there exist
i, j ∈ {9, 0, 1, 2, 3, 4} so that (taking 9 to be equal to −1) i < j, B has attachments
x in ri − vi+1 and y in rj − vj , and j − i ≥ 3; choose such i, j so that j − i is as
small as possible. By tidiness, there is no other attachment of B in

[ri−1 ri ri+1〉 ∪ 〈rj−1 rj rj+1] .

Subclaim 1. Either i = −1 or j = 4.

Proof. In the alternative, i ≥ 0 and j ≤ 3. As j − i ≥ 3, we conclude that
i = 0 and j = 3, so the six H-rim branches ri−1, ri, ri+1, rj−1, rj , and rj+1 are all
distinct and cover the entire ab-subpath in the boundary of (H ∪γ)-face containing
B, with the possible exception of v2, in which case both x = v0 and y = v4.

Let e be an edge in s2 and let D be a 1-drawing of G−e. Theorem 5.23 implies
Q2 has BOD; now Lemma 5.9 implies Q2 is crossed in D. In particular, r0 r1 r2 r3

crosses r5 r6 r7 r8 in D.
In the case v2 is an attachment of B, let P and P ′ be H-avoiding v0v2- and

v2v4-paths in B, respectively. Then the cycles r0 r1[v2, P, v0] and r2 r3[v4, P
′, v2]

are both H-green. Lemma 7.2 (1) implies neither is crossed in D, yielding the
contradiction that r0 r1 r2 r3 is not crossed in D.

Thus, B is the edge xy. Note that B is not a local H-bridge and, therefore,
not both v0 and v4 are attachments of B. As B is not crossed in D, we deduce that
the xy-subpath of r0 r1 r2 r3 is also not crossed in D. Therefore, either r0 or r3 is
crossed in D. From this, we conclude that, since Q2 is crossed in D, r6 r7 is crossed
in D. Moreover, either s1 or s3 is exposed in D. By symmetry, we may assume s1

is exposed in D.
If x 6= v0, then the cycle r1 r2 r3 s3 r8 r9 s0 r5 s1 is clean in D and separates

x ∈ 〈r1〉 from y ∈ 〈v3, r3, v4], so B must be crossed in D, a contradiction. If y 6= v4,
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66 10. TIDINESS AND GLOBAL H-BRIDGES

then the cycle r1 r2 s3 r8 s4 r4 r5 s1 is clean in D and separates x ∈ [v0, r1, v1〉 from
y ∈ 〈r3〉, and again B is crossed in D, a contradiction. �

Recall that −1 is equal to 9. The following is immediate from tidiness.

Subclaim 2. (1) If x ∈ [a, r9, v0〉, then there is no attachment in [v0, r0, v1〉.
(2) If y ∈ 〈v4, r4, b], then there is no attachment in 〈v3, r3, v4].

The next two subclaims are rather less trivial.

Subclaim 3. (1) If x ∈ [a, r9, v0〉, then there is no attachment in [v2, r2, v3〉.
(2) If y ∈ 〈v4, r4, b], then there is no attachment in 〈v1, r1, v2].

Proof. We prove (1); (2) is symmetric. For (1), suppose there is an at-
tachment y′ in [v2, r2, v3〉. By tidiness, there is no attachment other than y′ in
〈r0 r1 r2 r3〉, and so minimality of j − i implies y′ = y.

The only other possible attachment is in [v4, r4, b]. If there is an attachment z
in [v4, r4, b], then either y = v2 or z = b = v5. Thus, either z does not exist and B
is the edge xy, or z exists, B has exactly three attachments, namely x, y, and z,
and Lemma 5.19 shows B is a K1,3. Let P and P ′ be the xy- and yz-paths (the
latter only if z exists) in B.

Suppose first that y 6= v2. Then x = v9, as otherwise [y, P, x, r9, v0]r0 r1[v2, r2, y]
is an H-green cycle with the three H-nodes v0, v1, v2 in its interior, contradicting
Lemma 6.6 (9).

Theorem 5.23 (6a) does not apply, as x = v9 = a implies v0 6= a. If Theorem
5.23 (6b) applies, then there is a second H-bridge B′ attaching at b = v5 and in
r0 r1. But then B and B′ must cross in Π, a contradiction. Therefore, Theorem
5.23 (6) shows Q1 has BOD.

Let e be an edge of s1 and let D be a 1-drawing of G− e. Lemma 5.9 implies
Q1 is crossed in D. On the other hand, the presence of P and Lemma 7.2 (3a) and
(2) imply Q1 cannot be crossed in D, the desired contradiction.

Therefore, y = v2. Since x, y ∈ r9 r0 r1, the hypothesis of the claim implies
z must exist. The cycles [x, P, v2]r1 r0[v0, r9, x] and [z, P ′, v2]r2 r3[v4, r4, z] are H-
green. Let e be an edge in s2 and let D be a 1-drawing of G − e. Theorem 5.23
implies Q2 has BOD, so Lemma 5.9 implies Q2 is crossed in D. However, Lemma
7.2 (1) shows that r0 and r3 are not crossed. If x 6= v9, then the same result shows
r1 is not crossed and likewise if z 6= v5, then r2 is not crossed. If, say, x = v9, then
Lemma 7.2 (3b) implies r1 can only cross r8. However, if z 6= v4, then (2) shows r8

cannot be crossed.
In the remaining case, x = v9 and z = v4. In this case, a = x = v9. If Q1

does not have BOD, then Theorem 5.23 (6) implies b = v5 and there is a Q1-bridge
B′ different from MQ1

, having attachments at b and in r0 r1, and embedded in D.

But then B′ is an H-bridge different from B that overlaps B on R, while both are
embedded in D, a contradiction. �

Subclaim 4. (1) If x ∈ [a, r9, v0〉, then there is no attachment in [v3, r3, v4〉.
(2) If y ∈ 〈v4, r4, b], then there is no attachment in 〈v0, r0, v1].

Proof. We prove (1); (2) is symmetric. For (1), suppose there is an attach-
ment in [v3, r3, v4〉. By minimality of j−i, Subclaim 3 and tidiness, this attachment
is y. Also by tidiness, there is no other attachment in 〈r1 r2 r3 r4〉.
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10. TIDINESS AND GLOBAL H-BRIDGES 67

Suppose there is also an attachment z in [v1, r1, v2〉. The preceding paragraph
shows z = v1. Tidiness now implies that x is v9 and, since a ∈ r9 and x ∈ [a, r9, v0〉,
a = v9. Let P and P ′ be H-avoiding xz- and yz-paths in B, respectively.

Theorem 5.23 (6) implies Q1 has BOD. If D1 is any 1-drawing of G−〈s1〉, then
Lemma 5.9 implies Q1 is crossed in D1. But Lemma 7.2 implies (recall z = v1)
the two H-green cycles [z, P, x, r9, v0, r0, z] and [y, P ′, z, r1, v2, r2, v3, r3, y] are not
crossed in D1. Thus, r9 r0 r1 r2 is not crossed in D1 (since x = v9), so Q1 is not
crossed in D1, a contradiction.

Therefore, there is no attachment in [v1, r1, v2〉. Thus, we may assume that the
only attachments in [a, r9, v0]r0 r1 r2 r3 are x ∈ [a, r9, v0〉 and y ∈ [v3, r3, v4〉. Tidi-
ness further shows there is no attachment in [v4, r4, v5〉, so the only other possible
attachment of B is v5, in which case y = v3.

In each of the two cases x 6= v9 and x = v9, we show that Q4 has NBOD by
showing that B, MQ4

, and theQ4-bridge B4 containing s4 are mutually overlapping.

We remark that B and B4 are in different faces of Π[H], so B 6= B4. Obviously,
B4 is skew to MQ4

.

Case 1. x 6= v9.

The attachments x and y of B are skew to v4 and v9, so B and B4 overlap.
Also, x and y are skew to v8 and v0, so B and MQ4

overlap, as required.

Case 2. x = v9.

As x, y ∈ Q3 and B is not Q3-local, there is another attachment z of B. Our
earlier remarks imply z = v5 and y = v3. Now y and z show B and B4 are skew,
while x and y show B and MQ4

are skew.

We now resume our general discussion. Let Pxy be the xy-path in B. Since

x ∈ [a, r9, v0〉, v0 6= a. Suppose some Q1-bridge B′ has an attachment at b = v5

and an attachment in r0 r1. Since B is not a Q1-bridge and both B and B′ are
H-bridges, B 6= B′. Then Pxy and a v5 [r0 r1]-path in B′ would cross in Π, which

is impossible. Therefore, Theorem 5.23 shows Q1 has BOD.
Let D1 be a 1-drawing of G−〈s1〉. Because Q4 has NBOD, Lemma 5.6 implies

D1[Q4] is not clean in D1. Since Q1 has BOD and s1 is contained in a planar
Q1-bridge, Lemma 5.9 implies Q1 is crossed in D1. Therefore, s0 is exposed in
D1. Thus D1[H −〈s1〉] is one of two possible 1-drawings, depending on whether r9

crosses r5 r6 or r4 crosses r0 r1.
If x 6= v9, then Pxy cannot be added to D1[H − 〈s1〉] without introducing a

second crossing, which is impossible. If x = v9, then the three attachments of B
are not all on the same face of D1[H −〈s1〉], so B cannot be added to D1[H −〈s1〉]
without introducing a second crossing, the final contradiction. �

We can now complete the proof of Claim 2. Subclaim 1 implies either x ∈
[a, r9, v0〉 or y ∈ 〈v4, r4, b]. By symmetry, we may assume the former. Subclaims
3 and 4 imply y ∈ [v4, r4, b]. If y 6= v4, then Subclaims 2, 3 and 4 (all six state-
ments) show that there is no other attachment of B. But then B is Q4-local, a
contradiction. Therefore, y = v4, and, furthermore, there is an attachment z of B
in [v1, r1, v2〉.

If x 6= v9, then both x and z are in 〈r9 r0 r1〉, contradicting tidiness. Thus,
x = v9.
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68 10. TIDINESS AND GLOBAL H-BRIDGES

The claim will be proved once we know z 6= v1. By way of contradiction,
suppose z = v1. Consider any 1-drawing D2 of G − 〈s2〉. By Theorem 5.23, Q2

has BOD. Thus, Lemma 5.9 implies Q2 is crossed in D2. That is, r0 r1 r2 r3 crosses
r5 r6 r7 r8 in D2. In particular, neither s0 nor s4 is exposed in D2.

Since B is global and has attachments at v4 and v9, it must be that D2[B]
is in the face of D2[R ∪ s0 ∪ s4] incident with s4 and the crossing. Since v1 is
an attachment of B, v1 must be in the subpath of r0 r1 r2 r3 between the crossing
and v4. But then s3 is not exposed in D2, implying B must cross s3 in D2, a
contradiction that shows v1 is not an attachment of B, completing the proof of the
claim. �

To complete the proof of the theorem, by way of contradiction assume there is
no i so that att(B) ⊆ ri ri+1 ri+2. Claim 2 shows either att(B) = {v0, v5, z}, with
z ∈ 〈r2〉 ∪ 〈r7〉 or att(B) = {v4, v9, z}, with z ∈ 〈r1〉 ∪ 〈r6〉. These are all the same
up to the labelling of H, a, and b, so we may assume att(B) = {v0, v5, z}, with
z ∈ 〈r2〉. Let H ′ be the subdivision of V10 consisting of H −〈s0〉, together with the
v0v5-path in B.

In order to apply Theorem 7.1, we show that Π is H ′-friendly. If Π is not H ′-
friendly, then Lemma 6.5 (1) implies (since H and H ′ have the same nodes) v6v9

is an edge and Π[v6v9] is contained in MH′ , which is the same as MH . But v6 and
v9 are not incident with the same H-face in MH and, therefore, this is impossible.
Thus, Π is H ′-friendly. However, H ′ violates Theorem 7.1, a contradiction.

Therefore, there is an i so that att(B) ⊆ ri ri+1 ri+2. Claim 1 implies B has
one of the three desired forms.

We can go somewhat further in our analysis of the global H-bridges of a tidy
V10
∼=H ⊆ G.

Definition 10.7. Let G ∈ M3
2 and V10

∼=H ⊆ G, with H tidy. Let B be a
global H-bridge with attachments x and y.

(1) The span of B is the xy-subpath R with the fewest H-nodes.
(2) An edge or subpath of R is spanned by B if it is in the span of B.
(3) B is: a 2-jump if, for some i, its attachments are vi and vi+2; a 3-jump if,

for some i, its attachments are vi and vi+3; or else is a 2.5-jump.

We remark that Theorem 10.6 implies that, in the case of a 2.5-jump, there is
an i so that vi is one attachment and the other attachment is in 〈ri−3〉 ∪ 〈ri+2〉.
Theorem 10.6 further implies a global H-bridge has precisely two attachments and
its span has at most four H-nodes. It follows from Definition 6.2 that every global
H-bridge combines with its span to form an H-green cycle.

Lemma 10.8. Let G ∈ M3
2 and V10

∼=H ⊆ G, with H tidy. For each i ∈
{0, 1, 2, 3, 4}, either Qi has BOD or one of vi−1vi−4 and vi+1vi+4 is a global H-
bridge.

Proof. Let Π be an embedding of G in RP 2 so that H is Π-tidy. Suppose neither
of the edges vi−1vi−4 and vi+1vi+4 occurs in G. The Qi-bridges that are Qi-exterior
consist of MQi

, those that are contained in M and, therefore, attach along either

si−1 or si+1, and those that are contained in D. Since H is Π-tidy, these latter
must be global. By Theorem 10.6 they are 2-, 2.5-, and 3-jumps.
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10. TIDINESS AND GLOBAL H-BRIDGES 69

Consider any global H-bridge. It is embedded in D so that it, together with
its spanned path in R, bounds a face of G. In particular, if we are considering a
2-jump B that is a Qi-bridge, the 2-jump is either vi−1vi+1 or vi+4vi+6. In this
case, Qi ∪B has no non-contractible cycle in RP 2 and so, by Lemma 5.16, B does
not overlap any other Qi-exterior Qi-bridge.

It is not possible for a 2.5-jump to be a Qi-bridge. The only 3-jumps that can
be a Qi-bridge are vi+1vi+4 and vi−4vi−1, and these are assumed not to be in G.
We conclude that the Qi-exterior Qi-bridges do not overlap and, therefore, Qi has
BOD.

Lemma 10.9. Let G ∈M3
2 and V10

∼=H ⊆ G, with H tidy. Then:

(1) no two global H-bridges have an H-node in common;
(2) at most one global H-bridge is a 3-jump;
(3) there is no i so that vivi+3 is a 3-jump and some 2.5-jump has an end in
〈vi−1, ri−1, vi];

(4) if B1 and B2 are global H-bridges, then, for every i ∈ {0, 1, 2, 3, 4}, there
is some edge of Qi ∩R that is not spanned by either B1 or B2; and

(5) for each i ∈ {0, 1, 2, 3, 4}, at most one of 〈ri〉 and 〈ri+5〉 can contain an
end of a 2.5-jump.

Proof. We start with (1).

Claim 1. No two global H-bridges have an H-node in common.

Proof. suppose by way of contradiction that the two global H-bridges B1

and B2 have the H-node vi in common. For j = 1, 2, let Pj be the subpath of
R spanned by Bj . Then each of Bj ∪ Pj is a green cycle; therefore, Theorem 6.7
implies P1 and P2 are edge disjoint. We choose the labelling so that ri ∪ ri+1 ⊆ P1

and ri−2 ∪ ri−1 ⊆ P2. We treat various cases.

Subclaim 1. At least one of B1 and B2 is not a 3-jump.

Proof. Suppose to the contrary that B1 and B2 are both 3-jumps, so B1 =
vivi+3 and B2 = vi−3vi, respectively. Then there is a 1-drawing Di of (H − si) ∪
B1 ∪ B2; Lemma 10.8 implies Qi has BOD, so Lemma 5.9 implies Qi is crossed in
Di.

Because of B1, Lemma 7.2 (3a) implies ri+1 and ri+2 are not crossed in Di,
while (3b) of the same lemma implies that if ri were crossed, it would cross ri+3.
However, (2) shows ri+3 is not crossed. Therefore, no edge of ri ri+1 ri+2 is crossed
in Di. Analogously, no edge of ri−3 ri−2 ri−1 is crossed in Di. These two assertions
show Qi cannot be crossed in Di, a contradiction. �

Subclaim 2. Neither B1 nor B2 is a 3-jump.

Proof. By Claim 1, not both B1 and B2 are 3-jumps. So suppose for sake of
definiteness that B1 is the 3-jump vivi+3 and B2 is a global H-bridge with one end
at vi and one end in 〈vi−3, ri−3, vi−2].

The embedding in RP 2 shows that vi+2vi+5 is not an edge of G (it would cross
B1) and Claim 1 shows vi−3vi is not an edge of G. Therefore, Lemma 10.8 implies
Qi+1 has BOD. Thus, in any 1-drawing Di+1 of G − 〈si+1〉, Lemma 5.9 implies

Qi+1 is crossed in Di+1.
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70 10. TIDINESS AND GLOBAL H-BRIDGES

By Lemma 7.2 (3a) (when B2 is a 2.5-jump) or (1) (when B2 is a 2-jump), ri−1

is not crossed in Di+1. Likewise, (1) shows that none of ri, ri+1, and ri+2 is crossed
in D. But then Qi+1 is not crossed in Di+1, a contradiction. �

By Claim 2, we know that neither B1 nor B2 is a 3-jump. By Theorem 6.7,
neither vi−1vi−4 nor vi+1vi+4 can occur in G; Lemma 10.8 implies Qi has BOD.
Let Di be a 1-drawing of G− 〈si〉. By Lemma 5.9, Qi is crossed in Di.

Lemma 7.2 (1) shows that P1 and P2 are both not crossed in Di. This implies
that ri−2 ri−1 ri ri+1 is not crossed in D and, therefore, Qi is not crossed in Di, a
contradiction that completes the proof of the claim. �

We move on to (2).

Claim 2. There is at most one global H-bridge that is a 3-jump.

Proof. Suppose there are distinct 3-jumps. Claim 1 implies that, up to rela-
belling, they are either vivi+3 and vi+4vi+7 or vivi+3 and vi+5vi+8. Theorem 6.7
and Claim 1 imply that there cannot be a third 3-jump. Thus, Lemma 10.8 implies
Qi+1 has BOD.

Let C1 and C2 be the two H-green cycles containing these 3-jumps. Lemma
5.9 implies Qi+1 is crossed in a 1-drawing Di+1 of G− 〈si+1〉. But Lemma 7.2 (1)
implies that neither ri ri+1 nor ri+5 ri+6 is crossed in Di+1, a contradiction proving
the claim. �

We next turn to (3).

Claim 3. There is no i so that vivi+3 is a 3-jump and some 2.5-jump has an
end in 〈vi−1, ri−1, vi].

Proof. Suppose to the contrary that there is such an i. From Claim 1, the
2.5-jump has an end w ∈ 〈vi−1, ri−1, vi〉. Its other end is vi−3. Lemma 10.8 and
Claim 2 imply that Qi+2 has BOD. Let Di+2 be a 1-drawing of G−〈si+2〉. Lemma

5.9 implies Qi+2 is crossed in Di+2.
By Lemma 7.2 (2), ri+3 is not crossed in Di+2. The same lemma (1) implies

ri ri+1 ri+2 is not crossed in Di+2. Consequently, Qi+2 is not crossed in Di+2,
contradicting the preceding paragraph and proving the claim. �

Now we prove (4).

Claim 4. If B1 and B2 are global H-bridges, then, for every i ∈ {0, 1, 2, 3, 4},
some edge of Qi ∩R is not spanned by either B1 or B2.

Proof. Suppose by way of contradiction that the global H-bridge B1 spans
the side ri ∪ ri+1 of Qi+1 and a second global H-bridge B2 spans ri+5 ∪ ri+6. To

see that Qi+1 has BOD, by Lemma 10.8 it suffices to show that neither of the
3-jumps vivi−3 and vi+2vi+5 is in G. For the former, Theorem 6.7 implies vi is an
attachment of B1, contradicting Claim 1. For the latter, vi+2 is an attachment of
B2, with the same contradiction. Therefore Qi+1 has BOD.

Lemma 5.9 implies that, for any 1-drawing Di+1 of G−〈si+1〉, Qi+1 is crossed in
Di+1. However, Lemma 7.2 (1) implies that neither ri ri+1 nor ri+5 ri+6 is crossed
in Di+1, showing Qi+1 is not crossed in Di+1, a contradiction proving the claim. �
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10. TIDINESS AND GLOBAL H-BRIDGES 71

Finally, we prove (5). Suppose, for j ∈ {i, i + 5}, 〈rj〉 contains an end of the
2.5-jump Bj . We may use the symmetry to assume that Bi = wvi−2. If Bi+5 has
vi+3 as an end, then we contradict Claim 4. Therefore, Bi+5 has vi+8 = vi−2 as an
end, contradicting Claim 1.

We conclude this section with two observations about local bridges of a tidy
subdivision of V10.

Lemma 10.10. Let G ∈M3
2 and V10

∼=H ⊆ G, with H tidy. Then no H-bridge
has all its attachments in one H-spoke.

Proof. By way of contradiction, suppose B is an H-bridge and s is an H-spoke
so that att(B) ⊆ s. By Corollary 5.15, B has precisely two attachments, so B is
just an edge uw. Choose B so that no other H-bridge has all its attachments in a
proper subpath of [u, s, w]. If [u, s, w] has no interior vertex, then B and [u, s, w]
are parallel edges not in the H-rim, contradicting Observation 9.2 (6). Thus, some
H-bridge B′ has an attachment x in 〈u, s, w〉.

Let Π be an embedding of G in RP 2 for which H is Π-tidy. Since H ⊆M, B′

is a local H-bridge. Moreover, Corollary 5.15 and the choice of B show that not all
attachments of B′ can be in [u, s, w], so B has an attachment y not in [u, s, w]. But
then, for at least one of the two H-quads Q containing s, B and B′ are overlapping
Q-bridges, contradicting the definition of tidiness.

Lemma 10.11. Let G ∈M3
2, V10

∼=H ⊆ G, with H tidy. For any H-spoke s, if
B is an H-bridge having an attachment in 〈s〉, then B has no other attachment in
[s].

Proof. Suppose B is an H-bridge and s an H-spoke so that B has attachments
x, y in s, with x ∈ 〈s〉. Let Π be an embedding of G in RP 2 for which H is Π-
tidy. Then Π shows B is not a global H-bridge. By Lemma 10.10, B has a third
attachment z not in [s]. Let Q be the unique H-quad containing all of x, y, and z.

If y is not an H-node, then let r be an H-rim branch of Q not containing z.
Then x, y, and z are all contained in Q − [r], contradicting Corollary 5.15. Thus,
y is an H-node vi. We choose the labelling so that ri ⊆ Q. Corollary 5.15 shows
that z is not in Q − [ri+5] and, therefore, z is in ri+5. Furthermore, Corollary
5.15 now shows that B can have no other attachment, so Theorem 8.2 implies B is
isomorphic to K1,3. Let w be the vertex in Nuc(B).

Claim 1. The cycles [y,B,w,B, x, s, y] and [z,B,w,B, x,Q− y, z] bound faces
of Π[G].

Proof. For the latter, [z,B,w,B, x,Q− y, z] is an H-green cycle, so the result
follows from Lemma 6.6. The former, call it C, has just one vertex in R, so Lemma
5.20 implies it has BOD and every one of its bridges other than the one containing
H − 〈s〉 is planar. If it has a second bridge B′, then C is clean in any 1-drawing of
B′#, contradicting Lemma 5.9. �

The chosen labelling shows that Qi−1 is the other H-quad containing s.

Claim 2. There is no Qi−1-local H-bridge that has an attachment in 〈s〉.
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72 10. TIDINESS AND GLOBAL H-BRIDGES

Proof. Suppose B′′ is a Qi−1-local H-bridge having an attachment x′ in 〈s〉.
Lemma 10.10 implies B′′ has an attachment z′ not in [s]. If z′ is in the same H-rim
branch ri−1 contained in Qi−1 as y, then [x′, B′′, z′, r, y, B,w, x, s, x′] is an H-green
cycle C. As the edge of s incident with y is C-interior, C does not bound a face of
Π[G]. If z′ is not in ri−1, then

[
z′, B′′, x′, s, x,B,w,B, z,Qi − y, z′

]
is a non-facial

H-green cycle. Both conclusions contradict Lemma 6.6 (8). �

We conclude that s has length 2 and that B is the only H-bridge attaching in
〈s〉. Let D be a 1-drawing of G− wy. Then D[s ∪ (B − wy)] is clean in D and we
may extend D to a 1-drawing of G by adding in wy alongside [w,B, x, s, y].
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CHAPTER 11

Every rim edge has a colour

In this section we introduce, for a tidy subdivision H of V10 in G, H-yellow
edges. The main result is that every H-rim edge has a colour: H-green, H-yellow,
or red. This is a major step on the route. In the next section, we will analyze red
edges, with the main result being that there are red edges.

Definition 11.1. Let H be a subdivision of V10 in a graph G.

(1) A 3-rim path is a path contained in the union of three consecutive H-rim
branches.

(2) The closure cl(Q) of an H-quad Q is the union of Q and all Q-local H-
bridges.

(3) Let H be tidy in G. A cycle C in G is H-yellow if C may be expressed
as the composition P1P2P3P4 of four paths so that:
(a) P2 and P4 are R-avoiding (recall R is the H-rim) and have length at

least 1;
(b) P1 and P3 are 3-rim paths and P1 ∪ P3 is not contained in a 3-rim

path; and
(c) there is an H-green cycle C ′ so that P1 ⊆ 〈C ′ ∩R〉.

(4) An H-rim edge e is H-yellow if it is not H-green and is in an H-yellow
cycle.

We remark that the H-rim edges that are H-yellow are those in P3. The next
result elucidates the nature of an H-yellow cycle.

Lemma 11.2. Let G ∈ M3
2, V10

∼=H ⊆ G, with H tidy. Let C be an H-yellow
cycle, with decomposition P1P2P3P4 into paths as in Definition 11.1, and let C ′ be
the witnessing H-green cycle. Then:

(1) C ′ − 〈C ′ ∩R〉 is a global H-bridge;
(2) for i ∈ {2, 4}, Pi is either H-avoiding or decomposes as P 1

i P
2
i , where P 1

i

is contained in some H-spoke, including an incident H-node, and P 2
i is

H-avoiding;
(3) there is only one C-bridge in G; and
(4) there is an i ∈ {0, 1, 2, 3, 4} so that C ⊆ cl(Qi).

Proof. Let Π be an embedding of G in RP 2 for which H is Π-tidy; in particular,
every H-green cycle bounds a face of Π[G].

For (1), the alternative is that C ′ is contained in cl(Q), for some H-quad Q.
Lemma 6.6 (8) shows that C ′ bounds a face of G in RP 2, so P2 and P4 are contained
in global H-bridges. Each of P2 and P4 is in an H-green cycle (as is every global
H-bridge) and, since P2 has an end in 〈C ′ ∩R〉, some edge of C ′ ∩ R is in two
H-green cycles, contradicting Theorem 6.7.

73
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74 11. EVERY RIM EDGE HAS A COLOUR

For (2), let i ∈ {2, 4}. Since Pi has positive length, the end ui of Pi in P1 is
distinct from the end wi of Pi in P3. Because C ′ bounds a face of G and is contained
in D, we see that the edges of Pi incident with ui is in M. Since Pi is R-avoiding,
Pi is contained in M, with only its ends in R.

Now suppose Pi has an edge e not in H. Choose e to be as close to ui in Pi as
possible. As wi is in H, there is a first vertex y of Pi after e that is in H. If y = wi,
then we are done, so we may assume y 6= wi. Since Pi is R-avoiding, we see that y
must be in the interior of some spoke s. Let z be the vertex of Pi incident to e so
that e is in [z, Pi, y].

As Pi is contained in M, we see that [ui, Pi, y] is contained in a closed Π[H]-face
bounded by some H-quad Q. Also, [z, Pi, y] is H-avoiding and so is contained in
some Q-local H-bridge Bi. By Lemma 10.11, y is the only attachment of Bi in [s].
Since z 6= y and both are attachments of Bi, we have that z /∈ [s].

The path [ui, Pi, z] is R-avoiding and contained in H. Therefore, either it is
trivial or it is contained in some H-spoke s′. In the latter case, z 6= y implies s′ 6= s.
In the former case, ui = z, so ui /∈ s. In both cases, [ui, Pi, y] ∪Q contains an H-
green cycle that contains an H-rim edge incident with ui, contradicting Theorem
6.7 and completing the proof of (2).

For (3), we start by noting that there exist i and j so that P1 ⊆ ri ri+1, . . . , rj
and i − 1 ≤ j ≤ i + 2; we assume P1 has one end in [vi, ri, vi+1〉, one end in
〈vj , rj , vj+1], and that j = i − 1 only if P1 is just the single H-node vi. Item 2
implies P2 is contained in cl(Qi−1) ∪ cl(Qi) and that P4 is contained in cl(Qj) ∪
cl(Qj+1). It follows that P3 has its ends in ri+4 ri+5 and rj+5 rj+6. There are at
most (j + 6)− (i+ 3) ≤ 5 H-rim branches ri+4 ri+5 . . . rj+6, so P3, being a 3-rim
path, must be contained in this path. It follows that C is disjoint from either si−2

or si+2.
Let s be an H-spoke disjoint from C and let MC denote the C-bridge containing

s.
Set R′ = (R − 〈C ′ ∩R〉) ∪ (C ′ − 〈C ′ ∩R〉). Then R′ ∪ s contains a non-

contractible cycle C ′′ disjoint from C. Lemma 5.20 shows C is contractible, has
BOD, and every C-bridge other than MC is planar.

Suppose there is a C-bridge B other than MC ; let D be a 1-drawing of B#.
Lemma 5.9 implies D[C] is crossed. Let s, s′, and s′′ be the three H-spokes disjoint
from 〈C ′ ∩R〉. Then R∪s∪s′∪s′′ is a subdivision of V6 in B# that is edge-disjoint
from both P2 and P4; this shows that some edge of P1 ∪ P3 is crossed in D.

But now R′ ∪ s ∪ s′ ∪ s′′ is another subdivision of V6 in B#. Therefore, the
crossing in D must involve two edges of R′ ∪ s ∪ s′ ∪ s′′. In particular it does not
involve an edge of C ′ ∩R, and, since P1 ⊆ C ′ ∩R, no edge of P1 is crossed in D.

Likewise, let R′′ be obtained from R′ by replacing P3 with P2P1P4. Now
R′′ ∪ s ∪ s′ ∪ s′′ is a third subdivision of V6 in B# that is disjoint from P3. Thus,
the crossing in D does not involve an edge of P3. Thus, none of P1, P2, P3, and
P4 is crossed in D, contradicting the fact that C is crossed in D. We conclude that
there is no C-bridge other than MC , as claimed.

Finally, for (4), suppose first that P1 is not contained in a single H-rim branch.
Then there is an H-node vi in the interior of P1. However, P1 is incident on one side
with the face bounded by C ′, so the edge of si incident with vi is on the other side
of P1. Since C is contractible, we conclude that there are at least two C-bridges,
contradicting (3). Therefore, there is an i ∈ {0, 1, 2, 3, 4} so that P1 ⊆ ri.
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11. EVERY RIM EDGE HAS A COLOUR 75

If both P2 and P4 are contained in cl(Qi), then so is P3, as it is a 3-rim path.
Therefore, by symmetry, we may assume that P2 has some edge not in cl(Qi). As
we traverse P2 from its end in P1, we come to a first edge e that is not in cl(Qi).
One end of e is the vertex u that is in either si or si+1; for the sake of definiteness,
we assume the former. Then (2) implies [vi, si, u] ⊆ P2 and that the remainder
of P2 consists of an H-avoiding uw-path, with w an end of P3. It follows that
w ∈ ri+4. Let ê be the edge of si incident with u and not in P2.

Switching paths, we know that P4 has an end x in ri. If x 6= vi+1, then (2)
implies P4 ⊆ cl(Qi). In this case, ê is in a C-bridge other than MC , contradicting
(3). Otherwise x = vi+1, in which case P1P2[w, ri+4, vi+5, ri+5, vi+6, si+1, vi+1]

is an H-yellow cycle Ĉ. There is a Ĉ-bridge other than MĈ containing ê, also

contradicting (3) for Ĉ.

We now turn our attention to the all-important red edges. We comment that,
if n ≥ 4 and V2n

∼=H ⊆ G, then any red edge of G is in the H-rim.
The remainder of this section is devoted to proving the following.

Theorem 11.3. Let G ∈ M3
2 and let V10

∼=H ⊆ G. If H is tidy, then every
H-rim edge is one of H-green, H-yellow, and red.

We start with an easy observation.

Lemma 11.4. Let G ∈ M3
2 and let V10

∼=H ⊆ G. If H is tidy and the H-rim
edge e is either H-green or H-yellow, then e is not red.

Proof. Suppose first that e is H-green and let C be the H-green cycle containing e.
There are three H-spokes s, s′, and s′′ disjoint from 〈C ∩R〉. Thus, (R−〈C ∩R〉)∪
(C −〈C ∩R〉) together with s, s′, and s′′ is a subdivision of V6 contained in G− e,
showing e is not red.

Now suppose e is H-yellow and let C be the H-yellow cycle containing e. Let
C ′ be the H-green cycle and P1P2P3P4 the decomposition of C as in Definition
11.1. Then e is in P3 and there are three H-spokes s, s′, and s′′ disjoint from
C ∪ 〈C ′ ∩R〉. In this case, (R − (〈C ′ ∩R〉 ∪ 〈P3〉)) ∪ (C ′ − 〈C ′ ∩R〉) ∪ P2P1P4,
together with s, s′, and s′′ is a subdivision of V6 contained in G − e, showing e is
not red.

The following concepts and lemma play a central role in the proof of Theorem
11.3.

Definition 11.5. Let V10
∼=H ⊆ G. Let e and f be two edges of the H-rim

R. Then e and f are R-separated in G if G has a subdivision H ′ of V8 so that the
H ′-rim is R and e and f are in disjoint H ′-quads.

The following two observations are immediate from the definition.

Observation 11.6. Let V10
∼=H ⊆ G and suppose e and f are two edges of the

H-rim R that are R-separated in G.

(1) If D is a 1-drawing of G, then e and f do not cross each other in D.
(2) If H ′ is a V8 in G witnessing the R-separation of e and f , then there are

two H ′-spokes that have all their ends in the same component of R−{e, f}.

The following is a kind of converse of Observation 11.6 (1).
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76 11. EVERY RIM EDGE HAS A COLOUR

Lemma 11.7. Let G0 ∈ M3
2 be a graph and let V10

∼=H ⊆ G0, with H tidy.
Suppose G ⊆ G0 with H ⊆ G. Let e ∈ ri and f ∈ ri+4 ∪ ri+5 ∪ ri+6 be edges that
are both neither H-green nor H-yellow. If e and f are not R-separated in G, then
there is a 1-drawing of G in which e crosses f .

Proof. Let Π be an embedding of G in RP 2 so that H is Π-tidy.
We may write ri = [vi, . . . , xe, e, ye, . . . , vi+1] and, by symmetry, we may assume

f is in

ri+5 ∪ ri+6 = [vi+5, ri+5, . . . , xf , f, yf , . . . , ri+6, vi+7] .

If f ∈ ri+5, then let Je,f = cl(Qi) and Q = Qi, while if f ∈ ri+6, then let

Je,f = cl(Qi) ∪ cl(Qi+1) and Q = Qi+1. The two H-spokes contained in Q are si
and se,f , which is either si+1 or si+2.

Claim 1. There are not totally disjoint sise,f -paths in Je,f − e.

Proof. Because H is Π-tidy, Π[Je,f ] is contained in the closed disc bounded
by Π[Q]. Therefore, one of a pair of totally disjoint sise,f -paths in Je,f would be
disjoint from ri+5 ri+6 and it, together with a subpath of Q − ri+5 ri+6 yields the
contradiction that e is H-green. �

Let we be a cut-vertex in Je,f − e separating si from se,f . Then Je,f − e has
a separation (He,Ke) with si ⊆ He, the other H-spoke se,f contained in Q is
contained in Ke, and He ∩Ke = ‖we‖. Clearly, we ∈ ri+5 ri+6.

There is also a separation (Hf ,Kf ) of Je,f − f , so that Hf ∩ Kf is a single
vertex wf , si ⊆ Hf , and se,f ⊆ Kf . For x ∈ {e, f}, there is a face Fx of Π[Je,f ]
incident with both x and wx. If Fe = Ff , then any vertex of ri ri+1 in the bound-
ary cycle C of Fe may be selected as wf . Similarly, we may be any vertex of
ri+5 ri+6 that is in C. We choose we and wf so that they are in different com-
ponents of C − {e, f}. Thus, whether Fe = Ff or not, the cycle Q has the form
[we, . . . , e, . . . , wf , . . . , f, . . .]. In particular, e and we are in the same component
of Q − {wf , f}, while f and wf are in the same component of Q − {we, e}. By
interchanging the roles of e and f and exchanging the labels of vj and vj+5, for
j = 0, 1, 2, 3, 4, we may assume Q has the form

[we, . . . , vi+5, si, vi . . . , e, . . . , wf , . . . , se,f , . . . , f, . . .] .

For technical reasons, we choose we as close as possible to f in ri+5 ri+6 and wf
as close as possible to e in ri+5 ri+6, while respecting the ordering that was just
described of these four elements of Q.

Set N = Ke ∩ Hf . Then Je,f − {e, f} = He ∪ N ∪Kf , He ∩ N = ‖we‖, and
Kf ∩N = ‖wf‖. See Figure 11.1.

Claim 2. N does not have disjoint paths both with ends in the two components
of N ∩R.

Proof. Such paths, together with the H-rim and the H-spokes si−1 and si+3,
would show e and f are R-separated. �

Let w be a cut-vertex in N separating the two components of N ∩ R, and let
(Ni, Ni+5) be a separation of N so that, for j ∈ {i, i + 5}, Nj ∩ R is contained in
rj ∪ rj+1 and Ni ∩ Ni+5 = ‖w‖. We proceed to describe a new 2-representative
embedding of G in RP 2 that shows that G has a 1-drawing.
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11. EVERY RIM EDGE HAS A COLOUR 77

f

N KfHe

we

wfe

Figure 11.1. The locations of e, f , we, wf , He, N , and Kf .

Let G′ be the subgraph of G obtained by deleting all the vertices and edges of
N that are not in N ∩R. There is a face of Π[G′] contained in M and incident with
both e and f .

Claim 3. No global H-bridge has a vertex in 〈Ni ∩R〉∪〈Ni+5 ∩R〉 in its span.

Proof. For sake of definiteness, suppose some vertex of 〈Ni ∩R〉 is in the span
of the global H-bridge B. If the H-node ve,f in ri ri+1 incident with se,f is in the
interior of the span of B, then the cycle bounding Ff is H-yellow, contradicting
the fact that f is not H-yellow. Letting z be the vertex of Ni nearest e in ri ri+1,
we conclude that B has an attachment in 〈z, ri ri+1, ve,f ], and B does not span any
edge of ri+2.

By Theorem 10.6, B is either a 2-, 2.5-, or 3-jump. It follows from the preceding
paragraph that e is contained in the span of B, yielding the contradiction that e is
H-green. �

We can now easily complete the proof of the lemma. By Claim 3, we can
separately embed Ni and Ni+5 in the face outside of M. As no global H-bridge can
attach on both paths in R−{e, f} without making at least one of e and f H-green,
we can join the two copies of w together to obtain a representativity 2 embedding
Π′ of G in RP 2 having a non-contractible simple closed curve meeting Π′[G] only
in the interiors of e and f . This implies that G has a 1-drawing, as required.

We further investigate the detailed structure of H-rim edges.

Lemma 11.8. Let G ∈M3
2 and V10

∼=H ⊆ G, with H tidy. If vivi+3 is a global
H-bridge, then, for j ∈ {i−1, i+3} there is an edge ej ∈ rj that is neither H-yellow
nor H-green.

Proof. The two sides are symmetric, so it suffices to prove the existence of ei−1.
Lemmas 10.8 and 10.9 (2) imply that Qi+1 has BOD. Let D be a 1-drawing of

G− 〈si+1〉. Lemma 5.9 implies Qi+1 is crossed in D.
However, the cycle C consisting of vivi+3 and the path it spans is H1-close, for

H1 = R ∪ si−1 ∪ si ∪ si+3. Therefore, Lemmas 5.3 and 5.4 imply that C is not
crossed in D. We conclude from the nature of 1-drawings of V8 that ri−1 crosses
ri+5 ∪ ri+6; let e be the edge in ri−1 that is crossed in D.
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78 11. EVERY RIM EDGE HAS A COLOUR

Suppose, by way of contradiction, that there is a global H-bridge B spanning e.
Theorem 10.6 implies B is either a 2-, 2.5- or 3-jump, while Theorem 6.7 implies B
does not span any edge of ri (such an edge is already spanned by vivi+3). Lemma
10.9 (1) implies vi is not an attachment of B, so B must be a 2.5-jump with one
end in 〈ri−1〉, contradicting Lemma 10.9 (3). Thus, e is not spanned by a global
H-bridge.

It follows that, if e is in an H-green cycle C ′, then C ′ ⊆ cl(Qi−1). But such a
C ′ is H2-close, for H2 = R ∪ si ∪ si+2 ∪ si+3. By Lemmas 5.3 and 5.4, C ′ is not
crossed in any 1-drawing of G− 〈si+1〉. This contradicts the fact that e is crossed
in D. We conclude that e is not H-green.

So now we suppose e is in the H-yellow cycle C ′ and that C ′′ is a witnessing
H-green cycle. Then C ′ ⊆ cl(Qi−1) and C ′′ contains a global H-bridge B that
spans an edge in ri+4. This implies B 6= vivi+3, so Lemma 10.9 (2) shows that B
is not a 3-jump.

Moreover, (3) of the same lemma shows B cannot have an attachment in
[vi+3, ri+3, vi+4〉, while (4) shows B cannot have vi+7 as an attachment. There-
fore, B is a 2- or 2.5-jump vi+4w, with w ∈ [vi+6, ri+6, vi+7〉.

The cycle (R−〈C ′′ ∩R〉)∪B, together with the H-spokes si−1, si+2, and si+3

is a subdivision H3 of V6 for which C ′ is H3-close, showing that e is not crossed in
any 1-drawing of G− 〈si+1〉. This contradicts the fact that e is crossed in D and,
therefore, e is not H-yellow.

The proof of Theorem 11.3 will also depend on the following new concepts.

Definition 11.9. Let G be a graph and let V10
∼=H ⊆ G, with H tidy. Let Π

be an embedding of G in RP 2 so that H is Π-tidy and has the standard labelling
relative to γ. For i ∈ {0, 1, 2, . . . , 9}:

(1)
←
P i = ri−2 ri−1, P

←i
= ri+3 ri+4,

→
P i = ri+1 ri+2, and P

→i
= ri+6 ri+7.

(2) the spines =i and i< of Qi consist of the paths
←
P i ∪ si ∪ P←i and

→
P i ∪

si+1 ∪ P→i, respectively (see Figure 11.2);

(3) the scope Ki of Qi consists of cl(Qi) ∪ =i ∪ i< ∪ Bi, where Bi consists

of all global H-bridges having both attachments either in
←
P i ∪

→
P i or in

P
←i
∪ P
→i

; and

(4) the complement K\
i of Ki is obtained from MQi by deleting the edges (but

not their incident vertices) that comprise the H-bridges in Bi.
(5) The two vertices vi−2 and vi+3 are the trivial =i i<-paths in Ki. Any

other =i i<-path in Ki is non-trivial .

We note that =i ∩ i< is equal to ‖{vi−2, vi+3}‖. For our purposes, these are
not “useful” =i i<-paths.

We observe that, for each i ∈ {0, 1, 2, 3, 4}, G = Ki ∪K\
i .

The following lemma plays an important role in the rest of this section.

Lemma 11.10. Let G ∈ M3
2 and V10

∼=H ⊆ G, with H tidy. Let e be an edge
of R and let i be such that e ∈ ri. Then G − e has a subdivision of V6 if and only
if there are disjoint non-trivial =i i<-paths in Ki − e.
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11. EVERY RIM EDGE HAS A COLOUR 79

=
1 1

<

r0 r1 r2 r3 r4

r9r8r7r6r5

←
P1

→
P1

P1
←

P1
→

a

b

b

a

Figure 11.2. The paths with small dashes are
←
P 1, P

←1,
→
P 1, and

P
→1. The spine =1 is the path r9 r0 s1 r5 r4, while 1< is r3 r2 s2 r7 r8.

There is some subtlety here; 2-criticality is important. Suppose we have a
subdivision H of V10 embedded in RP 2 with representativity 2 so that all the H-
spokes are in M. Give H the usual labelling relative to γ. Now delete 〈r1〉 and
〈r6〉, and then add the 2.5-jump av2 and the 3-jump v6v9. Then there are disjoint
non-trivial =11<-paths in the union H ′ of (H − 〈r1〉) − 〈r6〉 and the two jumps,
but H ′ is planar.

We shall need the following.

Lemma 11.11. Let G ∈ M3
2 and V10

∼=H ⊆ G, with H tidy. Let e be an edge
of R and let i be such that e ∈ ri. If there are disjoint non-trivial =i i<-paths in
Ki − e, then there are two such paths so that at least one of them is contained in
cl(Qi) and the other contains at most one global H-bridge.

In the proof, we consider many possibilities for the two disjoint =i i<-paths.
For a given i, some possibilities might not occur because of limitations imposed by
Π. In principle, for i = 2, all of the considered possibilities can occur, while for
i = 4, several of the considered possibilities cannot occur.

Proof. Let P1 and P2 be the hypothesized disjoint paths.

Claim 1. If there is a =i i<-path in Ki − e disjoint from ri+5, then there
are disjoint =i i<-paths so that one of them is contained in cl(Qi) and the other
contains at most one global H-bridge.

Proof. Suppose that P and ri+5 are disjoint paths. If P contains two (or
more) global H-bridges, then they must be 2.5-jumps having an end in 〈ri〉. By
Theorem 6.7, they must be of the form vi−2w1 and w2vi+3, with w1 being no further
from vi in ri than w2 is. By symmetry, we may assume e is not in [vi, ri, w1]. Now
[vi, ri, w1](P − vi−2) and ri+5 are the desired disjoint =i i<-paths in Ki − e. �

Thus, we may assume both P1 and P2 intersect ri+5.

Claim 2. If either of P1 and P2 contains two global H-bridges, then there are
disjoint =i i<-paths in Ki − e so that one of them is contained in cl(Qi) and the
other contains at most one global H-bridge.

Proof. We may assume P1 contains two global H-bridges B1 and B2. Both
B1 and B2 are 2.5-jumps. Both have ends in 〈ri〉∪〈ri+5〉. By Lemma 10.9 (5), they
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80 11. EVERY RIM EDGE HAS A COLOUR

both have an end in the same one of 〈ri〉 and 〈ri+5〉. We choose the labelling so
that (B1, B2) is either (vi−2w1, w2vi+3) or (vi+3w1, w2vi+8). We treat these cases
separately.

Suppose (B1, B2) = (vi−2w1, w2vi+3). Assume first that e /∈ [w1, r1, w2]. Then
B1 ∪ [w1, r1, w2]∪B2 is disjoint from ri+5, and we are done by Claim 1. Therefore,
we may assume e ∈ [w1, r1, w2].

In this case, P1 consists of B1, B2, and a w1w2-path P ′1 contained in cl(Qi).
We know that P ′1 contains a vertex in ri+5. Lemma 10.9 (5) implies that P2

consists of a global H-bridge with no vertex in 〈ri+5〉. Therefore, we may choose
[vi, ri, w1] ∪ P ′1 ∪ [w2, ri, vi+1] and P2 as the desired paths.

We conclude the proof of this claim by considering the case (B1, B2) = (vi+3w1, w2vi+8).
First, by way of contradiction suppose P2 is not contained in cl(Qi). Lemma 10.9

(5) implies that P2 consists of a global H-bridge having both ends in
←
P i ∪

→
P i. But

then P2 is disjoint from ri+5 and we are done by Claim 1. Thus, we may assume
P2 ⊆ cl(Qi).

If P2 is disjoint from either [vi+5, ri+5, w1〉 or 〈w2, ri+5, vi+6], then we may
replace either B1 with the former or B2 with the latter, and we are done again.
Otherwise, there is a [vi+5, ri+5, w1〉 〈w2, ri+5, vi+6]-path P ′2 contained in P2 that is
ri+5-avoiding; let its ends be w3 ∈ [vi+5, ri+5, w1〉 and w4 ∈ 〈w2, ri+5, vi+6].

If P ′2 is ri-avoiding, then P ′2 ∪ [w3, ri+5, w4] is an H-green cycle. Since B1

together with the subpath of R it spans is also H-green, the edge of [vi+5, ri+5, w1]
incident with w1 is in two H-green cycles, contradicting Theorem 6.7.

Therefore, P ′2 is not ri-avoiding and so contains two subpaths, one being a w3ri-
path P ′2

1 and the other being an riw4-path P ′2
2. For k = 1, 2, let uk be the vertex

of P ′2
k in ri. If e ∈ [vi, ri, u1], then the paths [vi+5, ri+5, w3]∪P ′21∪ [u1, ri, vi+1] and

B1 ∪ [w1, ri+5, vi+6] constitute the required disjoint paths. Otherwise, [vi, ri, u1] ∪
[u1, P

′
2, w4, ri+5, vi+6] and [vi+5, ri+5, w2]∪B2 constitute the required disjoint paths.

�

To complete the proof of the lemma, we may now assume that, for each j = 1, 2,
Pj contains a unique global H-bridge Bj .

We first suppose, by way of contradiction, that both B1 and B2 have an end
in 〈ri〉 ∪ 〈ri+5〉. Lemma 10.9 (5) shows that such ends are in the same one of 〈ri〉
and 〈ri+5〉; let i′ ∈ {i, i + 5} be such that, for j = 1, 2, Bj has an end wj ∈ 〈ri′〉.
We may assume B1 = vi′−2w1 and B2 = w2vi′+3.

Theorem 6.7 implies w1 is closer to vi′ in ri′ than w2 is. The paths P1 − vi′−2

and P2 − vi′+3 are both in cl(Qi); the former is a w1si+1-path, with end x1 ∈ si+1,
and the latter is a w2si-path, with end x2 ∈ si.

Recall that Π[cl(Qi)] is a planar embedding of cl(Qi) with Qi bounding a face.
The vertices w1, w2, x1, x2 occur in this cyclic order in Qi, so the disjoint paths
P1 − vi′−2 and P2 − vi′+3 must cross in Π[cl(Qi)], a contradiction. Therefore, at
most one of B1 and B2 has an end in 〈ri〉 ∪ 〈ri+5〉, while the other is equal to the
path among P1 and P2 that contains it.

We may choose the labelling so that P2 consists only of B2. Theorem 6.7
implies no edge of ri ∪ ri+5 is spanned by both B1 and B2; since B2 spans one of ri
and ri+5 completely, one of B1 and B2 spans edges in ri and the other spans edges
in ri+5. If either Bj spans all of ri, then, as it is disjoint from ri+5, we are done by
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11. EVERY RIM EDGE HAS A COLOUR 81

Claim 1. In particular, B2 spans ri+5, edges spanned by B1 are in ri, and B1 does
not span all of ri.

Therefore, B1 is a 2.5-jump with one end w1 in 〈ri〉. We may assume the other
end of B1 is vi+3. If e /∈ [vi, ri, w1], then [vi, ri, w1] ∪ B1 is disjoint from ri+5, and
we are done by Claim 1. If e ∈ [vi, ri, w1], then (P1− vi+3) [w1, ri, vi+1] and P2 are
the desired paths.

Proof of Lemma 11.10. The following claim settles one direction.

Claim 1. If there are not disjoint non-trivial =i i<-paths in Ki− e, then G− e
is planar.

Proof. For this proof, we need to apply Menger’s Theorem; in order to do
so, we treat the copies of vi−2 and vi+3 in =i as different from their copies in i<.

Let u be a cut-vertex of Ki − e separating =i and i<. Let
←
Ki be the union of

the ‖u‖-bridges in Ki − e that have an edge in =i and let
→
Ki be the union of the

remaining ‖u‖-bridges in Ki − e. Then Ki − e =
←
Ki ∪

→
Ki and

←
Ki ∩

→
Ki is just ‖u‖.

Let Π be an embedding of G in RP 2 so that H is Π-tidy. Since ri+5 ⊆ Ki − e,
u ∈ ri+5. Because Ki − {e, u} is not connected, there is a non-contractible, simple
closed curve in RP 2 that meets Π[G−e] only at u. Thus, there is no non-contractible
cycle in G− {e, u}, showing that G− e is planar. �

For the converse, Lemma 11.11 shows there are disjoint non-trivial =i i<-paths
P1 and P2 in Ki − e so that P1 ⊆ cl(Qi). In particular, P1 is an sisi+1-path. It
follows from the embedding Π[Ki] that P2 is disjoint from either ri or ri+5.

In every case, we find our V6 by adding three spokes to the cycle contained in
(R−(〈ri〉∪〈ri+5〉))∪P1∪P2∪si∪si+1 and containing (R−(〈ri〉∪〈ri+5〉))∪P1∪P2.

If P2 contains no global H-bridges, then si+2, si+3, and si+4 may be chosen as
the spokes.

If P2 contains precisely one global H-bridge B2, then B2 is one of:

(1) vi−2vi+1 (symmetrically, vivi+3);
(2) vi−1vi+2;
(3) vi−2w and w is in 〈ri〉 (symmetrically, wvi+3);
(4) wvi+1 and w is in 〈ri−2〉 (symmetrically, viw, with w ∈ 〈ri+2〉);
(5) vi−1w and w is in 〈ri+1〉 (symmetrically, wvi+2, with w ∈ 〈ri−1〉);
(6) vi−1vi+1 (symmetrically, vivi+2);
(7) and the comparable jumps with ends in ri+3 ri+4 ri+5 ri+6 ri+7.

We choose, in all cases, si−2 and si+2 as two of the spokes, with third spoke (taking
the cases in the same order):

(1) the P1P2-subpath of si+1 (symmetrically, the P1P2-subpath of si);
(2) si−1;
(3) the P1P2-subpath of si+1 (symmetrically, the P1P2-subpath of si);
(4) the P1P2-subpath of si+1 (symmetrically, the P1P2-subpath of si);
(5) si−1 (symmetrically, the same);
(6) si−1 (symmetrically, the same); and
(7) these cases are symmetric to the preceding ones.

In every case, we have found a V6 in G− e, as required.
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82 11. EVERY RIM EDGE HAS A COLOUR

We conclude this section by proving that every rim edge is either red, H-green,
or H-yellow.

Proof of Theorem 11.3. Let e be an edge in the H-rim. There is an i so that
e ∈ ri. By Lemma 11.10, G is red if and only if there are no disjoint non-trivial
=i i<-paths in Ki − e.

Now suppose there are disjoint non-trivial =i i<-paths P1 and P2 in Ki−e. By
Lemma 11.11, we may assume P1 is contained in cl(Qi), while P2 contains at most
one global H-bridge. If P1 is disjoint from ri+5, then every maximal ri-avoiding
subpath of P1 is contained in an H-green cycle. The edge e is in one of these
H-green cycles, as required.

Thus, we may assume P1 contains a vertex in ri+5. If P2 ⊆ cl(Qi), then
the planar embedding of cl(Qi) shows P2 is disjoint from ri+5 and the preceding
paragraph, with P2 in place of P1, shows e is H-green. Consequently, we may
further assume P2 contains a global H-bridge B2.

Case 1: B2 has its ends in
←
P i ∪ ri ∪

→
P i.

In this case, if e is spanned by B2, then there is an H-green cycle containing
e, namely the cycle consisting of B2 and the subpath of R that it spans. The only
other possibility in this case is that B2 is a 2.5-jump with an end w2 in 〈ri〉 and
that e is in the one of [vi, ri, w2] and [w2, ri, vi+1] not spanned by B2. For the sake
of definiteness, we suppose B2 = vi−2w2 and that e is in [w2, ri, vi+1].

Since P1 ⊆ cl(Qi), we see that, in this case, P2 is disjoint from ri+5 and,
therefore, we may assume P1 = ri+5. We replace P2 with [vi, ri, w2] (P2 − vi−2) so
that there are disjoint =i i<-paths contained in cl(Qi) − e; a situation resolved in
the paragraph preceding this case.

Case 2: B2 has its ends in P
←i
∪ ri+5 ∪ P→i.

In this case, either P2 is B2 or, up to symmetry, B2 is a 2.5-jump wvi+8, with
w ∈ 〈ri+5〉, and P2 is [vi+5, ri+5, w] ∪B2. On the other hand, P1 is an sisi+1-path
in cl(Qi) intersecting ri+5.

Let x be the first vertex in ri+5 as we traverse P1 from si and let P ′1 be the
six-subpath of P1. We note that P2 prevents x from being in [vi+5, ri+5, w], so x ∈
〈w, ri+5, vi+6]. Let y be the end of P ′1 in si. The cycle P ′1 [x, ri+5, vi+6] si+1 ri [vi, si, y]
is H-yellow, as witnessed by the H-green cycle containing B2. Therefore, e is either
H-yellow or H-green (in Definition 11.1, an H-yellow edge is not H-green).
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CHAPTER 12

Existence of a red edge and its structure

In this section, we prove that if G is a 3-connected, 2-crossing-critical graph
containing a tidy subdivision H of V10, then some edge of the H-rim is red. Fur-
thermore, we prove that each red edge e has an associated special cycle we call ∆e.
These “deltas” will be the glue that hold successive tiles together and so form a
vital element of the tile structure.

The argument for proving the existence of a red edge depends on whether or
not there is a global H-bridge that is either a 2.5- or 3-jump. Once these cases are
disposed of, matters become simple. However, with the knowledge of the ∆’s, it
turns out we can show that there is no 3-jump. This will be our first aim and so,
since we need the ∆’s to complete the elimination of 3-jumps, we shall begin by
determining the structure of the ∆ of a red edge.

Theorem 12.1. Let G ∈M3
2, V10

∼=H ⊆ G, with H tidy. Let e = uw be a red
edge of G and let i ∈ {0, 1, 2, . . . , 9} be such that e ∈ ri. Then there exists a vertex
xe ∈ [ri+5] and internally disjoint xeu- and xew-paths Au and Aw, respectively, in
cl(Qi) so that, letting ∆e = (Au ∪Aw) + e:

(1) there are at most two ∆e-bridges in G;
(2) there is a ∆e-bridge M∆e

so that H ⊆ M∆e
∪ ∆e, while the other ∆e-

bridge, if it exists, is one of two edges in a digon incident with xe; and
(3) when there are two ∆e-bridges, let ue and we be the attachments of the

one-edge ∆e-bridge, labelled so that ue ∈ Au and we ∈ Aw; otherwise let
ue = we = xe. In both cases, ∆e − e contains unique uue- and wwe-paths
Pu and Pw, each containing at most one H-rim edge, which, if it exists,
is in the span of a global H-bridge and, therefore, is H-green.

Proof. Let Π be an embedding of G in RP 2 for which H is Π-tidy. We may
assume ri = [vi, ri, u, e, w, ri, vi+1]. Lemma 11.10 implies Ki − e has a cut vertex
xe separating =i and i< (again adopting the perspective that vi−2 and vi+3 are
split into different copies in =i and i<). As ri+5 is a =i i<-path in Ki − e, xe is in
ri+5.

Because cl(Qi) is 2-connected and Π[cl(Qi)] has Qi bounding the exterior face,
there is a face Fe of G in RP 2 that is in the interior of Qi and incident with both
e and xe. As G is 3-connected and non-planar, Fe is bounded by a cycle Ce and
Ce − e consists of a uxe-path Au and a wxe-path Aw.

For (1) and (2), we begin by noticing that Ce ⊆ cl(Qi). Thus, there is a
Ce-bridge MCe containing the three H-spokes not in Qi.

Claim 1. Each of Ce∩ si, Ce∩ si+1, and Ce∩ ri is connected. Either Ce ∩ ri+5

is connected or it has two components that are joined by an edge e′ of ri+5 and
Ce has an edge parallel to e′. In particular, each of si, si+1, ri, and ri+5 − e′ is
contained in Ce ∪MCe .

83
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84 12. EXISTENCE OF A RED EDGE AND ITS STRUCTURE

Proof. Suppose by way of contradiction that Ce ∩ si is not connected. As
Ce bounds a face of Π, it follows that there is a Qi-local H-bridge having all its
attachments in si, contradicting Lemma 10.10. Thus, Ce ∩ si is connected.

It follows that any part of si that is not in Ce is in the same Ce-bridge as either
ri−1 or ri+4. That is, it is in MCe , and therefore, si ⊆MCe ∪ Ce.

Symmetry shows that this also holds for si+1.
Now suppose Ce ∩ ri is not connected. Then there is a Qi-local H-bridge B

having all attachments in ri. Corollary 5.15 implies B has precisely two attachments
x and y, and so Lemma 5.19 implies B is just the edge xy. Thus, [x, ri, y]B is an
H-green cycle C. Lemma 6.6 (8) shows C bounds a face of Π[G].

By symmetry, we may assume that x and y are both in [vi, ri, u]. Suppose that
z is any vertex in 〈x, ri, u].

Suppose first that z 6= u. As G is 3-connected, z has a neighbour z′ not in
[x, ri, y]. If zz′ is in the interior of Qi, it must be parallel to an edge in ri, as any
other edge would go into one of the faces of Π[G] bounded by Ce and C. Therefore,
zz′ is outside M and, so is an edge of another H-green cycle. But then one of the
edges of [x, ri, y] incident with z is in two H-green cycles, contradicting Theorem
6.7.

This same argument, however, also applies if z = u, with the small variation
that, by Lemma 11.4, zz′ cannot span the red edge e, giving the contradiction that
the edge of [x, ri, u] incident with u is in two H-green cycles. Thus, Ce ∩ ri is
connected. As it did for si, this implies that ri ⊆MCe ∪ Ce.

Finally, we consider Ce ∩ ri+5. Proceeding as we did for ri, if Ce ∩ ri+5 is not
connected, there is (up to symmetry) a Qi-local H-bridge B having all attachments
in [vi+5, ri+5, xe]; B is a single edge and is in an H-green cycle. One end of B is
xe, and the H-green cycle containing B consists of two parallel edges.

Thus, there are at most two such H-bridges B, each of which is an edge parallel
to an edge in ri+5. If they both exist, then the 3-connection of G implies xe has
another neighbour, which, as above, is adjacent to xe by an edge not in M, showing
one of the edges of ri+5 incident with xe is in two H-green cycles, contradicting
Theorem 6.7. �

We can now define ∆e. If Ce ∩ ri+5 is connected, then ∆e = Ce. Otherwise,
∆e is obtained from Ce by replacing the edge of Ce incident with xe and not in
ri+5 with its parallel mate that is in ri+5. Notice that the ∆e- and Ce-bridges are
the same, except for these exchanged edges incident with xe. Set M∆e

to be MCe .
The following is evident from what has just preceded.

Claim 2. H ⊆M∆e
∪∆e and ∆e ∩ ri+5 is connected.

Consider again ri ∩ ∆e. It is connected, so if it is more than just [u, e, w],
the symmetry shows we may assume it contains an edge xu other than e. The
3-connection of G implies that u is adjacent with a vertex y other than x and w.
The edge uy is not interior to Qi, as then it would be in the face of G bounded by
Ce.

Thus, uy is not in M, and, as uw is red, Lemma 11.4 implies uy spans xu. The
vertex x is seen to be H-green by the H-green cycle Cy containing uy. Since x
has at least three neighbours in G, there is a neighbour of x different from the two
neighbours of x in ri−1 ri. Because Cy bounds a face of G (Lemma 6.6 (8)), every
edge incident with x and not in ri−1 ri is in M. There is a unique neighbour z of
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12. EXISTENCE OF A RED EDGE AND ITS STRUCTURE 85

x so that z is not in ri−1 ri and xz is an edge of ∆e. This shows that x is one end
of ri ∩∆e. These observations easily yield the following claim.

Claim 3. Each of Au ∩ ri and Aw ∩ ri has at most one edge.

We now turn our attention to ri+5.

Claim 4. (1) No edge of ri+5 ∩∆e is H-yellow.
(2) No global H-bridge has xe in the interior of its span.

Proof. For (1), suppose by way of contradiction there were an H-yellow edge
in ri+5 ∩∆e. Then Lemma 11.2 (3) shows the witnessing H-yellow cycle must be
∆e. However, the witnessing H-green cycle must have ∆e ∩ ri in the interior of its
span, yielding the contradiction that e is H-green.

For (2), suppose by way of contradiction that there is a global H-bridge xy with
xe in the interior of the span of xy. Then xy ∪ (ri+5− xe) contains a =i i<-path in
Ki − {e, xe}, contradicting Lemma 11.10. �

Claim 5. (1) If [vi+5, ri+5, xe]∩∆e contains three vertices x, y, and xe of
ri+5, then (choosing the labelling of x and y appropriately) [vi+5, ri+5, xe]∩
∆e = [x, xy, y, yxe, xe], y and xe are joined by a digon, and y is incident
with a global H-bridge that spans x.

(2) If [vi+5, ri+5, xe] ∩∆e does not contain three consecutive vertices of ri+5,
but has a vertex x other than xe, then either x and xe are joined by a
digon, or xe is incident with a global H-bridge that spans x.

The symmetric statements also hold for [xe, ri+5, vi+6] ∩∆e.

Proof. For (1), the fact that ∆e∩ri+5 is connected implies that there are ver-
tices x and y so that [x, xy, y, yxe, xe] ⊆ [vi+5, ri+5, xe]. Because G is 3-connected,
y is adjacent to a vertex z other than x and xe. The edge yz cannot be in M, as
then it would be in the face of G bounded by Ce, a contradiction. Therefore, it is
a 2.5-jump. Claim 4 (2) shows yz does not span xe.

As G is 3-connected, x has a neighbour x′ different from the two neighbours of
x in R. If the edge xx′ is in D, then it is in the face bounded by the H-green cycle
containing yz, a contradiction. Therefore, xx′ is in M and, in particular, for that
x′ giving the edge nearest to xy in the cyclic rotation about x, xx′ is in ∆e and,
therefore, no other vertex of [vi+5, ri+5, xe] is in ∆e.

Since yxe is not R-separated from e in G, Lemma 11.7 implies yxe is either
H-yellow or H-green. Claim 4 (1) implies it is not H-yellow; we conclude that yxe
is H-green and let Cyxe be the witnessing H-green cycle.

As pointed out in the first paragraph of the proof, Cyxe cannot contain a global
H-bridge that spans xe. On the other hand, xy is H-green by the global H-bridge
yz. By Theorem 6.7, this is the only H-green cycle containing xy. Thus, the only
H-rim edge contained in Cyxe is yxe. It follows that Cyxe is contained in cl(Qi).
Claim 1 implies Cyxe is a digon.

For (2), the fact that [vi+5, ri+5, xe]∩∆e is connected implies that [vi+5, ri+5, xe]∩
∆e = [x, xxe, xe]. Lemma 11.7 implies that xxe is either H-yellow or H-green, and
Claim 4 (1) shows it is not H-yellow. Therefore, it is H-green.

Claim 4 (2) shows any global H-bridge spanning xxe has xe as an attachment.
Otherwise, the H-green cycle Cxxe containing xxe is contained in cl(Qi). Again,
Claim 1 shows Cxxe is a digon. �
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86 12. EXISTENCE OF A RED EDGE AND ITS STRUCTURE

There is one more observation to make before we complete the proof of the
theorem. From Claim 5 (1), it seems possible that both [vi+5, ri+5, xe] ∩ ∆e and
[vi+5, ri+5, xe] ∩∆e have three vertices. However, this is not possible, as xe must
have a neighbour z different from its neighbours in R. But now xez cannot be in
M, as then it would be in the face bounded by Ce, and it cannot be in D, as then
it is a global H-bridge and one of the digons incident with xe is also spanned by
xez, contradicting Theorem 6.7. Therefore, ri+5 ∩∆e has at most three edges, and
all such edges are H-green.

If there are no edges, then ri+5 ∩ ∆e is just xe. If no edge of ri+5 ∩ ∆e is in
a digon, then ue and we are defined in (3) of the statement to be xe. In this case,
Claim 5 (1) implies there can be at most one edge of ri+5 ∩∆e on each side of xe,
but any such edge is spanned by a global H-bridge. If there is a digon, then it is
uewe, each of ue and we is incident with at most one other edge in ri+5 ∩∆e, and
any such edge is spanned by a global H-bridge.

Finally, By Lemma 10.9 (4), not both u and ue, for example, can be incident
with such global H-bridges, so Pu has at most one H-rim edge.

Definition 12.2. Let G ∈ M3
2, V10

∼=H ⊆ G, with H tidy, and e a red edge
of G with ends u and w. With ue and we as in the statement of Theorem 12.1, the
peak of ∆e is the subgraph of G induced by ue and we. If the peak has just one
vertex, then ∆e is sharp.

The following observations are given to summarize important points from The-
orem 12.1.

Corollary 12.3. Let G ∈ M3
2, V10

∼=H ⊆ G, with H tidy, and e a red edge
of G. Then the peak of ∆e is either a single vertex or a digon and no edge of the
peak is in the interior of the span of a global H-bridge.

Proof. That the peak is either a single vertex or a digon is a rephrasing of Theorem
12.1 (2) and (3). In the case the peak is a digon, neither ue nor we can be in the
interior of the span of a global H-bridge, since then the H-rim edge in the digon is
in two H-green cycles, contradicting Theorem 6.7.

So suppose the peak is just the vertex ue = we, let B be a global H-bridge
with ue in the interior of its span, and let i be such that e ∈ ri. If ∆e ∩ ri+5 has
an edge e′, then e′ is incident with ue and, moreover, is H-green by a global H-
bridge B′ incident with ue. But then B provides a second H-green cycle containing
e′, contradicting Theorem 6.7. So ∆e ∩ ri+5 is just ue, in which case B provides
a witnessing H-green cycle that shows ∆e is H-yellow. But then e is H-yellow,
contradicting Lemma 11.4.

Our next goal is to eliminate 3-jumps. For this the next two lemmas are helpful.

Lemma 12.4. Let G ∈ M3
2 and V10

∼=H ⊆ G, with H tidy. Suppose C is an
H-yellow cycle and C ′ is the witnessing H-green cycle. Let e be an edge of G not
in C ∪ C ′ ∪ R. Suppose either C ′ does not contain a 3-jump or e is in one of the
four spokes containing an H-node spanned by C ′. Then no H-yellow edge in C is
crossed in any 1-drawing of G− e.

Proof. There are at least four H-spokes contained in G − e. By hypothesis,
at least one of these has no end in C ′ and, therefore, no end in C ∪ C ′. Therefore,
Lemma 7.2 (2) applies. �
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12. EXISTENCE OF A RED EDGE AND ITS STRUCTURE 87

ue

u we

∆e

we

Figure 12.1. One of several examples of a ∆.

Lemma 12.5. Let G ∈ M3
2 and V10

∼=H ⊆ G, with H tidy. Suppose C is an
H-green cycle in G. Suppose that C does not contain a 3-jump, e is an edge of G
not in R ∪ C and D is a 1-drawing of G − e. If an edge e′ of C is crossed in D,
then C contains a 2.5-jump with an end in 〈ri〉, for some i, and e′ is in ri.

Proof. This is a straightforward consequence of Lemma 7.2 (3a and 3b).

Theorem 12.6. Let G ∈ M3
2 and V10

∼=H ⊆ G, with H tidy. Then no global
H-bridge is a 3-jump.

Proof. The proof begins by showing that if vi−3vi is a global H-bridge that is
a 3-jump, then there is a red edge in ri. The next step is to show that the edge
of ri incident with vi is red. The final step is to show that, if e∗ is the edge of si
incident with vi, then cr(G − e∗) ≥ 2, contradicting the criticality of G. Let Π be
an embedding of G in RP 2 so that H is Π-tidy.

Claim 1. There is a red edge of G in ri.

Proof. Lemma 10.9 (2) implies neither vi+5vi−2 nor vivi+3 is in G. Thus,
Lemma 10.8 implies Qi−1 has BOD.

Let Di−1 be a 1-drawing of G− 〈si−1〉. Lemma 5.9 implies Qi−1 is crossed in
Di−1. Let H ′ be the subdivision of V6 consisting of the H-rim R and the three
spokes si, si−3, and si+1. Lemma 7.2 implies the cycle ri−3 ri−2 ri−1 [vi, vi−3vi, vi−3]
is clean in Di−1. In particular, the crossing must be of an edge in ri+3 ∪ ri+4 and
an edge e in ri.

We prove e is red in G by proving it is neither H-green nor H-yellow. Lemma
10.9 (1) and (3) imply that no global H-bridge other than vi−3vi has an end in
[vi, ri, vi+1〉. Therefore, no H-green cycle containing e can contain a global H-
bridge. Thus, any H-green cycle C containing e is contained in cl(Qi). Lemma
12.5 implies C is not crossed in Di−1, contradicting the fact that the edge e is in
C and is crossed in Di−1. We conclude that e is not H-green.

So suppose C is an H-yellow cycle containing e and let P1P2P3P4 be the de-
composition of C into paths as in Definition 11.1. By Lemma 11.2, there is a global
H-bridge B so that the interior of the span of B contains P1. Lemma 10.9 (2) says
there is at most one 3-jump in G, so B is either a 2- or 2.5-jump.

That e is not H-yellow is an immediate consequence of Lemma 12.4. �
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88 12. EXISTENCE OF A RED EDGE AND ITS STRUCTURE

We now aim to show that the edge of ri incident with vi is red. By Claim 1,
there is a red edge in ri; let e1 be the red edge nearest to vi in ri. Let r′i be the
component of ri − e1 containing vi and let u be the end of e1 in r′i.

Claim 2. No edge of r′i is H-yellow.

Proof. Suppose some edge e′ of r′i is H-yellow and let C and C ′ be the
witnessing H-yellow and H-green cycles, respectively. Lemma 11.2 (1) implies C ′

contains a global H-bridge B. We note that Lemma 10.9 (1) and (3) imply (because
vi−3vi is present and vi−3 = vi+7) that B has no vertex in 〈vi+6, ri+6, vi+7]. On
the other hand, to make C H-yellow, B must have one end in 〈vi+5, ri+5, vi+6].

Due to the presence of vi−3vi, Lemma 10.9 (4) implies vi+3 is not in B.
Therefore, Theorem 10.6 implies B has vi+6 as one end and its other end is in
〈vi+3, ri+3, vi+4]. Theorem 12.1 (3) implies the edge e of ∆e1 − e1 incident with u
is not in H; by Theorem 12.1, it is in cl(Qi).

Let D be a 1-drawing of G− e. By Theorem 5.23, Qi has BOD, so Lemma 5.9
implies Qi is crossed in D. Lemma 7.2 implies no edge in ri+4 ri+5 is crossed in D,
so the crossing in D is of ri with ri+6.

Lemmas 12.4 and 12.5 combine with Theorem 11.3 to show that the edge e′′ of
ri+6 crossed in D is red in G. Lemma 11.7 implies e′′ and e1 are R-separated in G
and we conclude that they are also R-separated in G−e′; in fact, e′′ is R-separated
from r′i[u, e1, w]. It follows that the edge f of ri crossed in D is in [w, ri, vi+1].

Lemmas 12.4 and 12.5 combine with Theorem 11.3 to show that f is red in G;
however, e1 and f are not R-separated in G−e′ and, therefore, not separated in G,
contradicting Lemma 11.7. It follows that no edge of r′i is H-yellow, as required. �

Claim 3. u = vi.

Proof. By way of contradiction, suppose that u 6= vi. By definition of e1, no
edge of r′i is red, and Claim 2 shows no edge of r′i is H-yellow. Theorem 11.3 shows
that every edge of r′i is H-green. Because of vi−3vi, Lemma 10.9 (1) and (3) shows
no edge of r′i is H-green by a global H-bridge.

Let e be the edge of ∆e1 − e1 incident with u; Theorem 12.1 and the fact that
e1 is not incident with vi imply that e is not in H. Let D be a 1-drawing of G− e.
Note that e is in a Qi-local H-bridge. Since Qi has BOD (Theorem 5.23), it is
crossed in D (Lemma 5.9). Every edge of ri−1 is H-green in G − e; thus, Lemma
6.6 (10) implies the following.

Subclaim 1. No edge in ri−1 is crossed in D. 2

We next rule out another possibility.

Subclaim 2. No edge in ri+1 is crossed in D.

Proof. Suppose some edge eDi of ri+1 is crossed in D. Since Qi is crossed

in D, the other crossed edge e′
D
i is in ri+5. By Lemma 12.4, no H-yellow edge in

ri+1 ∪ ri+5 can be crossed in D. Since H ⊆ G − e, Lemma 6.6 (10) implies no
H-green cycle not containing e can be crossed in D; in particular, no H-green edge

in ri+1 ∪ ri+5 can be crossed in D. Now Theorem 11.3 implies eDi and e′
D
i are both

red in G.
Suppose first that e′

D
i is in [vi+5, ri+5, u

e1 ]. (Recall that ue1 is the vertex in the

peak of ∆e1 nearest u in ∆e1−e1.) Lemma 11.7 implies e′
D
i and e1 are R-separated
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12. EXISTENCE OF A RED EDGE AND ITS STRUCTURE 89

in G; this implies that ∆e′Di
is disjoint from ∆e1 . One of the riri+5-paths in ∆e′Di

,

si+1, si+2, and si+3 combine with R to show that e′
D
i is R-separated in G− e from

every edge in ri+1, a contradiction.

If, on the other hand, e′
D
i is not in [vi+5, ri+5, u

e1 ], then Lemma 11.7 shows eDi
and e′

D
i are R-separated in G and there is a subdivision of V8 that both witnesses

this separation and does not contain e (the spokes are si+2, si+3, and the “nearer”

(ri ri+1)(ri+5 ri+6)-paths in ∆eDi
and ∆e′Di

). This shows that eDi and e′
D
i are R-

separated in G− e, a contradiction. �

Since Qi is crossed in D, Subclaims 1 and 2 imply that some edge eDi of ri is
crossed in D.

Subclaim 3. eDi ∈ r′i.

Proof. If eDi is not in r′i, then let e′
D
i be the edge of ri+4 ri+5 ri+6 that is

crossed in D. Then eDi and e′
D
i are not R-separated in G − e. Observe that ∆e1

shows no H-green or H-yellow cycle containing eDi can also contain e. Therefore,

eDi is red in G and, consequently is R-separated from e′
D
i in G. In particular, e

is in every subdivision of V8 that contains R and witnesses the R-separation of eDi
and e′

D
i . This implies that e′

D
i is in [vi+5, ri+5, u

e1 ].

As e1 and e′
D
i are both red in G, by Lemma 11.7 there is a subdivision K

of V8 containing R and witnessing the R-separation of e1 and e′
D
i . There is an

r′iri+5-path P in K that is disjoint from ∆e1 . Moreover, P ⊆ cl(Qi). But now, P
together with the riri+5-path in ∆e1 − u, si+2, and si+3 make the four spokes of a

subdivision of V8 containing R and witnessing the R-separation of eDi and e′
D
i in

G− e, a contradiction. �

We now locate the edge e′
D
i . To this end, let ê be the edge of si−1 incident with

vi−1 and let D̂ be a 1-drawing of G− ê. By Lemmas 10.8, 10.9 (2), and 5.9, Qi−1

must be crossed in D̂. However, Lemma 7.2 shows that none of ri−3 ri−2 ri−1 can

be crossed in D̂. Since the edges in r′i are all H-green and none of the witnessing
H-green cycles contains a global H-bridge, Lemma 12.5 implies that no edge of r′i
is crossed in D̂. Thus, some edge of ri+3 ri+4 crosses an edge of ri − 〈r′i〉 in D̂.

Subclaim 4. Every edge in ri+4 is H-green in G and no edge in ri+4 is crossed

in D̂.

Proof. If e′ ∈ ri+4 is H-yellow, then vi−3vi is in the witnessing H-green cycle
and, therefore, the edge of si−1 incident with vi+4 is in the interior of an H-yellow
cycle containing si−2; this contradicts Lemma 11.2, so e′ is not H-yellow.

Now we eliminate the possibility that e′ is red. To do this, it will be helpful

to know that no H-green edge in ri+4 is crossed in D̂: fortunately, this is just
Lemma 12.5, combined with Lemma 10.9 (1) and (4) to eliminate the possibility of
a 2.5-jump.

Choose e′ to be the red (in G) edge in ri+4 that is nearest in ri+4 to vi+5.
Lemma 11.7 implies e′ is R-separated from e1 in G; we may choose the witnessing
subdivision K of V8 to contain si−2 and si+2; in particular, K avoids ê. Therefore,
e′ is R-separated from e1 in G − ê. Since the edges in ri+4 between e′ and vi+5

are neither red (choice of e′) nor H-yellow (two paragraphs preceding), they are
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90 12. EXISTENCE OF A RED EDGE AND ITS STRUCTURE

H-green (Theorem 11.3), we know they are not crossed in D̂ (preceding paragraph).

The subgraph K shows that none of the rest of ri+3 ri+4 can be crossed in D̂, which
is a contradiction. Therefore, no edge of ri+4 is red in G; since none is H-yellow
by the preceding paragraph, Theorem 11.3 shows they are all H-green. �

It follows that an edge of ri+3 is crossed in D̂ and it must cross some edge in
[u, ri, vi+1]. This further implies that the uue1-subpath Pu of ∆e1 − e1 intersects si
as otherwise each edge of [u, ri, vi+1] is R-separated from ri+3 in G− ê.

We now return to consideration of D. No edge in ri+4 is red in G and, because
Pu intersects si, every edge (if there are any) of [vi+5, ri+5, u

e1 ] is H-green. This
combines with Lemma 10.9 (1) and (4) to show that no edge in ri+4[vi+5, ri+5, u

e1 ]
is in the span of a global H-bridge; therefore, Lemmas 12.4 and 12.5 imply that no

edge of ri+4[vi+5, ri+5, u
e1 ] is crossed in D. Thus, the edge e′

D
i that crosses eDi in

D is in [ue1 , ri+5, vi+6]ri+6.
Because of vi−3vi, no edge in [ue1 , ri+5, vi+6]ri+6 is in the span of a global H-

bridge. Therefore, Lemmas 12.4 and 12.5 imply e′
D
i is red in G. But now Lemma

11.7 implies e′
D
i is R-separated in G from e1; there is a witnessing subdivision K

of V8 that contains si−1, si, and the nearer (ri ri+1)(ri+5 ri+6)-paths in ∆e1 and
∆e′Di

. Note that the path taken from ∆e1 does not contain e. Therefore, K is also

contained in G− e; Observation 11.6 (1) shows that these edges cannot be crossed
in D, the final contradiction that proves the claim. �

We now move into the final phase of the proof that there is no 3-jump. Let e∗

be the edge of si incident with vi and let D∗ be a 1-drawing of G − e∗. Lemma
10.9 (2) implies vi−3vi is the only 3-jump of G, so Lemma 10.8 implies Qi has
BOD. Lemma 5.9 implies Qi is crossed in D∗. In particular, there is an edge e in
ri+3 ri+4 ri+5 ri+6 that is crossed in D∗. Lemma 7.2 shows that ri+3 is not crossed
in D∗.

Claim 4. e is red in G.

Proof. If e is H-yellow in G, then Lemma 12.4 shows that e is not crossed in
D∗. Thus, e is not H-yellow.

Suppose e is H-green in G, and let C be the witnessing H-green cycle. Lemma
10.9 (2) implies C does not contain a 3-jump and Lemma 7.2 implies both that it
does not contain a 2-jump and is not contained in the union of some Qj together
with a Qj-local H-bridge. Therefore, C contains a 2.5-jump b and Lemma 7.2
implies e is in the H-rim branch that contains the end x of b that is not an H-node.

The edge e has already been shown to be in ri+4 ri+5 ri+6. Suppose e is in
ri+4. If b = vi+2x, then we contradict Lemma 10.9 (4) — vi−3vi and b span the
opposite sides of Qi−2, a contradiction. The other alternative is that b = xvi−3,
which violates Lemma 10.9 (1). Thus, e /∈ ri+4.

If e ∈ ri+5, then either b = xvi−2 or b = xvi+3. The former does not occur, as
otherwise the edges of ri−3 are all in two H-green cycles, contradicting Theorem
6.7. If the latter occurs, then we contradict Lemma 10.9 (4) — vi−3vi and b span
the opposite sides of Qi−1. Thus, e /∈ ri+5.

So e ∈ ri+6. In this case b is either xvi−1 or xvi+4. For the former, the edges of
ri−3 ri−2 are all in two H-green cycles, contradicting Theorem 6.7. For the latter,
the edge e1 of ri incident with vi is red by Claim 3. The existence of b shows Qi is
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12. EXISTENCE OF A RED EDGE AND ITS STRUCTURE 91

H-yellow, contradicting the fact that e1 is red. This is the final contradiction that
shows e is red. �

Recall that the edge e is in ri+3 ri+4 ri+5 ri+6, since it is involved in a crossing
with Qi. We have already observed that e is not in ri+3.

Suppose first that e ∈ ri+4. Lemma 11.7 implies e and e1 are R-separated in
G; in particular, vi is not in ∆e. But then vi−3vi shows ∆e ⊆ cl(Qi−1) − vi to be
an H-yellow cycle, contradicting the fact that e is red.

Therefore, e ∈ ri+5 ri+6. Let ê be the edge crossed by e in D∗. Since Lemma
7.2 implies ri−2 is not crossed in D∗, ê /∈ ri−2. Since e and e1 are both red in G,
Lemma 11.7 implies they are R-separated in G; there is a witnessing subdivision K
of V8 that contains si−1 and si−2. This K does not contain e∗, and so is contained
in G− e∗. Therefore, K separates e from ri−1 in G− e∗, and so, in D∗, e does not
cross ri−1. Thus, ê is not in ri−1.

Therefore, ê ∈ ri ri+1. Lemma 10.9 (4) implies there is no 2.5-jump xvi+4 —
it and vi−3vi would span the opposite sides of Qi−2. Also, Lemma 10.9 (3) implies
there is no 2.5-jump xvi+3 with x ∈ 〈ri〉.

It follows from Lemmas 12.4 and 12.5 (the preceding pararaph is used here)
that the edge ê crossed by e in D∗ is red in G. This implies that e and ê are
R-separated in G and this in turn implies that e and ê are R-separated in G− e∗,
the final contradiction.

Corollary 12.7. Let G ∈ M3
2 and V10

∼=H ⊆ G, with H tidy. Then every
H-hyperquad has BOD.

Proof. By Theorem 12.6, no global H-bridge is a 3-jump. By Lemma 10.8, every
H-hyperquad has BOD.

We are now prepared for the main result of this section.

Theorem 12.8. Let G ∈ M3
2 and V10

∼=H ⊆ G, with H tidy. Then there is a
red edge in the H-rim.

Proof. We prove this by first considering the case there is a global H-bridge. By
Theorem 12.6, there is no 3-jump. By Theorem 10.6, a global H-bridge is either a
2.5- or a 2-jump.

Claim 1. If G has a 2.5-jump, then G has a red edge.

Proof. By symmetry, we may assume wvi+2 is a 2.5-jump with w ∈ 〈ri−1〉.
By way of contradiction, we assume that G has no red edge. We first treat two
special cases.

Case 1: there is a 2.5-jump vi−3w
′, with w′ ∈ 〈ri−1〉.

In this case, let D be a 1-drawing of G−〈si+2〉. Corollary 12.7 and Lemma 5.9
show that Qi+2 is crossed in D. Lemma 7.2 implies each of the cycles consisting of
one of these two 2.5-jumps and the subpath of R it spans is clean in D. The same
lemma implies that neither ri+3 nor ri+5 is crossed in D. The combination of facts
imply that some edge e2 in ri+2 crosses some edge e6 in ri+6.

Since G has no red edge, Theorem 11.3 implies each of e2 and e6 is either
H-yellow or H-green in G. There is complete symmetry between them (relative
to the two 2.5-jumps), so we treat e6. If e6 is H-yellow in G, then it is in some
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92 12. EXISTENCE OF A RED EDGE AND ITS STRUCTURE

witnessing H-yellow cycle C for which there is a witnessing H-green cycle C ′. The
only possibility is that C ′ contains wvi+2.

We have that C ⊆ cl(Qi+1) − vi+2. Let C = P1P2P3P4 be the composition of
paths showing C is H-yellow, as in Definition 11.1. Since P1 ⊆ 〈C ′ ∩R〉, we have
P1 ⊆ ri+1− vi+2. Choose the labelling of P2 and P4 so the ri+1-end of P2 is nearer
vi+2 in ri+1 than the ri+1-end of P4 is.

If P2 is not disjoint from 〈si+2〉, then the edge of ri+1 incident with vi+2 is in
two H-green cycles, contradicting Theorem 6.7. Therefore, C ∪ C ′ is disjoint from
〈si+2〉. But then Lemma 12.4 implies e6 is not crossed in D and, therefore, e6 is
not H-yellow. Likewise, e2 is not H-yellow.

Therefore, e6 is H-green, so Lemma 12.5 implies e6 is spanned by some 2.5-jump
J6 and, moreover, is not in either H-rim branch fully contained in the span of J6. By
Theorem 6.7, no H-rim edge is in two H-green cycles. Thus, the only possibility for
the 2.5-jump J6 spanning e6 is vi+4w6, with w6 ∈ 〈ri+6〉. An analogous argument
applies to e2, so e2 is spanned by the 2.5-jump J2 w2vi+5, with w2 ∈ 〈ri+2〉. But
now we have that every edge of ri+4 is in the distinct H-green cycles containing J2

and J6, contradicting Theorem 6.7, completing the proof in Case 1.

Case 2: There is a 2.5-jump vi−4w
′, with w′ ∈ ri−2.

Let D1 be a 1-drawing of G − 〈si+1〉. Corollary 12.7 and Lemma 5.9 imply
Qi+1 is crossed in D. Lemma 7.2 (1) shows none of [w, ri−1vi], ri, ri+1, and ri+6

is crossed in D, while (2) of the same lemma shows ri+2 is not crossed. It follows
that some edge e5 ∈ ri+5 crosses an edge e9 ∈ [vi+9, ri+9, w].

Since e9 is not red, Theorem 11.3 shows it is either H-yellow or H-green. If
e9 is H-yellow as witnessed by the H-yellow cycle C and the H-green cycle C ′,
then the global H-bridge J in C ′ is a 2- or 2.5-jump (Theorems 10.6 and 12.6) and
C ⊆ cl(Q−1) (Lemma 11.2 (4)). Lemma 12.4 implies that e9 is not crossed in D, a
contradiction.

Likewise, if e9 is H-green, the Lemma 12.5 shows it is not crossed in D, the
final contradiction completing the proof in Case 2.

Case 3: All the remaining cases.

Let ei be the edge of si incident with vi and let Di be a 1-drawing of G − ei.
Corollary 12.7 and Lemma 5.9 imply Qi is crossed in Di.

Since G (in particular, ri−2) has no red edge, Lemma 12.4 shows any H-yellow
edge in ri−2 is not crossed in Di, while Lemma 12.5 implies that, as we are not in
Case 2, no H-green edge of ri−2 is crossed in Di. Lemma 7.2 (1) implies no edge
of [w, ri−1, vi]ri ri+1 is crossed in Di. Therefore, it must be that some edge ei−1 of
[vi−1, ri−1, w] is crossed in Di.

As ei−1 is not red in G, Theorem 11.3 implies ei−1 is either H-green or H-
yellow. If it is H-green, then, because we are not in Case 1, Lemma 12.5 implies
ei−1 is in an H-green cycle C contained in cl(Qi−1) and ei ∈ C. But then every
edge in [w, ri−1, vi] is in two H-green cycles, contradicting Theorem 6.7.

We conclude that ei−1 is H-yellow. Let C and C ′ be the witnessing H-yellow
and H-green cycles, respectively, and let B be the global H-bridge contained in C ′.
Lemma 12.4 implies ei ∈ C. Moreover, vi+5 is in the span of B, as otherwise B
attaches at vi+2, contradicting Lemma 10.9 (1). By Lemma 10.9 (4), vi+7 is not in
the span of B.
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12. EXISTENCE OF A RED EDGE AND ITS STRUCTURE 93

If B has an end in 〈ri+2〉, then the other end of B is vi+5. The R-avoiding
path (one of P2 and P4 in the decomposition of the H-yellow cycle as in Definition
11.1) in C containing ei contains a positive-length H-avoiding subpath joining a
vertex of 〈si〉 to a vertex of [vi+4, ri+5, vi+5〉. This yields the contradiction that
the edge of ri+4 incident with vi+5 is in two H-green cycles. Therefore, B has one
attachment in [ri+5 ri+6〉 and one attachment in ri+3.

Let Di+1 be a 1-drawing of G− 〈si+1〉. Lemma 12.4 implies no H-yellow edge
in either ri−1 or ri+2 is crossed in Di+1. An H-green edge of ri+2 is not spanned
by a global H-bridge (there is no room for such a jump between B and wvi+2), so
Lemma 12.5 implies no H-green edge of ri+2 is crossed in Di+1. Because we are not
in Case 1 and there is no 3-jump, Lemma 12.5 implies no H-green edge of either
ri−1 or ri+2 is crossed in Di+1.

Lemma 7.2 (1) implies no edge of ri ri+1 is crossed in Di+1. Thus, none of
ri−1 ri ri+1 ri+2 is crossed in Di+1, and therefore Qi+1 cannot be crossed in Di+1.

However, Corollary 12.7 and Lemma 5.9 imply that Qi+1 is crossed in Di+1. This
contradiction completes the proof that G has a red edge when there is a 2.5-jump.

�

At this point, we may assume G has no 2.5-jump and no 3-jump.

Claim 2. If G has a 2-jump vivi+2, then either ri−1 or ri+2 has a red edge.

Proof. In this case, let Di+1 be a 1-drawing of G − 〈si+1〉. Corollary 12.7
and Lemma 5.9 imply that Qi+1 is crossed in Di+1. Lemma 7.2 (1) shows no
edge of ri ri+1 is crossed in Di+1. Therefore, some edge of ri−1 ∪ ri+2 must be
crossed in Di+1. Lemmas 12.4 and 12.5 imply that no H-yellow or H-green edge
in ri−1 ∪ ri+2 is crossed in Di+1. Therefore, Theorem 11.3 shows some edge in
ri−1 ∪ ri+2 is red. �

In the final case, there are no global H-bridges. Therefore, there are no H-
yellow cycles and every H-green cycle is contained in cl(Qi), for some i. For j ∈
{0, 1, 2, 3, 4}, let ej be the edge in sj incident with vj and let Dj be a 1-drawing of

G−ej . Corollary 12.7 and Lemma 5.9 imply that Qj is crossed in Dj , so some edge
in rj+3 rj+4 rj+5 rj+6 is crossed in Dj . Since ej cannot be in any H-green cycle
containing an edge in rj+3 rj+4 rj+5 rj+6, Lemma 12.5 implies no H-green edge in
rj+3 rj+4 rj+5 rj+6 can be crossed in Dj . Therefore the edge in rj+3 rj+4 rj+5 rj+6

crossed in Dj is red in G.

We conclude this section with the technical lemma (12.14) below that will be
used in the next section. We start with four lemmas leading to a more refined un-
derstanding of R-separation in cases of interest for us. The first three are primarily
used in the proof of the fourth. (Recall that an RR-path is an R-avoiding path
with both ends in R.)

Lemma 12.9. Let G ∈M3
2 and let V10

∼=H ⊆ G, with H tidy, witnessed by the
embedding Π. Let P be an RR-path in G. If B is a global H-bridge so that one
end of P is in the interior of the span of B, then there is an H-quad Q so that
P ⊆ cl(Q) and the two cycles in R ∪ P containing P are non-contractible in RP 2.

Proof. As P is R-avoiding, Theorem 6.7 implies P is not contained in D. If P is
just an H-spoke, then both conclusions are obvious. Otherwise, as we traverse P
from an end u in the interior of the span of B, there is a first edge e that is not in
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94 12. EXISTENCE OF A RED EDGE AND ITS STRUCTURE

H. Since P ⊆M, there is an H-quad Q so that e ∈ cl(Q). Let P ′ be the H-bridge
in H ∪ P containing e. Then P ′ is an H-avoiding path with both ends in H, so
P ′ ⊆ cl(Q).

Since P is R-avoiding, if both ends of P ′ are in R, then P ′ = P and P ⊆ cl(Q),
as claimed. Otherwise, one end w of P ′ is in the interior of some H-spoke si. Our
two claims eliminate many possibilities for the other end x of P ′. We choose the
labelling so that u ∈ ri−1 ri.

Claim 1. x is not in 〈si−1 ri−1 ri si+1〉.

Proof. Suppose first that u is an end of P ′. The choice of e implies P ′ =
[u, P,w] is just the edge e. If u is an end of si, then e is an H-bridge having all its
attachments in si, contradicting Lemma 10.10. If u is not an end of si, then there
is an H-green cycle that contains an edge f of R incident with u. But then f is in
two H-green cycles, contradicting Theorem 6.7. Thus, u is not an end of P ′.

If x ∈ 〈si−1 ri−1 ri si+1〉 − u, then u = vi and P ′ = [w,P, x] is contained in
either cl(Qi−1)−ri+4 or cl(Qi)−ri+5. In this case, we again have the contradiction
that some edge of R incident with u is in two H-green cycles. �

Claim 1 implies u = vi and [u, P,w] ⊆ si. Moreover, x is in Qi−1 ∪ Qi and
either P ′ ⊆ cl(Qi−1) or P ′ ⊆ cl(Qi). The next claim eliminates another possibility
for x.

Claim 2. x /∈ 〈si〉.

Proof. Suppose by way of contradiction that x ∈ 〈si〉. Let B′ be the H-bridge
containing P ′. Observe that B′ is H-local and that w and x are both attachments
of B′ in 〈si〉. Corollary 5.15 implies that these are the only attachments of B′,
contradicting Lemma 10.10. �

We conclude from Claims 1 and 2 that x is in ri+4 ri+5. Evidently, P is in
cl(Qi−1) or cl(Qi), respectively, as required for the first conclusion. Furthermore,
both cycles in Π[R ∪ P ] that contain P are non-contractible in RP 2.

Lemma 12.10. Let G ∈ M3
2 and let V10

∼=H ⊆ G, with H tidy, witnessed by
the embedding Π. For i ∈ {0, 1, 2, 3, 4} and j ∈ {i + 3, i + 4, i + 5}, let e ∈ ri and
f ∈ rj be edges that are not H-green. Suppose P is an RR-path in M having both
ends in the component R′ of R − {e, f} containing ri+6 ri+7 ri+8 ri+9 and so that
the cycle in Π[R′ ∪ P ] is non-contractible. Then

P ⊆
(

cl(Qj)− [vj , sj , vj−5〉
)
∪

 ⋃
j−5<k<i

cl(Qk)

∪( cl(Qi)−〈vi+6, si+1, vi+1]

)
.

Proof. Choose the labelling u and w of the ends of P so that u is nearer in R′ to
the end incident with f than w is.

Let γ be a non-contractible curve meeting Π[G] in just the two points a and b;
we note that u and w are on different ab-subpaths of R (allowing a or b to be an
end of P ). We may choose the labelling of a and b so that a ∈ R′, and if both a
and b are in R′, then a is closer to the end of R′ incident with f than b is.

Claim 1. (1) If vj and w are on the same ab-subpath of R, then P ∩〈sj〉
is empty.
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12. EXISTENCE OF A RED EDGE AND ITS STRUCTURE 95

(2) If vi+1 and u are in the same ab-subpath of R, then P ∩ 〈si+1〉 is empty.

Proof. The statements are symmetric, so it suffices to prove the first. Suppose
to the contrary that P ∩ 〈sj〉 is not empty. As we traverse P from w (which is not
incident with sj), let x be the first vertex in 〈sj〉 and let P ′ denote the wx-subpath
of P . Evidently, P ′ is contained in one component M′ of M\ (γ∪sj). On the other
hand, f is between vj and w, and so f is in M′. If w ∈ rj , then P ′ and f are in an
H-green cycle, a contradiction.

Otherwise, vj+1 ∈M′ and P ′ intersects 〈sj+1〉. In this case, some 〈sj+1〉 〈sj〉-
subpath of P ′ is in an H-green cycle with f , also a contradiction. �

If both vi+1 and w are in the same ab-subpath of R and both vi+4 and u are in
the same ab-subpath of R, then Claim 1 implies P is trapped between sj and si+1,
as required. By symmetry, we may assume that vi+1 is not in the same ab-subpath
of R as w. Let Rw denote the ab-subpath of R containing w and let Ri+1 denote
the other ab-subpath of R, so vi+1 ∈ Ri+1.

This implies that vi+1, vi+2, . . . , vj are all in Ri+1. We noted above that
u /∈ Rw, so u is also in Ri+1. From Claim 1 (1), we conclude that P is disjoint from
〈sj〉. Thus, P is contained in the component of M− sj disjoint from vi+2.

It follows from the fact that all the H-spokes are in M that vj−5 is on the same
ab-subpath as w. This combines with the fact that vi+1 is not in that ab-subpath
and the fact that P meets γ at most in a to tell us that

P ⊆
(

cl(Qj)− 〈si−1〉
)
∪

 ⋃
j−5<k<i

cl(Qk)

 ∪ ( cl(Qi)− 〈si+1〉
)
,

as required.
The additional fact that P cannot include vj and vi+1 follows from the knowl-

edge that these vertices are not in R′.

In a similar vein, we have the following.

Lemma 12.11. Let G ∈ M3
2 and let V10

∼=H ⊆ G, with H tidy as witnessed
by the embedding Π. Suppose e ∈ ri, f ∈ ri+3 ri+4 and P is an RR-path with both
ends in the component of R−{e, f} containing ri+1 ri+2. If e is not H-green, then
both cycles in Π[R ∪ P ] containing P are contractible.

Proof. Let R′ be the component of R−{e, f} containing ri+1 ri+2 and let C be the
cycle in R ∪ P that contains P and is contained in R′ ∪ P . Since R is contractible,
the other cycle in R ∪ P containing P is homotopic to C; thus, it suffices to show
C is contractible.

Let ue be the end of R′ incident with e. Suppose there is a ([ue, ri, vi+1] si+1)si-
path P ′ in P contained in cl(Qi). Since C is disjoint from ri+1, P ′ is contained in
an H-green cycle containing e, a contradiction.

Thus, there is no ([ue, ri, vi+1] si+1)si-path in P contained in cl(Qi). Since C
is disjoint from ri+5, there is an arc in the disc bounded by Π[Qi] joining a point
of [vi, ri, ue〉 to ri+5 that is disjoint from C; this shows that C is contractible, as
required.

Our next lemma takes us one step closer to the useful description ofR-separation.
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96 12. EXISTENCE OF A RED EDGE AND ITS STRUCTURE

Lemma 12.12. Let G ∈M3
2 and let V10

∼=H ⊆ G, with H tidy. Suppose e ∈ ri
and f ∈ ri+3 ri+4 are R-separated as witnessed by the subdivision H ′ of V8. If e
is not H-green, then the component of R − {e, f} containing both ends of some
H ′-spoke is the one containing ri+5 ri+6 ri+7 ri+8 ri+9.

Proof. Let Π be an embedding of G in RP 2 so that H is Π-tidy. Recall that R
is also the H ′-rim. Observation 11.6 (2) shows that two of the four H ′ spokes have
all their ends in the same component of R−{e, f}. Of the four H ′-spokes, at most
one can be in D. Thus, of the two that have both ends in the same component R′

of R− {e, f}, there is at least one, call it s, that is in M.
In particular, the two cycles in R ∪ s containing s are non-contractible. Now

Lemma 12.11 shows the two ends of the RR-path s are not in the component
of R − {e, f} containing ri+1 ri+2 and so must be in the component containing
ri+5 ri+6 . . . ri+9, as claimed.

Our next lemma in the series gives a quite refined description of R-separation.

Lemma 12.13. Let G ∈ M3
2 and let V10

∼=H ⊆ G, with H tidy. Let e ∈ ri and
f ∈ ri+4 ri+5 be edges that are both not H-green. If e and f are R-separated in G,
then there is a witnessing subdivision H ′ of V8 having si+2 and si+3 as H ′-spokes
and the other two H ′-spokes are in cl(Qi−1) ∪ cl(Qi).

Proof. Let Π be an embedding of G in RP 2 for which H is Π-tidy. Let H1 be
a subdivision of V8 witnessing the R-separation of e and f . Let s be an H1 spoke
having both ends in the same component R′ of R− {e, f}.

Claim 1. The cycles in Π[R ∪ s] containing s are non-contractible.

Proof. Suppose first by way of contradiction that Π[s] in not contained in M.
Since H is Π-tidy, s is a global H-bridge. Theorems 10.6 and 12.6 show s is either
a 2- or a 2.5-jump. By hypothesis, it is not possible for both e and f to be in the
span of s and, therefore, neither is. On the other hand, each of the other three
H1-spokes has precisely 1 end in the span of s, and is contained in M. Let these
spokes appear in the order t1, t2, t3 in the span of s.

We claim that the ti imply the existence of an H-yellow cycle that does not
bound a face of Π[G], contradicting Lemma 11.2 (3). Let P be the span of s and,
for i = 1, 2, 3, let ui be the end of ti that is not in P . Because Π[s ∪ P ] bounds a
closed disc, both cycles in Π[R∪ ti] containing ti are non-contractible. Thus, ti has
an end in each of the ab-subpaths of R.

Lemma 12.9 implies that each ti is contained in an H-quad. Thus t1 ∪ t2 ∪ t3
is contained the the union of the closures of the H-quads that have an edge in
P . In particular, u1, u2, and u3 occur in a 3-rim path P1 having u1 and u3 as
ends. Letting P3 be the minimal subpath of P containing the ends of the ti, we see
that P1 t1 P3 t3 is an H-yellow cycle C. However, Π[C] bounds a face of Π[G]; the
contradiction is that t2 and s are on different sides of Π[C].

Thus, s is contained in M. Since s is one of four H1-spokes, the two cycles in
Π[R ∪ s] that contain s are non-contractible. �

In particular, s has an end in each of the two ab-subpaths of R determined by
the standard labelling of Π[G].

In the case f ∈ ri+5, we may, if necessary, use the reflective symmetry j ↔ 4−j
(for 0 ≤ j ≤ 4), to arrange that the end sf of s is, in Π[R′], between the end uf
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12. EXISTENCE OF A RED EDGE AND ITS STRUCTURE 97

of f in R′ and a, say, while the other end se of s is between a and the end ue of
e. In particular, vi+1, vi+2, vi+3, and vi+4 are not in R′. Lemma 12.12 shows this
always holds when f ∈ ri+4.

Let s′ be the other H ′-spoke having both ends in R′. The arguments above for
s apply equally well to s′. Lemma 12.10 shows that (s∪ s′) ⊆ cl(Qi−1)∪ cl(Qi). In
particular, s and s′ are disjoint from si+2 and si+3, so these H-spokes may replace
the two H1-spokes having ends in both components of R− {e, f}, as required.

The final technical lemma of this section will be used in the next.

Lemma 12.14. Let G ∈M3
2 and V10

∼=H ⊆ G, with H tidy. If e and e′ are red
edges in the same H-rim branch, then ∆e and ∆e′ are disjoint.

Proof. We may choose the labelling of e and e′ so that e = uw and e′ = xy are
such that ri = [vi, ri, u, w, ri, x, y, ri, vi+1]. As we follow ∆e − e from w, there is a
first edge f that is not in R. In fact, Theorem 12.1 (3) implies f is incident with
w, as there can be no global H-bridge spanning e′.

Observe that f is not in H, so H ⊆ G − f . Moreover, if f is in an H-yellow
cycle, then either e or e′ is H-yellow, a contradiction. Thus, Lemmas 12.4 and 12.5
imply the colours of an edge of R are the same in G and G− f , unless the edge is
in an H-green cycle in G that contains f . Such an edge is necessarily in [w, ri, x].

Let D be a 1-drawing of G−f and let e1 and e2 be the edges of G−f crossed in
D. Since f is incident with w ∈ 〈ri〉, Theorem 5.23 and Lemma 5.9 imply that Qi is
crossed in D, so we may assume e1 ∈ ri−1 ri ri+1 and e2 ∈ ri+4 ri+5 ri+6. Moreover,
no H-green cycle containing e2 contains f , so e2 is red in G. In particular, Lemma
11.7 implies e2 is R-separated from both e and e′.

Let ue and we be the first vertices in ri+5 as we traverse ∆e− e from u and w,

respectively. Likewise, we have xe
′

and ye
′

in ri+5 ∩ (∆e′ − e′).

Claim 1. e2 ∈
[
ue, ri+5, y

e′
]
.

Proof. Suppose by way of contradiction that e2 ∈ ri+4 [vi+5, ri+5, u
e]; a sim-

ilar argument will treat the case e2 ∈
[
ye
′
, ri+5, vi+6

]
ri+6.

If e1 ∈ ri−1 [vi, ri, u], then e1 is red in G, so e1 and e2 are R-separated in G.
Note that either e1 ∈ ri or e2 ∈ ri+5. Lemma 12.13 implies there is a witnessing
subdivision H ′ of V8 that contains si+2 and si+3, while the other two spokes are
in cl(Qi−1) ∪ cl(Qi). Furthermore, ∆e shows that f /∈ H ′; therefore, H ′ ⊆ G − f
shows that e1 and e2 are R-separated in G− f , and therefore cannot cross in D, a
contradiction.

The other possibility is that e1 ∈ [u, ri, vi+1] ri+1. Since e and e2 are both red
in G, Lemma 11.7 implies e2 is R-separated from e in G− f . As in the preceding
paragraph, we may choose the witnessing subdivision H ′ of V8 to contain si+2 and
si+3, while the other two spokes are in cl(Qi−1)∪ (cl(Qi)− f). Again H ′ witnesses
the R-separation of e1 and e2 in G− f , a contradiction. �

Theorem 12.1 (2) shows that any edge in either ∆e ∩ ri+5 or ∆e′ ∩ ri+5 is in a

digon in G and so is not e2. Thus, e2 is further restricted to be in
[
we, ri+5, x

e′
]
.

Lemma 11.7 implies ∆e and ∆e2 are disjoint, as are ∆e2 and ∆e′ , which further
implies that ∆e and ∆e′ are disjoint, as required.
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CHAPTER 13

The next red edge and the tile structure

We now know that there are red edges and every red edge comes equipped
with a ∆. The tiles are determined by what is between “consecutive” red edges. In
this section, we explain what “consecutive” means, show that consecutive red edges
determine one of the tiles, and complete the proof of our main result, Theorem 2.14,
by demonstrating that every red edge has a consecutive red edge on each side.

Definition 13.1. Let G ∈ M3
2 and V10

∼=H ⊆ G, with H tidy. Let e = uw
be a red edge in ri, labelled so that ri = [vi, ri, u, e, w, ri, vi+1]. A red edge ew is
w-consecutive for e if:

(1) ew ∈ [we, ri+5, vi+6]ri+6 ri+7 (recall that we is the vertex in the peak of
∆e nearest w in ∆e − e);

(2) there is no red edge in [we, ri+5, vi+6]ri+6 ri+7 between we and ew;
(3) there is no red edge in [w, ri, vi+1]ri+1 ri+2 between w and the peak of

∆ew ;
(4) if ew is the edge of Pw nearest w that is not in R, then there is a 1-drawing

D of G− ew in which e crosses ew.
(5) There is an analogous definition for u-consecutive.

Our first main goal is, therefore, the following.

Theorem 13.2. Let G ∈ M3
2 and V10

∼=H ⊆ G, with H tidy. Let e = uw be
red in G. Then there is a w-consecutive red edge and a u-consecutive red edge for
e.

The next lemma will be helpful in the proof.

Lemma 13.3. Let G ∈M3
2 and V10

∼=H ⊆ G, with H tidy. Let e = uw and ê be
red edges in G, with e ∈ ri and the labelling chosen so that ri = [vi, ri, u, e, w, ri, vi+1]
and ê ∈ [we, ri+5, vi+6]ri+6 ri+7. If ew is the w-nearest edge of Pw that is not in R
and e and ê are not R-separated in G− ew, then e has a w-consecutive red edge.

Proof. Suppose there is a red edge e′ in ri ri+1 ri+2 between w and the peak of
∆ê. Then e′ is R-separated from ê in both G and G− ew, showing that e and ê are
R-separated in G− ew, a contradiction. Thus, no such red edge exists.

Let ê′ be the we-nearest red edge in [we, ri+5, vi+6]ri+6 ri+7. Lemma 11.7
implies ê′ is R-separated from e in G; if ê′ were also R-separated from e in G− ew,
then so would ê, which contradicts the hypothesis. But now Lemma 11.7 implies
there is a 1-drawing of G− ew in which e crosses ê′, as required.

And now the final major proof needed to prove Theorem 2.14.
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13. THE NEXT RED EDGE AND THE TILE STRUCTURE 99

Proof of Theorem 13.2. It obviously suffices to prove the existence of a w-
consecutive red edge for e. Let ri be the H-rimbranch containing e. Let ew be the
edge of Pw nearest w and not in R. There are two principal cases.

Case 1: ew is incident with w.

We note that ew is contained in a Qi+1-bridge that is not MQi+1
. Let D be a

1-drawing of G − ew. Corollary 12.7 and Lemma 5.9 show that Qi+1 is crossed in
D.

Let

• f be the edge of ri+4 ri+5 ri+6 ri+7 that is crossed in D and
• f ′ be the other edge crossed in D; thus, f ′ ∈ ri−1 ri ri+1 ri+2.

Claim 1. If f is not red in G, then there is a w-consecutive red edge for e.

Proof. Because we are in Case 1, no global H-bridge has w in the interior
of its span and, therefore, ew is not in any H-yellow cycle that could witness the
H-yellowness of any edge in ri+4 ri+5 ri+6 ri+7, (in particular, the H-yellowness of
f). Therefore, Lemma 12.4 shows f is not H-yellow. Since f is not red, Theorem
11.3 implies f is H-green. Lemma 12.5 implies there is a 2.5-jump J that spans f
and so that f is in the H-rim branch whose interior contains an end of J . We note
that if vi+6 is in the span of J , then Lemma 7.2 (1) shows no edge in the span of J
is crossed in D. Therefore, vi+6 is not in the span of J . Furthermore, if ew is not in
si+1, then H ⊆ G−ew and, therefore Lemma 6.6 (10) implies f is not crossed in D,
a contradiction. This implies w = vi+1. We summarize these remarks as follows.

Subclaim 1. • w = vi+1 and
• there is a 2.5-jump J so that:

– f is spanned by J ;
– f is in the H-rim branch whose interior contains an end of J ; and
– vi+6 is not in the span of J . 2

Subclaim 2. Let j ∈ {i+ 4, i+ 5, i+ 6, i+ 7} so that f is in the H-rim branch
rj . Then no edge of rj is H-yellow.

Proof. Suppose some edge e′ of rj is H-yellow. This implies e′ is not H-green
and, therefore, is not spanned by J . Let C and C ′ be the witnessing H-yellow and
H-green cycles, respectively.

Suppose first that j ∈ {i+4, i+5}. Then rj = [vj , rj , f, rj , e
′, rj , vj+1]. Because

e ∈ ri is not H-green, vj+5 ∈ {vi−1, vi} is in the interior of C ′ ∩ R. This implies
there is an H-yellow cycle containing sj and the portion of rj from vj to e′. By
Lemma 11.2 (3), this H-yellow cycle must be C and, therefore, f ∈ C. Now the fact
that f is crossed in D contradicts Lemma 12.4. A completely analogous argument
holds for j ∈ {i+ 6, i+ 7}. �

Let ŵ be the vertex in ri+5 that is nearest w in Pw. Observe that ŵ is not
necessarily in the peak of ∆e. (See Figure 12.1, where ŵ is the vertex of ∆e at the
top right hand corner of ∆e.) The following claim will be helpful in completing the
proof of Case 1.

Subclaim 3. If ŵ 6= vi+6, then [ŵ, ri+5, vi+6] is in an H-green cycle contained
in cl(Qi).
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100 13. THE NEXT RED EDGE AND THE TILE STRUCTURE

Proof. Let P ′w be the ŵsi+1-subpath of Pw. Since ew ∈ si+1, P ′w ⊆ Pw − w.
Let ŵe be the end of P ′w in si+1. Since ŵ /∈ si+1 and ŵe ∈ si+1, ŵ 6= ŵe. By
definition of ŵ, P ′w − ŵ is disjoint from ri+1. Therefore, P ′w [ŵe, si+1, vi+6, ri+5, ŵ]
is an H-green cycle containing [ŵ, ri+5, vi+6], as required. �

The proof of Claim 1 is completed now by treating separately each of the four
possibilities for f : f ∈ ri+4, f ∈ ri+5, f ∈ ri+6, and f ∈ ri+7.

Subcase 1: f ∈ ri+4.

In this case, J has an end x′ ∈ 〈ri+4〉 and the other end of J is vi+2. Lemma
7.2 (3b) implies f ′ ∈ ri ri+1. We claim that if f ′ ∈ ri+1, then there is another
1-drawing of G− ew in which f crosses e.

Since f ∈ ri+4 and f ′ ∈ ri+1, we see that si is exposed in the 1-drawing D of
G− ew. Note that D[Qi−1] consists of a simple closed curve crossed by D[f ′], with
D[ri] on one side (the inside of D[Qi−1]) and most of D[H] on the other side (this
is the outside of D[Qi−1]).

We claim that we may reroute f inside D[Qi−1] so that it crosses e instead
of f ′. If this fails, then there is an (H − 〈si+1〉)-avoiding path P having one end
in the component of ri+1 − f ′ that contains vi+1, and having its other end in
Qi−1 ∪ [vi, ri, u].

We note that D[si+1− vi+1] (which is possibly just vi+6) is completely outside
D[Qi−1]. Therefore, P is H-avoiding. In RP 2, we conclude that P cannot start
inside Qi+1. Thus, P is contained in a global H-bridge. Therefore, P is a global
H-bridge; we note that P has one end in the component of ri+1−f containing vi+1.
No edge of ri+2 can be spanned by P , as such an edge is already spanned by J and
therefore would contradict Theorem 6.7. In the other direction, P cannot span e,
as e is red and not H-green. This contradiction shows that f may be redrawn as
claimed. Consequently, we may assume f ′ ∈ ri.

Observe that no global H-bridge can have an end y in 〈ri〉, since yvi+3 shows
e is H-green, a contradiction, and yvi−2 shows f is H-yellow and, therefore, by
Lemma 12.4 cannot be crossed in D. It follows from this, using Lemmas 12.4 and
12.5 and Theorem 11.3, that f ′ is red in G.

Suppose first that some edge e′ of [x′, ri+4, vi+5] is red in G. Then ∆e and
∆e′ are R-separated in G as witnessed by a subdivision H ′ of V8 consisting of R,
si−3, si−2, and two RR-paths P1 and P2, contained in ∆e and ∆e′ , respectively.
The paths P1 and P2 are disjoint from si+1 except that, possibly P1 contains vi+6.
Thus, H ′ and Lemma 7.2 show that f cannot be crossed in D, a contradiction.
Therefore, there is no red edge in [x′, ri+4, vi+5].

Furthermore, no global H-bridge other than J has an end in [x′, ri+4, vi+5〉, as
otherwise either e is H-yellow, or f is in two H-green cycles, both contradictions,
the latter of Theorem 6.7. We conclude that each edge of [x′, ri+4, vi+5] is either
H-yellow or contained in an H-green cycle in cl(Qi−1). Subclaim 2 shows the
following.

Subcase 1 Observation: Each edge of [x′, ri+4, vi+5] is in an H-green cycle
contained in cl(Qi−1).

Suppose there is a red edge e′ in ri+5. By Lemma 11.7, e′ is R-separated from
e in G. Therefore, Pu is disjoint from si and now we see that G − ew contains
the subdivision H ′ of V10 consisting of (H − 〈si+1〉) ∪ Pu. But J is in an H ′-green
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13. THE NEXT RED EDGE AND THE TILE STRUCTURE 101

cycle C and so, by Lemma 6.6 (10), C, and in particular, f , is not crossed in D, a
contradiction.

Thus, no edge of ri+5 is red in G. We consider next a 1-drawing Di−1 of G−
〈si−1〉. By Corollary 12.7 and Lemma 5.9, Qi−1 is crossed in Di−1. From Lemmas
12.4, 12.5, and 7.2 (1), no edge in ri+2 ri+3 ri+4 is crossed in Di−1. Therefore, it
is some edge f ′′ in ri+5 that is crossed in Di−1. Since no edge of ri+5 is red in G,
Lemmas 12.4 and 12.5 imply that f ′′ is spanned by a 2.5-jump J ′′ = x′′vi−2, with
x′′ ∈ 〈ri+5〉.

Now consider a 1-drawing Di+3 of G − 〈si+3〉. As for Qi−1 in the preceding

paragraph, Qi+3 is crossed in Di+3. In this case, ri+1 is contained in the H-yellow
cycle Qi+1 (with witnessing H-green cycle containing J ′′). Therefore, ri+1 is not
crossed in Di+3. Lemma 7.2 (1) implies no edge in the span of J is crossed in
Di+3. Subcase 1 Observation combines with Lemma 12.5 to show that no edge in
[x′, ri+4, vi+5] is crossed in Di+3. But now we see that Qi+3 cannot be crossed in
Di+3, a contradiction that shows Subcase 1 cannot occur.

Subcase 2: f ∈ ri+5.

In this case, J has an end x′ ∈ 〈ri+5〉. Subclaim 1 implies that vi+6 is not
spanned by J , so the other end of J is vi+3. Lemma 7.2 implies the edge f ′

(crossed by f in D) is in ri+2.
We first show that there is no global H-bridge spanning any edge in ri ri+1 ri+2.

For if J ′ is a global H-bridge that spans such an edge, then J ′ does not span e,
while Lemma 10.9 (1) shows it cannot be the 2-jump vi+1vi+3. Theorem 6.7 shows
J ′ cannot span any edge in ri+3, so no edge of ri+1 ri+2 is spanned by a global
H-bridge. On the other side, J ′ would have to span ri−2 ri−1. In that case, J and
J ′ contradict Lemma 10.9 (4).

We also conclude that no edge of ri+5 ri+6 ri+7 is H-yellow.
Our next principal aim is to show that each edge of [x′, ri+5, vi+6] is H-green,

witnessed by a cycle in cl(Qi). We have already seen that none of the edges in
[x′, ri+5, vi+6] is H-yellow; to see they are H-green, it suffices by Theorem 11.3 to
show none is red.

If e′ is one of these edges that is red, then Lemma 11.7 implies it is R-separated
from e. We note that ∆e and ∆e′ are disjoint, both are in cl(Qi), and w = vi+1.
Therefore, e′ is in ri+5, between x′ and the peak of ∆e. However, this shows e′ and
e are R-separated in G− ew and, therefore, f and ri+2 are R-separated in G− e′,
showing that f cannot cross anything in D, a contradiction. Therefore, no edge of
[x′, ri+5, vi+6] is red, and so they are all H-green.

We next show they are not spanned by a global H-bridge. Recall that ŵ is the
vertex in ri+5 that is nearest w in Pw.

If ŵ 6= vi+6, then (Pw − ew) ∪ (si+1 − ew) ∪ [ŵ, ri+5, vi+6] contains an H-green
cycle that contains [ŵ, ri+5, vi+6] and is contained in cl(Qi). Theorem 6.7 shows no
edge of [ŵ, ri+5, vi+6] is spanned by a global H-bridge, so no edge of [x′, ri+5, vi+6] is
H-green by a global H-bridge. In this case, every edge of [x′, ri+5, vi+6] is H-green
by a local cycle.

So suppose ŵ = vi+6. By way of contradiction, we suppose there is a global
H-bridge J ′′ spanning the edge of ri+5 incident with vi+6. Then J ′′ must be x′′vi+8,
for some x′′ ∈ [x′, ri+5, vi+6]. All edges in [x′, ri+5, x

′′] are H-green by local cycles.
For j ∈ {i + 3, i + 8}, let ej be the edge of si+3 incident with vj and let Dj be a
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102 13. THE NEXT RED EDGE AND THE TILE STRUCTURE

1-drawing of G− ej . Corollary 12.7 implies Qi+3 has BOD and Lemma 5.9 implies

Qi+3 is crossed in Dj . Lemma 7.2 (3a) implies neither ri+6 ri+7 nor ri+3 ri+4 is
crossed in Dj , while (2) of the same lemma implies neither ri+9 nor ri+1 is crossed
in Dj . Therefore, ri+8 crosses ri+2.

If the edge e′i+8 of ri+8 that is crossed in Di+3 is H-green because of some
2.5-jump, then Lemma 7.2 implies e′i+8 can cross only ri+1 in Di+3. Therefore,
Theorem 11.3 and Lemmas 12.4 and (because no H-green cycle containing e′i+8

can contain ei+3) 12.5 imply e′i+8 is red in G. Likewise the edge e′i+2 of ri+2 that
is crossed in Di+8 is red in G.

By Lemma 11.7, e′i+2 and e′i+8 are R-separated in G. Moreover, the nearer
of the (ri+7 ri+8)(ri+2 ri+3)-paths P2 in ∆e′i+2

and P8 in ∆e′i+8
, along with si and

si+1 witness their R-separation. We now show that P8 is contained in cl(Qi+8) and
must be disjoint from si+4.

If P8 intersects si+4 at a vertex other than vi+4, then P8 ∪ si+4 ∪ ri+8 contains
an H-green cycle that includes e′i+8. Otherwise, P8 and si+4 intersect just at vi+4,
in which case P8 ∪ si+4 ∪ ri+8 contains a cycle C that includes e′i+8. The H-green
cycle containing J shows C is H-yellow. Both possibilities contradict the fact that
e′i+8 is red.

Symmetrically, we use J ′′ to show that P2 is disjoint from si+2. Thus, G
contains a subdivison of V12 consisting of R, P2, P8, si−1, si, si+1 and si+2. But
then G− ew contains a subdivision of V10, yielding the contradiction that f cannot
be crossed in D. Therefore, there is no global H-bridge J ′′ spanning the edge of
ri+5 incident with vi+6.

We conclude that every edge of [x′, ri+5, vi+6] is in an H-green cycle contained
in cl(Qi).

We are now in a position to show that ri+6 has a red edge. By way of contra-
diction, we suppose ri+6 has no red edge. If there were a global H-bridge having
an end in 〈ri+6〉, then ri+2 is H-yellow; Lemma 12.4 shows ri+2 is not crossed in
D, a contradiction. Thus, no global H-bridge has an end in 〈ri+6〉.

Let Di be a 1-drawing of G− 〈si〉. Then Corollary 12.7 and Lemma 5.9 imply
Qi is crossed in Di. However, Lemma 7.2 shows none of ri+3 ri+4 ri+5 ri+6 can be
crossed in Di, a contradiction.

Thus, ri+6 has a red edge e′. Then e is R-separated from e′ in G. If e is
R-separated from e′ in G− ew, then f is R-separated from ri+2 in G− ew and so
f cannot be crossed in D, a contradiction. Therefore, e is not R-separated from e′

in G− ew, so Lemma 13.3 implies there is w-consecutive red edge for e, completing
the proof in Subcase 2.

Subcase 3: f ∈ ri+6.

In this case, J has an end x′ ∈ 〈ri+6〉 and the other end is vi+9. Also, Lemma
7.2 implies f ′ (crossed by f in D) is in ri+9.

Suppose by way of contradiction that no edge of ri+6 is red in G. We show
that no edge of ri+6 is H-yellow. As every edge in [x′, ri+6, vi+7] is H-green (be-
cause of J), we assume by way of contradiction that there is an H-yellow edge
in [vi+6, ri+6, x

′]. Let C and C ′ be the witnessing H-yellow and H-green cycles,
respectively. Lemma 11.2 (1) implies there is a global H-bridge B contained in C ′,
while (4) shows C ⊆ cl(Qi+1).
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13. THE NEXT RED EDGE AND THE TILE STRUCTURE 103

The edges of the span PB of B are all H-green, so PB does not contain the
red edge e. One end of B is in [w, ri, vi+1, ri+1, vi+2] and the other end is in ri+3.
Furthermore, Lemma 10.9 (4) and the presence of J shows vi+4 is not the other
end of B.

Write C = P1P2P3P4 as in Definition 11.1 (H-yellow). Because C bounds a
face Π[G], C ⊆ cl(Qi+1), so that P1 = ri+1 ∩ C. In particular, ew /∈ C.

Choose the labelling of P2 and P4 so that the end of P2 in ri+6 is nearer to vi+6

than is the corresponding end of P4. Since there is an H-yellow cycle containing
P2 and si+2, Lemma 11.2 (3) shows this must be C. It follows that P4 = si+2.

Consider the subdivisionH ′ of V6 whose rim consists of (R−〈PB〉)−〈x′, ri+6, vi+6〉,
B, C −〈ri+6 ∩ C〉, and whose spokes are si−1, si, and si+3, [vi+3, ri+3, z]. Then H ′

does not contain ew and so must contain the unique crossing in D. Since f is not
in H ′, this is a contradiction, showing that no edge of [vi+6, ri+6, x

′] is H-yellow.
Because of J , a global H-bridge spanning an edge in [vi+6, ri+6, x

′] would have
to be a 2.5-jump having vi+4 as an end. But then e is in an H-yellow cycle, which
is impossible. Thus, for each edge ē of [vi+6, ri+6, x

′], ē is in an H-green cycle Cē
contained in cl(Qi+1). Theorem 6.7 implies Cē is disjoint from si+2.

Let Di+2 be a 1-drawing of G− 〈si+2〉. We know that Qi+2 is crossed in Di+2

(Corollary 12.7 and Lemma 5.9). Lemma 12.5 shows no edge in [vi+6, ri+6, x
′] is

crossed in Di+2, while J and Lemma 7.2 show no edge in [x′, ri+6, vi+7] ri+7 ri+8

is crossed in Di+2. Therefore, the crossing in Di+2 must be of an edge f ′′ in ri+5

crossing ri+1 ri+2.
If f ′′ is red in G, then Lemma 11.7 implies f ′′ and e are R-separated in G.

Since ew ∈ si+1, f ′′ is between (in ri+5) vi+5 and the peak of ∆e. Thus, f ′′ and e
are R-separated in G − 〈si+2〉 (using si+3 and si+4 as two of the four spokes). In
turn, this implies f ′′ cannot cross ri+1 ri+2 in Di+2, a contradiction that shows f ′′

is not red. Therefore, Lemmas 12.4 and 12.5 imply f ′′ is spanned by a 2.5-jump
vi+3x

′′, with x′′ ∈ 〈ri+5〉.
Now let Di+3 be a 1-drawing of G − 〈si+3〉. We know that Qi+3 is crossed in

Di+3. However:

• Lemma 12.5 implies [vi+6, ri+6, x
′] is not crossed in Di+3;

• Lemma 7.2 (1) implies [x′, ri+6, vi+7]ri+7 ri+8 is not crossed in Di+3; and
• Lemma 12.4 implies ri+9 is not crossed in Di+3.

These three observations imply the contradiction that Qi+3 cannot be crossed in
Di+3, showing that some edge e′ in ri+6 is red in G.

Obviously, e′ ∈ [vi+6, ri+6, x
′]. By way of contradiction, suppose e and e′ are

R-separated in G − ew. Because e ∈ ri and e′ ∈ ri+6, Lemmas 12.12 and 12.13
imply that there is a a witnessing subdivision H ′ of V8 with two H ′-spokes in
cl(Qi) ∪ cl(Qi+1) and the other two H ′-spokes are si+3 and si+4. Furthermore, six
of the eight ends of the H ′-spokes are in the component R′ of R−{e, e′} containing
ri+1 ri+2 ri+3 ri+4.

Let y be the end of e′ in R′. Because w = vi+1 and x′ ∈ [vi+6, ri+6, x〉, R′ is
contained in

ri+1 ri+2 ri+3 ri+4 ri+5 [vi+6, ri+6, x〉 .
In particular, J is not an H ′-spoke and at most two of the H ′-spokes have ends in
the span of J . Lemma 7.2 (1) implies the contradiction that the span of J , which
includes f , cannot be crossed in D. We conclude that e and e′ are not R-separated
in G− ew. Lemma 13.3 implies that e has a w-consecutive edge, as required.
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104 13. THE NEXT RED EDGE AND THE TILE STRUCTURE

Subcase 4: f ∈ ri+7.

In this case, J has an end x′ ∈ 〈ri+7〉. If the other end of J is vi+5, then Lemma
7.2 (3b) implies f ′ is in ri+3. The contradiction is that Qi+1 is not crossed in D.
Therefore, the other end of J is vi. Lemma 7.2 (3b) implies f ′ is in ri ri+1.

Suppose there is no red edge in ri+6 ri+7. Let ei+8 be the edge of si+3 incident
with vi+8 and let Di+8 be a 1-drawing of G − ei+8. Corollary 12.7 and Lemma
5.9 imply Qi+3 is crossed in Di+8. No edge in ri+6 is spanned by a 2.5-jump
having an end in 〈ri+6〉, as otherwise e is H-yellow. Therefore, Lemmas 12.4 and
12.5 imply no edge of ri+6 is crossed in Di+8. Lemma 7.2 (1) shows that no edge

of [x′, ri+7, vi+8]ri+8 ri+9 is crossed in Di+8. We conclude that some edge f̂ of
[vi+7, ri+7, x

′] is crossed in Di+8.
Lemmas 12.4 and 12.5 imply that there is a 2.5-jump vi+5x

′′, with x′′ ∈
〈vi+7, ri+7, x

′], and, furthermore, that f̂ ∈ [vi+7, ri+7, x
′′]. Lemma 7.2 (3b) im-

plies f̂ crosses an edge e′ in ri+4. Lemmas 12.4 and 12.5 imply e′ is red in G.
Let y be the end of e′ nearest vi+5 in ri+4. The riri+5-path P0 contained in the

uue-subpath of ∆e−e must have vi+5 as an end, since otherwise e is either H-green

or H-yellow. Symmetrically, the ri+4ri+9-path P4 contained in the yye
′
-subpath of

∆e′ − e′ has vi as an end.
Lemma 11.7 implies e′ is R-separated from e in G. Therefore, P0 and P4 are

disjoint. This implies that R ∪ P0 ∪ P4 ∪ si+2 ∪ si+3 ∪ si+4 is a subdivision V10 in
G− ew, showing that f cannot be crossed in D, a contradiction that proves there
is a red edge e′′ in ri+6 ri+7.

Suppose e and e′′ are R-separated in G − ew. Lemma 12.12 implies that
a witnessing subdivision H ′ of V8 is such that the component R′ of R − {e, f}
containing six of the eight ends of H ′-spokes contains ri+1 ri+2 ri+3 ri+4 ri+5.

However, J spans [x′, ri+7, vi+8] ri+8 ri+9, so at most two H ′-spokes have ends
that are in the span of J . Lemma 7.2 (1) combines withH ′ to yield the contradiction
that the span of J , including f , cannot be crossed in D. It follows that e and e′′

are not R-separated in G− ew, and now Lemma 13.3 implies e has a w-consecutive
red edge, completing the proof of Claim 1. �

With Claim 1 in hand, we may assume f is red. Recall that f and f ′ are the
edges crossed in D, with f ∈ ri+4 ri+5 ri+6 ri+7 and f ′ ∈ ri−1 ri ri+1 ri+2. The
proof in Case 1 is completed by finding a w-consecutive red edge for e. We proceed
in four cases, basically depending on which side of ∆e each of f and f ′ is on.

Subcase 1: f is in ri+4[vi+5, ri+5, u
e] and f ′ is in ri−1 [vi, ri, u].

Since f and f ′ are not R-separated in G− ew and, therefore, not R-separated
in G, f ′ cannot be red (Lemma 11.7). If f ′ is H-yellow in G, then Lemma 12.4
shows it is not crossed in D. Therefore, Theorem 11.3 implies f ′ is H-green in
G. Lemma 12.5 says there is a 2.5-jump J spanning f ′ so that f ′ is in the partial
H-rim branch spanned by J . As J cannot span e (e is not H-green), Lemma 7.2
(3b) and our current context (f in ri+4 ri+5 and f ′ in ri−1 ri) implies this is possible
only if f ′ ∈ ri−1 and f ∈ ri+5. However, the red edges f and e are R-separated
in G, implying that G − ew still has five spokes (we may replace si+1 with the
riri+5 subpath of Pu). Thus, f ′ is H ′-green in G− ew, for some H ′∼=V10. This is
impossible, as f ′ is crossed in D (Lemma 6.6 (10)).

Subcase 2: f ∈ ri+4[vi+5, ri+5, u
e] and f ′ ∈ [u, ri, vi+1]ri+1 ri+2.
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13. THE NEXT RED EDGE AND THE TILE STRUCTURE 105

In this subcase, f is R-separated in G from e. The witnessing subdivision H ′ of
V8 can be chosen to contain the “nearer” (ri−1 ri)(ri+4 ri+5)-paths, one from each
of ∆f and ∆e, together with the H-spokes si+2 and si+3 to construct H ′.

We claim that this H ′ also shows that f is R-separated from f ′ in G − ew. If
f ∈ ri+4, then, since Qi+1 is crossed in D, f ′ ∈ ri ri+1. In this case, H ′ contains
the spokes si+2 and si+3, so indeed f and f ′ are in disjoint H ′-quads, as required.
If f ∈ ri+5, then f ′ ∈ ri+2 by Lemma 7.2 (3b), and again f and f ′ are in disjoint
H ′-quads, showing f and f ′ are R-separated in G−ew. Observation 11.6 (1) yields
the contradiction that f and f ′ do not cross each other in D.

Subcase 3: f ∈ [we, ri+5, vi+6]ri+6 ri+7 and f ′ ∈ ri−1 [vi, ri, u].

If f isR-separated from e inG−ew, then it cannot cross f ′ inD, a contradiction.
Otherwise, Lemma 13.3 implies there is a w-consecutive red edge for e.

Subcase 4: f ∈ [we, ri+5, vi+6]ri+6 ri+7 and f ′ ∈ [u, ri, vi+1]ri+1 ri+2.

If f ′ = e, then we are done: Lemma 13.3 implies e has a w-consecutive edge.
So we assume f ′ 6= e. If f ′ is red inG, then Lemma 11.7 implies it isR-separated

from f in G. Therefore, f ′ is R-separated from f in G− ew, a contradiction; so f ′

is not red in G.
Suppose by way of contradiction that f ′ is H-yellow, with witnessing H-yellow

and H-green cycles C and C ′, respectively. If ew is not in C, then Lemma 12.4
yields the contradiction that f ′ is not crossed in D.

If ew is in C, then let P2 be the RR-subpath of C containing ew, let P ′ be the
RR-subpath of ∆e−e that contains ew, and let J be the global H-bridge contained
in C ′. The end of P ′ in ri+5 cannot be in the interior of the span of J , as then either
the peak of ∆e is a vertex, in which case we have that ∆e is H-yellow, yielding the
contradiction that e is H-yellow, or the peak of ∆e consists of parallel edges, both
in the span of J , contradicting Theorem 6.7.

It follows that P ′ has its end in ri+5, but not in the interior of the span of J .
On the other hand, P2 has, by Definition 11.1, one end in the interior of the span of
J . But now (P2 ∪P ′)− ew contains an R-avoiding subpath that intersects at most
the one spoke si+1. Therefore, this subpath is in an H-green cycle and contains an
edge spanned by J , contradicting Theorem 6.7. It follows that f ′ is H-green.

Theorem 12.6 implies that H has no 3-jumps. If f ′ is H-green by a 2.5-jump
J , then, because J cannot span e, Lemma 7.2 (3b) implies f ∈ [we, ri+5, vi+6]ri+6

and f ′ ∈ ri+2. Let x be the end of f closest to we in ri+5 ri+6. Let H ′ be the
subdivision of V8 obtained from H − 〈si+1〉 by replacing si+2 with Px (recall this
is defined in Theorem 12.1 (3)). Now f and f ′ violate Lemma 7.2 (3b) relative to
H ′. Therefore, f ′ is not H-green by a 2.5-jump.

Lemma 7.2 implies f ′ is not H-green by a 2-jump, as then it is not crossed in
D. Thus, f ′ is H-green by a local H-green cycle C. Lemma 12.5 implies ew is in C.
Since f cannot be R-separated from f ′ in G− ew, we see that f is not R-separated
from e in G − ew. Now Lemma 13.3 implies there is a w-consecutive red edge for
e, concluding the proof for Case 1.

Case 2: ew not incident with w.

By Theorem 12.1 (3), w is incident with a global H-bridge Jw. Since w is not
incident with ew, w 6= vi+1, and therefore Jw is the 2.5-jump wvi+3.
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106 13. THE NEXT RED EDGE AND THE TILE STRUCTURE

We observe that, since ew is not incident with w, its incident vertex in ri is
in the interior of the span of Jw. Moreover, ew is the first edge of an R-avoiding
riri+5-path P in ∆e − e, which, together with a subpath of ri ri+1, si+2, and a
subpath of ri+5 ri+6 makes an H-yellow cycle C. By Lemma 11.2 (3), there is only
one C-bridge in G and, therefore, P = si+1. In particular, ew ∈ si+1.

Claim 2. No edge in ri+7 ri+8 is H-yellow.

Proof. Suppose some edge e′ in ri+7 ri+8 is H-yellow. Let C and C ′ be the
witnessing H-yellow and H-green cycles, respectively. By Lemma 11.2 (1), C ′

contains a global H-bridge J ′.
In the case e′ is in ri+7, the span of J ′ contains a vertex of ri+2 in its interior.

Theorem 6.7 implies J ′ = Jw. But now C ∪ Qi+1 contains an H-yellow cycle C ′′

for which there is a C ′′-interior C ′′-bridge containing an edge of si+2, contradicting
Lemma 11.2 (3). Therefore, no edge in ri+7 is H-yellow.

Now we suppose e′ is in ri+8. Lemma 10.9 (1) shows J ′ does not have vi+3 as
an end, so J ′ has one end x ∈ 〈ri+3〉 and its other end is vi+6. But now C ∪Qi+4

contains an H-yellow cycle C ′′ having a C ′′-interior C ′′-bridge containing an edge
of si+4, contradicting Lemma 11.2 (3). �

Claim 3. Some edge of ri+7 is red.

Proof. Suppose no edge of ri+7 is red. By Theorem 11.3 and Claim 2, every
edge in ri+7 is H-green.

Subclaim 1. If there is a red edge in either ri+3 ri+4 or ri+8 ri+9, then there
is a red edge in ri+8 ri+9. Furthermore, among all such red edges, the one e′′ with

an end x′′ nearest vi+8 in ri+8 ri+9 is such that (e′′)x
′′

is not incident with x′′ (that
is, Case 1 does not apply to e′′ and x′′).

Proof. We first suppose no edge of ri+3 ri+4 is red. Then there is a red edge
in ri+8 ri+9. For any such red edge e′′, if the end x′′ of e′′ nearest to vi+8 is

incident with (e′′)x
′′
, then Case 1 shows there is an x′′-consecutive red edge ê for

e′′. By Definition 13.1 (1), ê ∈ ri+1 ri+2 ri+3 ri+4. Since the edges in ri+1 ri+2

are H-green, ê /∈ ri+1 ri+2. But then ê is a red edge in ri+3 ri+4, a contradiction.

Therefore, x′′ is not incident with (e′′)x
′′
, as required.

The alternative is that there is a red edge in ri+3 ri+4. Among all such edges,
let e′ be the one having an incident vertex x′ nearest vi+3 in ri+3 ri+4. Because of
Theorem 6.7 and Jw, x′ is not incident with a 2.5-jump x′vi+1 or x′vi+2. Therefore,

x′ is incident with (e′)x
′
, and we conclude from Case 1 that there is an x′-consecutive

red edge e′′ for e′. Because of Jw, every edge in ri+6 is either H-yellow or H-green
and so, in particular, is not red. By assumption, no edge of ri+7 is red. By Definition
13.1 (1), e′′ ∈ ri+8 ri+9. Also, ∆e′′ separates si+3 from ∆e′ in cl(Qi+3) ∪ cl(Qi+4).

Let x′′ be the end of e′′ nearest vi+8 in ri+8 ri+9. By way of contradiction,

suppose x′′ is incident with (e′′)x
′′
. Then Case 1 shows there is an x′′-consecutive

red edge ê for e′′. But ê is not in ri+1 ri+2 because Jw makes every one of those
edges H-green. Therefore, ê is in ri+3 ri+4. Since ∆ê separates si+3 from ∆e′′ in
cl(Qi+3) ∪ cl(Qi+4), we see that ê is nearer to vi+3 than e′ is, contradicting the

choice of e′. Therefore x′′ is not incident with (e′′)x
′′
, as required. �

Subclaim 2. No edge in either ri+3 ri+4 or ri+8 ri+9 is red.
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13. THE NEXT RED EDGE AND THE TILE STRUCTURE 107

Proof. Suppose by way of contradiction that there is a red edge in either
ri+3 ri+4 or ri+8 ri+9. By Subclaim 1, there is a red edge e′′ in ri+8 ri+9 so that

the end x′′ of e′′ nearest vi+8 in ri+8 ri+9 is not incident with (e′′)x
′′
. Therefore,

Theorem 12.1 (3) implies x′′ is incident with a 2.5-jump that is either x′′vi+6 or
x′′vi+7. It cannot be the former, as the 2.5-jumps x′′vi+6 and Jw contradict Lemma
10.9 (4). Therefore, x′′ is in the interior of ri+9 and the 2.5-jump is x′′vi+7. The
contradiction is obtained by showing that cr(G) ≤ 1.

Let D be a 1-drawing of G − 〈ri+7〉. There is still a subdivision H ′ of V8 in
G − 〈ri+7〉 consisting of the rim (R − 〈ri+7〉) ∪ x′′vi+7 and the four spokes si,
si+1, si+2 and si+3 ri+8[vi+9, ri+9, x

′′]. We note that x′′vi+7 is an H ′-rim branch,
contained in an H ′-quad Q consisting of si+2, ri+2, si+3 ri+8[vi+9, ri+9, x

′′], and
x′′vi+7.

We aim to show D[Q] is clean, so by way of contradiction, we assume D[Q] is
not clean. The H ′-rim branches of Q are ri+2 and x′′vi+7. Since ri+1 ri+2 is not
crossed inD (Lemma 7.2 (3a)), we deduce that x′′vi+7 is crossed inD. Furthermore,
the cycle ri+3 si+4 ri+8 si+3 (which is Qi+3 in G) is H ′-close and, therefore Lemmas
5.3 and 5.4 imply Qi+3 is not crossed in D. It follows that x′′vi+7 crosses ri+4

in D, so si+3 ri+8[vi+9, ri+9, x
′′] is exposed in D, from which D[H ′] is completely

determined. (See Figure 13.1.)

vi+7

vi+6

vi+1

vi+5

x′′

e

vivi+2

e′′
vi+4vi+3

vi+8 vi+9

y′′

Figure 13.1. D[H ′]

Our contradiction is obtained from a detailed consideration of ∆e′′ . We first
show that vi+4 is in the peak of ∆e′′ . To see this, we note that the ri+9ri+4-subpath
of ∆e′′ − e′′ that starts nearest x′′ is simply si+4, as otherwise there is an H-yellow
cycle C with more than one C-bridge. Theorem 12.1 (3) implies the subpath of
∆e′′ − e′′ from x′′ to the peak of ∆e′′ has at most one edge in R; therefore, there is
no edge of ri+4 between vi+4 and the peak of ∆e′′ . That is, vi+4 is in the peak of
∆e′′ .

Let y′′ be the end of e′′ different from x′′. Because y′′ is too close to Jw, it is
not incident with a global H-bridge. Thus, the edge of ∆e′′ − e′′ incident with y′′

is not in R and, therefore, is the first edge of an ri+9ri+4-subpath P of ∆e′′ − e′′.
Let z′′ be the other end of P .
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108 13. THE NEXT RED EDGE AND THE TILE STRUCTURE

We note that z′′ 6= vi+4, asD[P ] cannot crossD[H ′]. Therefore, z′′ ∈ 〈vi+4, ri+4,
vi+5]. If z′′ is in the peak of ∆e′′ , then z′′ and vi+4 are joined by parallel edges,
one of which is not in H ′. That one must cross D[H ′], which is a contradiction.
Therefore, z′′ is not in the peak of ∆e′′ . But now Theorem 12.1 (3) implies z′′ is
in the interior of the span of a global H-bridge J ′′ that has an end in the peak of
∆e′′ ; therefore, this end of J ′′ is in ri+4.

The end of J ′′ in ri+4 must be vi+4, as otherwise J ′′ is a 2.5-jump with one end
being vi+7, which, together with x′′vi+7, contradicts Lemma 10.9 (1). Therefore,
J ′′ is either vi+4vi+6 or vi+4u

′′, with u′′ ∈ 〈ri+6〉. However, Lemma 7.2 (1) or (3a)
and J ′′ show that ri+4 cannot be crossed in D, a contradiction that finally shows
D[Q] is clean.

We can now obtain the claimed 1-drawing of G. Observe that x′′vi+7 is in an
H-green cycle that, by Lemma 6.6 (8), has only one bridge. Also, if there is a Qi+2-
bridge other than MQi+2 , then cl(Qi+2) has an edge f not in Qi+2. But Theorem
5.23 and Lemma 5.9 imply Qi+2 would be crossed in any 1-drawing of G − f ;
however, both ri+2 and ri+7 are H-green courtesy of Jw and x′′vi+7. Therefore,
Qi+2 has only one bridge. It follows that there are only two Q-bridges in G, one of
which is ri+7. Since D[Q] is clean, it bounds a face of D[G− 〈ri+7〉] and it is easy
to put ri+7 into this face so as to obtain a 1-drawing of G. That is, cr(G) ≤ 1, a
contradiction completing the proof of the subclaim. �

We are now in a position to finish the proof of Claim 3. Let e3 be the edge
of si+3 incident with vi+3 and let D be a 1-drawing of G − e3. Corollary 12.7
and Lemma 5.9 imply Q3 is crossed in D. It follows that there is an edge ê in
ri+6 ri+7 ri+8 ri+9 that is crossed in D.

The H-yellow cycle Qi+1 contains ri+6, so Lemma 12.4 implies ri+6 is not
crossed in D. By assumption for ri+7 and by Subclaim 2 for ri+8 ri+9, no edge
of ri+7 ri+8 ri+9 is red. Lemmas 12.4 and 12.5 imply that ê is spanned by some
2.5-jump J ′, and, moreover, ê is in the H-rim branch whose interior contains the
end x′ of J ′.

If ê ∈ ri+7, then J ′ is either x′vi+5 or x′vi. Suppose first that J ′ = x′vi+5.
Lemma 7.2 (3b) implies ê crosses an edge in ri+4. But Theorem 6.7 shows ri+4

cannot be in the span of a 2.5-jump, so Lemmas 12.4 and 12.5 imply no edge of
ri+4 is crossed in D. Thus, J ′ 6= x′vi+5.

Now we suppose J ′ = x′vi. In this case, Lemma 7.2 (3b) implies ê crosses an
edge in ri+1, while (1) of the same lemma implies no edge in the span of J , which
includes ri+1, is crossed in D. We conclude that ê /∈ ri+7.

If ê ∈ ri+8, then J ′ is either x′vi+6 or x′vi+1. Theorem 6.7 shows the latter
does not happen. Lemma 10.9 (4) shows the former does not happen. Therefore,
ê /∈ ri+8.

The last possibility is that ê ∈ ri+9. In this instance, J ′ is either x′vi+7 or
x′vi+2. Theorem 6.7 precludes the latter possibility, so we assume J ′ = x′vi+7.
However, in this case, Lemma 7.2 (3b) implies ê crosses an edge ẽ in ri+5, in which
case neither ê nor ẽ is in Qi+3, contradicting the fact that Qi+3 is crossed in D. �

We now finish the proof of Case 2 and, therefore, Theorem 13.2. By Claim 3,
we may let e′ = xy be the red edge in ri+7 that is nearest vi+7 in ri+7, labelled
so that x is nearer vi+7 in ri+7 than y is. We look for the x-consecutive red edge
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13. THE NEXT RED EDGE AND THE TILE STRUCTURE 109

for e′. As the edges spanned by Jw are H-green, e is the only possibility for the
x-consecutive red edge for e′.

Suppose first that e′ and x satisfy the condition for Case 1. We have proved
there is an x-consecutive red edge for e′ and, as just mentioned, this can only be
e. This implies that x = vi+7. To see that e′ is the w-consecutive red edge for
e, it remains to show that e and e′ can be crossed in G − ew. (This is the only
asymmetric condition in the definition of consecutive.)

The H-quad Qi+1 is also an H-yellow cycle and so (Lemma 11.2 (3)) bounds
a face of G. It follows that e and e′ are not R-separated in G − ew and, therefore
Lemma 11.7 implies there is a 1-drawing of G − ew in which e and e′ are crossed,
as required.

The alternative is that e′ and x do not satisfy the condition for Case 1. Then,
just as for w above, there is a 2.5-jump Jx = xvi+5 incident with x. Also, the edge
ex of ∆e′ − e′ that is nearest x and not in R is in si+7. Since Qi+1 bounds a face
of G, e and e′ are not R-separated in G − ew and, therefore, Lemma 11.7 implies
there is a 1-drawing of G− ew in which they are crossed.

The following is a consequence of Definition 13.1 and Theorem 13.2.

Lemma 13.4. Let G ∈ M3
2 and V10

∼=H ⊆ G, with H tidy. With the la-
belling of e = uw and ew as in Definition 13.1, if x is the end of ew nearest we in
[we, ri+5, vi+6]ri+6 ri+7, then e is x-consecutive for ew.

Proof. By Theorem 13.2, there is an x-consecutive red edge e′′ for ew. Conditions
(2) and (3) of Definition 13.1 applied to ew being w-consecutive for e and the same
conditions applied to e′′ being x-consecutive for ew imply that e = e′′.

The main goal of this work is to prove Theorem 2.14. The following lemma
will be very helpful.

Lemma 13.5. Let G ∈ M3
2, V10

∼=H ⊆ G, and let Π be an embedding of G in
RP 2 so that H is Π-tidy. Let C be a contractible cycle contained in M so that C
is the union of a 3-rim path C ∩ R (recall Definition 11.1 (1)) and an R-avoiding
path P . Then, for every edge e of C ∩ R, there is an H-green cycle containing e
and contained in H ∪ P .

Proof. The graph H ∪P is 2-connected and not planar, so every face of Π[H ∪P ]
is bounded by a cycle. There is a face F of H ∪ P contained in M and incident
with e; by the preceding remark, F is bounded by a cycle C ′.

Let j be the index so that e ∈ rj ; thus, F is Qj-interior. Since F is also C-
interior, C ′ ∩H ⊆ 〈sj rj sj+1〉. In particular, there is at least one edge of C ′ that
is in P but not in H.

Observe that 〈sj rj sj+1〉−e has two components K1 and K2. Since C ′ contains
a vertex in each of K1 and K2 (namely the ends of e), C ′ contains an 〈sj rj sj+1〉-
avoiding K1K2-path P ′. Thus, P ′ ⊆ P .

Let C ′′ be the cycle in 〈sj rj sj+1〉∪P ′. Then C ′′ is evidently an H-green cycle
containing e, as required.

Now for the main result.

Theorem 2.14 If G is a 3-connected, 2-crossing-critical graph containing a subdi-
vision of V10, then G ∈ T (S).
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110 13. THE NEXT RED EDGE AND THE TILE STRUCTURE

Proof. By Theorem 10.4, G contains a tidy subdivision H of V10; let Π be
an embedding of G in RP 2 so that H is Π-tidy. The strategy is to show that,
between every red edge e = uw and its w-consecutive red edge ew, there is one of
the thirteen pictures (as defined just before Lemma 2.11). This is accomplished
by showing that e produces “one side” of the picture and ew produces the other.
Let i ∈ {0, 1, 2, . . . , 9} be such that e ∈ ri; we choose the labelling so that ri =
[vi, ri, u, e, w, ri, vi+1]. Thus, ew ∈ ri+5 ri+6 ri+7.

Let x be the end of ew so that e is the x-consecutive red edge for ew. Let P1

be the wex-subpath of R that is a 3-rim path (Definition 11.1 (1)); likewise P2 is
the xeww-subpath of R that is a 3-rim path.

Claim 1. Let B be a global H-bridge spanning an edge of P1. Then:

(a) B has ends we and x;
(b) we = vi+5; and
(c) ew ∈ si+1 and (ew)x ∈ si+2.

The analogous claims holds for P2.

Proof. We remark that the span of B does not include in its interior a peak
vertex of ∆e, and does not include ew. Therefore, B has both its attachments in
P1.

Consequently, the attachments of B are contained in ri+5 ri+6[vi+7, ri+7, vi+8〉.
Theorem 10.6 implies one end of B is vi+5 and the other end is in [vi+7, ri+7, vi+8〉.

It follows that we = vi+5. At the other end, we claim x is in B. We note that
ew is in ri+7, so that H − 〈si+4〉 shows that e and ew are R-separated. Let x′ be
the end of B in ri+7.

If (ew)x is not in si+2, then let ei+7 be the edge of si+2 incident with vi+7 and
let D be a 1-drawing of G − ei+7. Corollary 12.7 and Lemma 5.9 imply Qi+2 is
crossed in D. The presence of J and B combine with Lemma 7.2 (1) to show that
neither [w, ri, vi+1] ri+1 ri+2 nor ri+6 [vi+7, ri+7, x

′], respectively, is crossed in D.
It follows that some edge e′ in [x′, ri+7, vi+8] is crossed in D. Let Pw be the

path in ∆e described in Theorem 12.1 (3). Since Pw does not have vi+1 as one end,
and its other end is vi+5, its only intersection with si+1 can be in 〈si+1〉. Such an
intersection produces an H-green cycle that shows the edge of ri incident with vi+1

is in two H-green cycles, contradicting Theorem 6.7. Therefore, Pw is disjoint from
si+1.

Using Pw, si+1, si+3 and si+4 as spokes and R as the rim yields a V8 that shows
ri+7 is R-separated in G− ei+7 from [vi, ri, w]; thus, Observation 11.6 (1) shows e′

crosses an edge e′′ of ri+3 in D. Lemmas 12.4 and 12.5 shows e′ and e′′ are red in G.
Lemma 11.7 shows that e′ and e′′ are R-separated in G. Lemma 12.13 shows that
a witnessing V8 can be chosen to avoid ei+7. But now D contradicts Observation
11.6 (1). Therefore, (ew)x is in si+2 and incident with vi+7.

If B has an end in 〈ri+7〉, then Theorem 12.1 (3) implies Px ∩ ri+7 has just one
edge, namely xvi+7 and, consequently, x is in B.

If, on the other hand, vi+7 is an end of B, then Theorem 12.1 (3) implies x
must be incident with ex and, therefore x = vi+7. Again, we see that x is in B.

Observe that Jw and B are now seen to be completely symmetric with respect
to (e, w) and (x, ew); in particular, we conclude that ew ∈ si+1. �
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13. THE NEXT RED EDGE AND THE TILE STRUCTURE 111

If there is a global H-bridge B spanning an edge of P1, then we let P ′1 = B.
Otherwise, we let P ′1 = P1. A completely analogous discussion holds for P2 to yield
the wxwe -path P ′2.

Our next claim identifies the cycle that is the boundary of our picture.

Claim 2. The closed walk PwP
′
1PxP

′
2 is a cycle.

Proof. If the edge of Pw incident with w is in R, then Theorem 12.1 (3) shows
that w is incident with a global H-bridge B. Claim 1 implies B = P ′2. Thus, w has
degree 2 in the closed walk PwP

′
1PxP

′
2. Otherwise, P ′2 = P2, w is incident with ew,

and again w has degree 2 in PwP
′
1PxP

′
2.

The other “corners” we, x, and xew are treated similarly. �

Definition 13.6. Let e and e′ be red edges and let w and x be the ends of
e and e′, respectively, so that e′ is the w-consecutive red edge for e and e is the
x-consecutive red edge for e′. Let P1 be the x∆e-path in R that is a 3-rim path
and let P2 be the w∆e′ -path in R that is a 3-rim path. Let Pw be the wwe-path
in ∆e − e and let Px be the xxe

′
-path in ∆e′ − e′. For i = 1, 2, let P ′i be Pi unless

there is a global H-bridge Bi spanning an edge of Pi, in which case P ′i = Bi.
The cycle Ce is the composition PwP

′
1PxP

′
2.

We will see that Ce is the outer boundary of the one of the thirteen pictures that
occurs. We observe that Ce is in the boundary of the closed disc in RP 2 consisting
of the union of the closed discs bounded by ri ri+1 ri+2 si+3 ri+7 ri+6 ri+5 si, P

′
1P1

(if P ′1 6= P1), and P ′2P2 (if P ′2 6= P2). Therefore, Ce is the boundary of a closed disc
De in RP 2.

We now prove three claims that will be useful for finding the various parts of
the picture.

Claim 3. Let C be a cycle contained in De. If either C∩P ′1 or C∩P ′2 is empty,
then C bounds a face of Π[G].

Proof. By symmetry, we may suppose C∩P ′1 is empty. Let M be the C-bridge
containing si+4.

Subclaim 1. If B is a C-bridge different from M , then Π[C∪B] is contractible
in RP 2.

Proof. We start by noting that Π[B] ⊆ M, since P ′2 is either just an edge
that is a global H-bridge (and so in D and forcing B to be in M) or P ′2 = P2

and there is no global H-bridge having an attachment in 〈P2〉. In the latter case,
any global H-bridge having an attachment at an end of P2 (say w), has its other
attachment in the H-rim R−〈P2〉. Such an attachment is in Nuc(M), contradicting
the assumption that B 6= M .

It follows that Π[C ∪ B] is contained in M and totally disjoint from si+4.
Therefore, Π[C ∪B] is contractible, as claimed. �

Let H ′ be the subgraph of H∪P ′1∪P ′2 consisting of (R−(〈P1〉∪〈P2〉))∪(P ′1∪P ′2)
and the three H-spokes si+3, si+4, and si. The following claim shows that H ′ is a
subdivision of V6. (The notation ‖y‖ is in Definition 4.1 (1).)

Subclaim 2. Ce ∩ si ⊆ ‖vi+5‖ and Ce ∩ si+3 ⊆ ‖vi+3‖.
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112 13. THE NEXT RED EDGE AND THE TILE STRUCTURE

Proof. Recall that Pw is contained in ∆e. Theorem 12.1 (the existence of Au
and Aw, together with (3)) implies Pw is internally disjoint from Pu and, therefore,
cannot intersect si, except possibly at their common end point vi+5. The analogous
argument using ∆ew applies for si+3. �

If C does not bound a face of Π[G], then let e′ be any edge of any C-interior
C-bridge and let D be a 1-drawing of G− e. Subclaim 2 implies that C is H ′-close
(Definition 5.2). Lemmas 5.3 and 5.4 imply C is clean in D. Therefore, D contains
a 1-drawing of C ∪M in which C is clean and Lemma 5.6 implies C has BOD. It
now follows from Corollary 4.7 that cr(G) ≤ 1, the final contradiction. �

We find structures in the Ce-interior that lead to the pictures. Our discussion
will be w-centric; there is a completely analogous discussion for x.

A useful observation is the following. Recall that Pw is the wwe-path in ∆e− e
(Theorem 12.1 (3)) and Px is the analogous xxew -path in ∆ew .

Claim 4. (1) No Ce-interior Ce-bridge has an attachment in each of the
components of (Ce − Px)− ew.

(2) No Ce-interior Ce-bridge has an attachment in each of the components of
(Ce − Pw)− ex.

Proof. Let H ′ be a subdivision of V8 witnessing the R-separation of e and
ew. As e and ew are R-separated in neither G− ew nor G− ex, ew and ex are both
in H ′. Since e and ew are in disjoint H ′-quads, ew and ex are in disjoint H ′-spokes,
which we denote as Pw and P x, respectively; Pw and P x are contained in the closed
disc bounded by Π[Ce].

Subclaim 1. There is such an H ′ so that P x = Px.

Proof. As a first case, suppose Ce∩si = ∅. Then we may choose H ′ to be R,
si, si+4, Pw, and Px, and we are done. In the second case, Ce ∩ si+3 = ∅; replace
si with si+3.

In the final case, Ce∩si and Ce∩si+3 are not empty. In this instance, ew ∈ ri+7.
We may choose H ′ to consist of R, si+4, si, si+1, and Px, the latter being contained
in cl(Qi+2). �

By symmetry, it suffices to prove (1). Suppose by way of contradiction that
there is a Ce-interior Ce-bridge B having an attachment in each component of
(Ce − Px) − ew. Subclaim 1 implies there is a subdivision H ′ witnessing the R-
separation of e and ew so that Px ⊆ H ′. Let Pw be the other H ′-spoke contained
in the interior of Ce.

Let C ′ be the cycle bounding the Ce-interior face of Ce ∪ Pw that is incident
with ew. The Ce-bridge B contains a subpath P ′ joining the two components of
(C ′−Px)−ew. Now ((C ′−Px)−ew)∪P ′ contains an R-avoiding path P ′′ that can
replace Pw in H ′ to get another subdivision of V8 that witnesses the R-separation
of e and ew in G − ew. However, this contradicts the fact that e and ew are not
R-separated in G− ew. �

Here is our final preliminary claim.

Claim 5. Let B be a Ce-interior Ce-bridge. Then B is just an edge and its
ends.
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13. THE NEXT RED EDGE AND THE TILE STRUCTURE 113

Proof. Suppose to the contrary that B is a Ce-interior Ce-bridge with at least
three attachments.

Subclaim 1. B has at most two attachments in each of Ce − P ′1 and Ce − P ′2.

Proof. By symmetry, it suffices to prove the first of these. Suppose B has at
least two attachments in Ce − P ′1. Let y and z be the ones nearest the two ends of
Ce − P ′1. There is a cycle in B ∪ Ce consisting of a Ce-avoiding yz-path in B and
the yz-subpath of Ce − P ′1. Claim 3 implies this cycle bounds a face of Π[G] and,
therefore, B can have no other attachment in Ce − P ′1. �

Subclaim 2. att(B) ∩ P ′1 ⊆ {x,we} and att(B) ∩ P ′2 ⊆ {w, xew}.

Proof. By symmetry, it suffices to prove the first of these. By way of con-
tradiction, suppose B has an attachment y in 〈P ′1〉. Because B has at least three
attachments, Subclaim 1 implies B has an attachment z in P ′2. Any Ce-avoiding
yz-path in B contradicts Claim 4. �

From these two subclaims, we easily deduce that:

• B has at most four attachments;
• one of w and xew is an attachment of B; and
• one of x and we is an attachment of B.

Observe that Claim 4 (1) implies that not both w and we are attachments of
B, while (2) implies that not both x and xew are attachments of B. Therefore,
att(B) ∩ (P ′1 ∪ P ′2) is either {w, x} or {we, xew}.

Subclaim 3. att(B) ∩ (P ′1 ∪ P ′2) = {we, xew}.

Proof. Suppose by way of contradiction that att(B) ∩ (P ′1 ∪ P ′2) = {w, x}.
As B has at least three attachments, there is an attachment y in 〈Pw〉 ∪ 〈Px〉. By
symmetry, we may assume y ∈ 〈Pw〉. Let P yw be a Ce-avoiding yw-path in B.
Then the union of P yw and the yw-subpath of Pw is a cycle Cyw in De.

Since y and w are in Pw − we, Cyw is disjoint from P ′1. Claim 3 implies Cyw

bounds a face of Π[G]. On the other hand, Pw is contained in the boundary of the
face bounded by ∆e and, therefore, Cyw ∩ Pw is in the boundary of two faces of
Π[G]. We deduce that Cyw ∩ Pw is just the edge wy.

Furthermore, Claim 4 implies w and y are in the same component of Pw − ew.
Therefore, the definition of ew implies wy is in R, and consequently P ′2 is a global
H-bridge spanning wy. However, any edge of B incident with w — and there is at
least one such — must be in the interior of the face of Π[G] bounded by the H-green
cycle containing P ′2 (Lemma 6.6 (8)). This contradiction proves the subclaim. �

We are now ready to complete the proof of the claim. Any vertex in att(B) \
{we, xew} is in 〈Pw〉∪ 〈Px〉. Subclaim 1 implies there is at most one of these. Since
B has at least three attachments, there is at least one of these. We conclude there
is exactly one such attachment y. We may choose the labelling so that y ∈ 〈Pw〉.
Lemma 5.19 implies B is isomorphic to K1,3.

The vertex y is in the interior of Pw. Thus, both edges of Pw incident with y
are in the boundary of the face bounded by Π[∆e]. Consequently, any edge of G
incident with y is in De.

Let c be the vertex of degree 3 in B. Claim 3 implies that the cycles [y, c, we, y]
and [y, c, xew , P ′2, w, Pw, y] both bound faces in De. Therefore, y has degree 3 in G.
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114 13. THE NEXT RED EDGE AND THE TILE STRUCTURE

Let e′ be the edge cwe of B and let D′ be a 1-drawing of G− e′. Consider the
subdivision H ′ of V6 consisting of (R− (〈P1〉 ∪ 〈P2〉) ∪ (P ′1 ∪ P ′2), Px, si, and si+4.
Then H ′ shows that Pw ∪ (B − e′) is not crossed in D′.

The path P ′ = [c, cy, y, Pw, w
e] is not crossed in D′. Since y has degree 3 in D′,

we may add the edge wec to D′ alongside P ′ without crossing to obtain a 1-drawing
ofG. This is the final contradiction that shows B has only two attachments. Lemma
5.19 shows B is just an edge and its ends. �

We now have our preliminary lemmas in hand and proceed to complete the
proof of Theorem 2.14.

Definition 13.7. Let Ce be decomposed as PwP
′
1PxP

′
2 as in Definition 13.6.

(1) If f is an edge not in Ce with ends w and xew and P ′2 has length 1, then
f is a w-chord .

(2) If f is an edge not in Ce joining w to a vertex y ∈ 〈Px〉 and the yxew -
subpath of Px has length 1, then f is a w-slope.

(3) If f and f ′ are edges not in Ce, with f joining w with z ∈ 〈P ′2〉 and f ′

joining z to z′ ∈ 〈Px〉, and if P ′2 has length 2, while the z′xew -subpath of
Px has length 1, then {f, f ′} is a w-chord+w-slope.

(4) If f is an edge not in Ce joining xew to a vertex y in 〈Pw〉, and both P ′2
and the yw-subpath of Pw have length 1, then f is a w-backslope.

(5) If f is an edge not in Ce joining y ∈ 〈Pw〉 and z ∈ 〈Px〉, and the paths Pw
and Px have length 2, while P ′1 and P ′2 have length 1, then f is a crossbar .

The five situations in Definition 13.7 are illustrated in Figure 13.2.

w xew

we P ′1

P ′2

Pw Px
f ′fff

f
f

w xew

we P ′1

P ′2

PxPw

w xew

we P ′1

P ′2w xew

we P ′1

P ′2

Px

zz′ y

Pw

w xew

we P ′1

P ′2

Pw Px Pw Px

xx x x x

Figure 13.2. Definition 13.7.

Claim 6. If ew is in neither an H-yellow nor an H-green cycle, then every
edge of P2 is H-green. If C is the set of H-green cycles containing edges of P2, then
Ce ∪ (

⋃
C∈C)C contains either:

(a) Ce plus a w-chord;
(b) Ce plus a w-slope; or
(c) Ce plus a w-chord+w-slope.

Proof. Because ew is not in an H-yellow cycle, Theorem 12.1 (3) implies w
is incident with ew.

Case 1: some edge of P2 is spanned by a global H-bridge.

Let B be a global H-bridge spanning an edge of P2. Claim 1 implies B has
ends xew and w, xew = vi+3, ew ∈ si+1, and ex ∈ si+2. Since w is incident with ew,
we have w = vi+1.
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13. THE NEXT RED EDGE AND THE TILE STRUCTURE 115

We show (b) occurs by proving that ri+1 is a w-slope. We show that ri+1 and
ri+2 are both paths of length 1, starting with the latter.

We note that Px is equal to si+2 ri+2. Moreover, ri+2 has the face of Π[G]
bounded by the H-green cycle Cg containing B on one side and the face bounded
by ∆ew on the other. Thus, ri+2 is just a single edge.

Claim 5 shows that the Ce-bridge B′ containing ri+1 is just an edge and its
ends. Thus, ri+1 is B′ and so has length 1, as required, completing the proof in
Case 1.

Case 2: no edge of P2 is spanned by a global H-bridge.

In this case, P ′2 = P2. We start by showing that every edge of P2 is H-green.
Because ew is w-consecutive for e, Definition 13.1 implies no edge of P2 is

red. By Theorem 11.3, we need only show that none is H-yellow. Suppose to the
contrary that there is an H-yellow edge f in P2, as witnessed by the H-yellow cycle
Cy and the H-green cycle Cg. Lemma 11.2 implies there is a global H-bridge B
contained in Cg.

The face of Π[G] bounded by Cy (Lemma 11.2 (3)) is in M. Now the faces of
Π[G] bounded by ∆e and ∆ew separate M into two parts, one of which contains
f , and therefore P2. It follows that P1 is also in this part and Cy has at least a
vertex in P1. We conclude that B spans an edge of P1. Claim 1 implies B = P ′1,
we = vi+5, ew ∈ si+1, and ex ∈ si+2. Because P ′2 = P2, and ew ∈ si+1, we deduce
that w = vi+1.

Since ew is not in an H-yellow cycle, we conclude that Qi+1 is not an H-yellow
cycle. The other attachment of B, namely x, which is in [vi+7, ri+7, vi+8〉, must
therefore be vi+7.

If the H-yellow edge f is in ri+1, then Cy ∩ P1 is contained in the interior of
the span of B. This implies that si+1 is in an H-yellow cycle and, therefore, ew is
in an H-yellow cycle, contrary to the hypothesis.

We have noted that x = vi+7 is an end of B. Consequently, no edge of
[vi+2, ri+2, x

ew ] can be H-yellow. That is, every edge of P2 is H-green.
We now complete the proof in Case 2. Let C be the H-green cycle containing

the edge of P2 that is incident with w. Because ew is not in any H-green cycle, w is
incident with an edge e′ in C that is not in Ce. Let B be the Ce-bridge containing
e′.

Claim 5 implies B is just an edge with the two ends w and a second vertex z.
The path C ∩P2 is in the boundary of the face of Π[G] bounded by C (Lemma 6.6
(8)). Also, there is no global H-bridge spanning an edge of P2 (we are in Case 2).
These two facts imply C ∩ P2 is just an edge.

Suppose first that z ∈ Px − xew . Because C is H-green, it is disjoint from P1.
Thus, Claim 3 implies that the cycle C ′ that is the union of the wz-subpath of P2Px
and B bounds a face of Π[G]. This face is contained in M, as is the face bounded
by C. Both are incident with the edge of P2 incident with w and so they are the
same face. We conclude that C = C ′.

Now C ∩ Px is in the boundary of a face inside the disc bounded by ∆e′ on
one side and the face bounded by C on the other. Because G is 3-connected, this
subpath has length 1. In this case, we have (b).

The other possibility is that z is in P2. We have already shown that w and z
are the ends of a digon. If z = xew , then we have (a). Therefore, we may suppose
z 6= xew .
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116 13. THE NEXT RED EDGE AND THE TILE STRUCTURE

Since G is 3-connected, z has a neighbour y distinct from its neighbours in P2.
Let B′ be the Ce-bridge containing zy. Claim 5 implies B′ is just an edge joining
z and y.

The choice of y shows y 6= w. Claim 4 (1) and (2) imply, respectively, that
y /∈ 〈PwP ′1〉 and that y 6= x. If y ∈ P2, then (just as for w and z) z and y are
the ends of a digon, so y is a neighbour of z in P2, contradicting the choice of y.
Therefore, y ∈ 〈Px〉.

Let C ′ be the cycle consisting of zy and the zy-subpath of P2Px. Claim 3
implies C ′ bounds a face of Π[G].

To see that (c) holds, notice that C ′∩Px is in the boundary of the faces bounded
by C ′ and ∆ew . Again, the 3-connection of G shows C ′ ∩Px is a path of length 1.
Likewise, C ′ ∩P2 is in the boundary of the face bounded by C ′. There is no global
H-bridge spanning any edge of P2, so C ′ ∩P2 is also a path of length 1, completing
the proof that (c) occurs and the proof of Claim 6. �

It remains to consider the possibilities that ew is in either an H-yellow or an
H-green cycle. We do the latter first.

Claim 7. If ew is in an H-green cycle C, then either

(d) Ce ∪ C contains Ce plus a back-slope or
(e) Ce ∪ C is Ce plus a crossbar.

Proof. Let F be the face bounded by C (Lemma 6.6 (8)). Obviously F is not
inside the face bounded by ∆e, and, since F is contained in M, F is Ce-interior.
Let y be the end of ew nearer w in P2; then y ∈ ri. From the definition of H-green
cycle (Definition 6.2), the edge of the yxew -subpath of P2 incident with y is in C.

If w is an attachment of a global H-bridge, then every edge of C ∩R is in two
H-green cycles, which is impossible by Theorem 6.7. Therefore, P2 = P ′2, y = w,
and C is the union of the wz-path C∩P2 (this defines z) and an R-avoiding wz-path
P .

The path P contains a subpath P ′ joining a vertex of the zx-subpath of P2Px
to a vertex of the component of Pw − ew containing we; we may assume P ′ is Ce-
avoiding. Claim 3 implies that the cycle contained in P ′ ∪ PwP2Px bounds a face
of Π[G]. As z is in this cycle, it must be that z is an end of P ′ and, moreover, this
cycle is C. In particular, P is just P ′ plus a subpath of Pw. We know that C ∩ P2

is just an edge. Since the path C ∩ Pw is in the boundary of the faces bounded by
both C and ∆e, it is also just the edge ew.

If z 6= xew , then P ′ = P and the zwe-path contained in P ∪ Pw contradicts
Claim 4 (1). Therefore, z = xew .

Let B be the Ce-bridge containing P ′. Claim 5 implies B has precisely two
attachments w′ ∈ Pw and x′ ∈ Px: therefore, B is just the edge w′x′ (this is also
P ′). If x′ is xew , then B is a w-backslope.

Finally, suppose x′ is in Px−xew . Then C bounds a face incident with C ∩Px.
Since C ∩ Px is also in the boundary of the face bounded by ∆ew , it has length 1.

On the P ′1 side, B together with the w′x′-subpath of 〈PwP ′1Px〉 is a cycle C ′

disjoint from P ′2. By Claim 3, C ′ bounds a face of Π[G]. As above, each of C ′∩Pw,
C ′ ∩ Px, and P ′1 all have length 1. Therefore, B is a crossbar. �

Our final case is that ew is in an H-yellow cycle.

Claim 8. If ew is in an H-yellow cycle C, then either
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13. THE NEXT RED EDGE AND THE TILE STRUCTURE 117

(d) Ce ∪ C contains Ce plus a back-slope or
(e) Ce ∪ C is Ce plus a crossbar.

Proof. Let C ′ be the H-green cycle witnessing that the cycle C containing
ew is H-yellow. Then C ′ contains an H-jump J and either both ends of J are in
P1 or both ends of J are in P2. In either case, Claim 1 implies the span of J is all
of P1 or P2. We treat these two possibilities separately.

Subclaim 1. If both ends of J are in P2, then (e) occurs.

Proof. In this case, Claim 1 implies J has ends w and xew , xew = vi+3,
ew ∈ si+1, and ex ∈ si+2.

Because ew is both incident with vi+1 and in an H-yellow cycle as witnessed
by the H-green cycle C ′ containing J , vi+1 is in the interior of the span of J ;
consequently, w ∈ 〈ri〉. Therefore, the edge of ri incident with vi+1 is H-green.

We observe that J witnesses that Qi+1 is an H-yellow cycle. It follows from
Lemma 11.2 (3) that C = Qi+1. The same part of the same lemma combines with
the fact that e is not H-green to show that Pw consists of [w, ri, vi+1, si+1, vi+6]
and that Pw has length precisely two. Symmetrically, Px consists of si+2 ri+2 and
has length 2. Therefore, we have (e), as required. �

It remains to consider the possibility that both ends of J are in P1. Claim 1
implies J = wex, we = vi+5, ew ∈ si+1, and ex ∈ si+2. Also, ri+5 is in the H-green
cycle C ′ containing J , and so Pw contains ri+5 si+1. Since Theorem 12.1 (3) implies
Pw has at most one H-rim edge, we conclude that w = vi+1. Recall that Pw is
in the boundary of the face of Π[G] bounded by ∆e. The path ri+5 is also in the
boundary of the face bounded by C ′ and so is just an edge. The path si+1 is also
in the boundary of the face bounded by C, so it too is just an edge.

If J is not incident with vi+7, then the situation is precisely that Subclaim
1 with the roles of (e, w) and (ew, x) interchanged. Therefore, Ce ∪ C is (e), as
required.

Therefore, we may assume J is incident with vi+7. At this point, we know
that si+1 ri+5, J and at least the edge ex of si+2 are contained in Ce. There is a
Ce-bridge containing ri+6; Claim 5 implies this Ce-bridge is precisely ri+6 and this
is just an edge.

The cycle C has a second edge e′ incident with vi+6. There is a Ce-bridge B
containing e′. Claim 5 implies B has precisely two attachments, namely vi+6 and
some other vertex y.

If y ∈ Px − xew , then B together with the yvi+6-subpath of Ce − P ′2 contains
a cycle disjoint from P ′2 and yet does not bound a face (it contains ri+6). We
know that ri+5 ri+6 J bounds a face of Π[G], so y is not in J ri+5. Claim 4 implies
y /∈ P ′2 − xew . Thus, y = xew .

To finish the proof that (d) occurs, note first that si+1 and B are both edges;
thus, it suffices to prove that P ′2 is just an edge. In fact, Claim 3 implies P ′2B si+1

bounds a face of Π[G]. In particular, P2 is not inside this face; therefore, P ′2 = P2.
Consequently, P ′2 = P2 is just an edge. �

In order to determine the 13 pictures, we remark that, from the perspective of
both e and ew, any of (1)-(5) in Definition 13.7 can occur. However, if (5) occurs
for either, then Claim 3 implies Ce and this crossbar is all that is in De. In the
cases (2)(4) and (3)(4), there are two possibilities, as the slope and the back-slope
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118 13. THE NEXT RED EDGE AND THE TILE STRUCTURE

can have either distinct or common ends in the spoke; the latter is denoted by a
+ in the listing below. There is no third possibility, since the slope and back-slope
do not cross in De. Thus, there are the 13 pictures (1)(1), (1)(2), (1)(3), (1)(4),
(2)(2), (2)(3), (2)(4), (2)(4)+, (3)(3), (3)(4), (3)(4)+, (4)(4), and (5)(5).

Label the red edges in G as e0, e1, . . . , ek−1 so that, for i = 0, 1, . . . , k − 1, ei
has ends ui and vi and so that, reading indices modulo k, ei+1 is the vi-consecutive
red edge for ei. This implies that ei is the ui+1-consecutive red edge for ei+1.

Since there are no red edges between ei−1 and ei+1 on the “peak of ∆ei” portion
of R, defining adjacency to mean “consecutive” shows the set of red edges make
a cycle. Furthermore, vi and ui+1 are both in the cycle Cei that determines the
picture Pi between ei and ei+1. Taking any viui+1-path Pi in Pi, we see that Pi
together with either of the viui+1-subpaths of R makes a non-contractible cycle in
RP 2. In this sense, ei and ei+1 are on opposite sides of R.

If we think of e0 as being on “top” and e1 on the “bottom”, then e2, e4, . . . are
all on top and e3, e5 . . . , are on the bottom. When we get back to e0 from ek−1,
we have gone once around the Möbius strip, so e0 is now on the bottom. It follows
that ek−1 is on top and, therefore, k − 1 is even, showing k is odd.

It follows that G contains a subgraph H that is in T (S). (There may be
edges in the interior of Ce “between” the structures we identified “near” P ′1 and
P ′2.) However, Theorem 5.5 implies H ∈ M3

2, so we conclude G = H. That is,
G ∈ T (S).
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CHAPTER 14

Graphs that are not 3-connected

The rest of this work is devoted to: describing all the 2-crossing-critical graphs
that are not 3-connected, discussed in this section; finding all 3-connected 2-cros-
sing-critical graphs that do not contain a subdivision of V8, treated in Section 15;
and showing that the number of 3-connected 2-crossing-critical graphs that do not
contain a subdivision of V2n is finite, which is Section 16. These last two combine
with the preceding work to show that there are only finitely many 3-connected 2-
crossing-critical graphs to be determined, namely those that have a subdivision of
V8 but no subdivision of V10.

In this section we show that every 2-crossing-critical graph that is not 3-
connected is either one of a few known examples or is obtained from a graph in
M3

2 by replacing 2-parallel edges with a “digonal” path (that is, a path in which
every edge is duplicated). We remark that we continue assuming that the minimum
degree is at least 3, as subdividing edges does not affect crossing number. We first
determine all the 2-crossing-critical graphs that are not 2-connected.

14.1. 2-critical graphs that are not 2-connected

Since the crossing number is additive over components, any 2-crossing-critical
graph can have at most two components, each of them equal to either K3,3 or K5.
Thus, there are only three different such graphs: two disjoint copies of K5, two
disjoint copies of K3,3, and disjoint copies of each.

Similarly, the crossing number is easily seen to be additive over blocks. Thus,
the blocks of a connected, but not 2-connected, 2-crossing-critical graph must be
1-critical graphs, and therefore all such graphs can be obtained from the afore-
mentioned disconnected 2-crossing-critical graphs by identifying two vertices from
distinct components. The identified vertex may be a new vertex that subdivides
some edge. For example, there are three possibilities in which both blocks are K5:
the identified vertex is a node in both, or only in one, or in neither. Likewise for
K3,3. There are four 2-crossing-critical graphs in which one block is a subdivision
of K5 and the other is a subdivision of K3,3.

Proposition 14.1. The thirteen graphs in Figure 14.1 are precisely those 2-
crossing-critical graphs that are not 2-connected.

14.2. 2-connected 2-critical graphs that are not 3-connected

In this subsection, we treat 2-crossing-critical graphs that are 2-connected, but
not 3-connected. With 36 exceptions, these all arise from 3-connected 2-crossing-
critical graphs that have digons (i.e., two edges with the same two ends). The
digons may be replaced with arbitrarily long “digonal paths” — these are simply
paths in which every edge is converted into a digon.
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120 14. GRAPHS THAT ARE NOT 3-CONNECTED

Figure 14.1. The 2-crossing-critical graphs that are not 2-connected.

Tutte [34, 35] developed a decomposition theory of a 2-connected graph into
its cleavage units, which are either 3-connected graphs, cycles of length at least
4, or for k ≥ 4, k-bonds (a k-bond is a graph with k edges, all having the same
two ends). We provide here a brief review of this theory. A 2-separation of a 2-
connected graph G is a pair (H,K) of edge-disjoint subgraphs of G, each having at
least two edges, so that H ∪K = G and H ∩K = ‖{u, v}‖ (recall ‖{u, v}‖ is the
graph with just the vertices u and v and no edges.). Notice that a 3-cycle and a
3-bond have no 2-separations and, therefore, are to be understood in this context
to be 3-connected graphs.

The 2-separation (H,K) with H ∩ K = ‖{u, v}‖ is a hinge-separation if at
least one of H and K is a ‖{u, v}‖-bridge and at least one of them is 2-connected.
Another way to say the same thing, but in terms of H ∩ K: ‖{u, v}‖ is a hinge
if either there are at least three ‖{u, v}‖-bridges, not all just edges, or there are
exactly two ‖{u, v}‖-bridges, at least one of which is 2-connected.

The theory of cleavage units develops as follows. Let G be a 2-connected graph.

(1) If ‖{u, v}‖ is a hinge and (H,K) is a hinge-separation (possibly of another
hinge), then there is some ‖{u, v}‖-bridge containing either H or K.

(2) G has no hinge if and only if G is 3-connected, a cycle of length at least
4, or a k-bond, for some k ≥ 4. (Recall that a 3-cycle and a 3-bond are
3-connected.) In each of these cases, G is its own cleavage unit.

(3) If (H,K) is a hinge-separation and H ∩K = ‖{u, v}‖, then the cleavage
units of G are the cleavage units of the two graphs H + uv and K +
uv obtained from H and K by adding a virtual edge between u and v,
respectively. This inductively determines the cleavage units.

(4) There is a decomposition tree T whose vertices are the cleavage units of
G and whose edges are the virtual edges. A virtual edge joins in T the
two cleavage units of G containing it.

(5) G contains a subdivision of each of its cleavage units.
(6) If G contains a subdivision of some 3-connected graph H, then some

cleavage unit of G contains a subdivision of H.

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
19

3,
 D

ec
em

be
r 

13
, 2

01
3



14.2. 2-CONNECTED 2-CRITICAL GRAPHS THAT ARE NOT 3-CONNECTED 121

In attempting to reconstruct G from its decomposition tree and its cleavage
units, each time we combine two graphs along a virtual edge, there are two possi-
bilities for how to identify the vertices of the corresponding hinge. This ambiguity
will play a small role in constructing the 2-crossing-critical graphs that are 2- but
not 3-connected.

It is easy to see that G is planar if and only if every cleavage unit is planar. (We
could apply Kuratowski’s Theorem and Item 6 or prove it more directly.) Since we
are interested in non-planar graphs, there are two relevant possibilities: one or more
than one of the cleavage units of G is not planar. We start by treating the latter
case. We remark that the following discussion makes clear that the crossing number
is not additive over cleavage units. Related discussions can be found in Širáň [32],
Chimani, Gutwenger, and Mutzel [10] (but see [5] for significant comments about
the latter), Beaudou and Bokal [5], and Leaños and Salazar [21].

Lemma 14.2. Let G be a 2-connected graph. If two cleavage units of G are not
planar, then cr(G) ≥ 2.

It is an important consequence that, if G is 2-crossing-critical, 2-connected, and
has 2 non-planar cleavage units, then G is simple, i.e., has no digons.

Proof of Lemma 14.2. Among all 2-separations (H,K) of G, we choose the
one that has K minimal so that both H + uv and K + uv are not planar, where
H ∩K = ‖{u, v}‖. If the crossing number of G is not at least 2, then cr(G) ≤ 1,
so, by way of contradiction, suppose D is a 1-drawing of G.

Let PK and PH be uv-paths in K and H respectively. Since G contains the
subdivision H ∪ PK of H + uv, G is not planar. Therefore, D has a crossing.
Evidently, D(H ∪ PK) and D(K ∪ PH) both contain the crossing. We conclude
that the crossing in D is of an edge of PH with an edge of PK . It follows that
there are not edge-disjoint uv-paths in either H or K and that the crossed edges
are cut-edges in their respective subgraphs.

Let w and x be the ends of the edge in K that is crossed, labelled so that w is
nearer to u in PK than x is. Let Ku and Kv be the two components of K−wx, with
the former containing u. Since K + uv is not planar, either Ku + uw or Kv + vx is
not planar. We may assume it is the former. Notice that (H ∪Kv) + xu contains
a subdivision of H + uv and, therefore, is not planar. But then ((H ∪Kv),Ku) is
a 2-separation contradicting the minimality of K.

We are now in a position to determine the 2-connected, 2-crossing-critical
graphs having two non-planar cleavage units.

Theorem 14.3. Let G be a 2-connected, 2-crossing-critical graph having two
non-planar cleavage units. Then G is one of the 36 graphs in Figures 14.2 and
14.3.

Proof. Let C1 and C2 be non-planar cleavage units of G.

Claim 1. G has at most three cleavage units: C1, C2 and possibly a 3- or
4-cycle; if there are three, then the 3- or 4-cycle is the internal vertex in the de-
composition tree.

Proof. For i = 1, 2, let {ui, vi} be the hinge of G contained in Ci such that C1

and C2 are contained in different ‖{ui, vi}‖-bridges. For any other virtual edge xy
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122 14. GRAPHS THAT ARE NOT 3-CONNECTED

Figure 14.2. 2-connected, not 3-connected, 2-crossing-critical
graphs, 2 non-planar cleavage units

Figure 14.3. 2-connected, not 3-connected, 2-crossing-critical
graphs, 3 cleavage units, 2 of which are non-planar.

in Ci, there is a path Pxy in G that is C1 ∪C2-avoiding. Let C̃i be Ci ∩G (i.e., Ci
with none of its virtual edges) together with all these Pxy. Let H be the subgraph of

G consisting of C̃1∪ C̃2∪Q, where Q consists of two disjoint {u1, v1}{u2, v2}-paths
in G. Evidently, H is 2-connected and C1 and C2 are cleavage units of H.

Lemma 14.2 implies cr(H) ≥ 2. Since H ⊆ G and G is 2-crossing-critical,
H = G. Since G has no vertices of degree 2, G consists of either two or three
cleavage units, namely C1, C2, and possibly a 3- or 4-cycle between them. �
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14.2. 2-CONNECTED 2-CRITICAL GRAPHS THAT ARE NOT 3-CONNECTED 123

We next determine the possibilities for C1 and C2.

Claim 2. For each i = 1, 2, one of the following occurs:

(1) Ci is K5;
(2) Ci is K3,3;
(3) Ci − uivi is a subdivision of K3,3.

Proof. Hall proved that every 3-connected non-planar graph is either K5 or
contains a subdivision of K3,3 [16]. Since G is simple and Ci is 3-connected, we
deduce that Ci is either K5 or contains a subdivision of K3,3. So suppose Ci
contains a subdivision K of K3,3.

Suppose Ci−uivi has an edge e for which Ci−e is not planar. Since Ci−e is 2-
connected, G−e is 2-connected and has at least two non-planar cleavage units (C3−i
and another contained in Ci − e). By Lemma 14.2, cr(G − e) ≥ 2, contradicting
2-criticality of G. So Ci − uivi ⊆ K. Thus, either Ci = K or Ci − uivi = K, as
claimed. �

Claim 3. There are five possibilities for Ci, namely:

(1) Ci is K5;
(2) Ci is K3,3;
(3) Ci − uivi is K3,3 and uivi joins two non-adjacent nodes of K3,3;
(4) Ci − uivi is K3,3 with one edge subdivided once and uivi joins the degree

2 vertex to a node of K3,3 that is not incident with the subdivided edge;
and

(5) Ci − uivi is K3,3 with two non-adjacent edges both subdivided once and
uivi joins the two degree 2 vertices.

Proof. If Ci is neither K5 nor K3,3, then it must be a subdivision K of K3,3

with the additional edge uivi. Clearly K has at most two vertices of degree 2. If K
has no vertices of degree 2, then, since Ci is simple, we have (3). Likewise, if K has
only one vertex of degree 2, that vertex (one of ui and vi) cannot be in a branch
incident with the other one of ui and vi, which is (4). Finally, suppose ui and vi
are both of degree 2 in K. Then their containing branches cannot be incident with
a common vertex w, as otherwise, we could delete the edge uiw and still have two
non-planar cleavage units, contradicting 2-criticality. This proves (5). �

Note that in all five cases of Claim 3, there is only one possibility for Ci, up to
isomorphism. Only (4) has non-isomorphic labellings of ui and vi.

Claim 4. If G has just two cleavage units, then G is one of the 16 graphs in
Figure 14.2.

Proof. If neither C1 nor C2 is (4) from Claim 3, then, with repetition allowed,
there are 10 possible unordered pairs for C1 and C2. Each of the pairs uniquely
produces the graph G. There are four graphs having C1 but not C2 satisfying Claim
3 (4), and there are two graphs having both C1 and C2 satisfying Claim 3 (4). �

Claim 5. If G has three cleavage units, then at least one of C1 and C2 is either
K5 or K3,3.

Proof. Let e be an edge of G in the third cleavage unit of G; recall that this
cleavage unit is either a 3- or a 4-cycle. The blocks of G − e include C1 − u1v1

and C2 − u2v2; if these were both non-planar, then cr(G − e) ≥ 2, contradicting
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124 14. GRAPHS THAT ARE NOT 3-CONNECTED

2-criticality of G. Hence, at least one of C1 − u1v1 and C2 − u2v2 is planar. By
Claim 3, such a one must be either K5 or K3,3. �

Claim 6. If G has three cleavage units, then G is one of the 20 graphs in Figure
14.3.

Proof. There are three pairs in which both C1 and C2 are one of K5 and K3,3

and two possibilities for the third cleavage unit, yielding six graphs. Now suppose
C1 is one of K5 and K3,3 and C2 is not. There are three possibilities for C2 and
two possibilities for the third bridge. However, when the third bridge is a 3-cycle,
there are two ways to attach C2 when it is of Type (4) from Claim 3. Thus, there
are 6 graphs with the third cleavage unit a 4-cycle and 8 when it is a 3-cycle. �

From the claims, we see that the 36 graphs shown in Figures 14.2 and 14.3 are
all the cases in which G is 2-connected, but not 3-connected, and has two non-planar
cleavage units.

In the remaining cases of 2-connected, but not 3-connected, 2-crossing-critical
graphs, there is only one non-planar cleavage unit C. The graph C is simple. The
following result shows how to obtain G from a 3-connected 2-crossing-critical graph.
It requires the following definition.

Definition 14.4. A digonal path is a graph obtained from a path P by adding,
for every edge e of P , an edge parallel to e.

Theorem 14.5. Let G be a 2-crossing-critical graph with minimum degree at
least 3. Suppose that G is 2-connected but not 3-connected and has only exactly one

non-planar cleavage unit, C. The graph C̃ obtained from C by replacing each of its
virtual edges with a digon is 2-crossing-critical and 3-connected. The graph G is

recovered from C̃ by replacing these virtual edge pairs by digonal paths.

Proof. That C̃ is 3-connected is a trivial consequence of the fact that C is 3-
connected.

As for the rest, let uv be a virtual edge in C. Then ‖{u, v}‖ is a hinge of G.
We consider the ‖{u, v}‖-bridges in G; let Buv be the one that contains C ∩G, and
let B#

uv be the union of the remaining ‖{u, v}‖-bridges. We have two objectives: to

show that C̃ is 2-crossing-critical and that, for each uv, B#
uv is a digonal uv-path.

For the former, we first show cr(C̃) ≥ 2. Otherwise C̃ has a 1-drawing D.

Obviously no edge in a digon of C̃ is crossed in D. For each virtual edge uv of C,
B#
uv + uv is planar, so it may be inserted into D in place of the uv-digon in D to

obtain a 1-drawing of G, which is a contradiction. Therefore, cr(C̃) ≥ 2.
We next claim that each B#

uv consists of digonal uv-paths. Assume first that
B#
uv has a cut-edge e separating u and v. Since G has no vertices of degree 2

and B#
uv is not just a single edge, B#

uv contains some edge e′ so that B#
uv − e′ still

contains a uv-path.
If no edge of B#

uv is crossed in a 1-drawing De′ of G− e′, then, since B#
uv − e′

contains a uv-path, B#
uv may be substituted for B#

uv−e′ in De′ to obtain a 1-drawing
of G, which is impossible. So some edge of B#

uv is crossed in De′ . Deleting edges
from B#

uv − e′ to leave only a uv path shows that De′ restricts to a 1-drawing of
Buv + uv in which there is at most one crossing; if there is a crossing, then uv is
crossed. Since every planar embedding of B#

uv + uv has uv and e on the same face,
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14.2. 2-CONNECTED 2-CRITICAL GRAPHS THAT ARE NOT 3-CONNECTED 125

the 1-drawing of Buv + uv and a planar embedding of B#
uv + uv may be merged to

produce a 1-drawing of G in which e is crossed. This contradiction that shows B#
uv

contains edge-disjoint uv-paths.
Let e be an edge of B#

uv. Then a 1-drawing De of G− e must have a crossing
of some edge e′ of B#

uv. If B#
uv − {e, e′} has a uv-path P , then De restricts to a

planar embedding of C by using P to represent uv. But C is non-planar, so every
edge of B# − uv is in an edge-cut of size at most 2 separating u and v. Combining
this with the preceding paragraph shows that every edge of B#

uv is in an edge-cut of
size exactly 2. It is an easy exercise to see that this implies B#

uv is a pair of digonal
paths.

We conclude by showing that, for every edge e of C̃, cr(C̃ − e) ≤ 1. Suppose
first that e is not in a digon. Each B#

uv has a uv-path Puv that is clean in De. Thus,
De[G− e] contains a subdivision of C − e in which no virtual edge (represented in
the subdivision by Puv) is crossed. Therefore, the virtual edges may be replaced

with digons to give a 1-drawing of C̃ − e, as claimed.
Now suppose e is in the uv-digon. Let e′ be any edge of B#

uv. Then De′ contains
a 1-drawing of C, in which every other virtual edge wx is represented by a wx-path
Pwx in B#

wx that is clean in De′ . All these other virtual edges may be replaced with

digons to give a 1-drawing of C̃ − e, as required.
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CHAPTER 15

On 3-connected graphs that are not
peripherally-4-connected

In this chapter, we reduce the problem of finding all 3-connected 2-crossing-
critical graphs to the consideration of non-planar, peripherally-4-connected graphs.
Our motivation for doing this is to use a known characterization of internally-4-
connected graphs (a concept intimately related to peripherally-4-connected graphs)
with no subdivision of V8 to find all the 3-connected, 2-crossing-critical graphs with
no subdivision of V8.

Definition 15.1. A graph G is peripherally-4-connected if G is 3-connected
and, for any 3-cut S of G and any partition of the components of G − S into two
non-null subgraphs H and K, at least one of H and K has just one vertex.

We begin this section by finding the four 3-connected, not peripherally-4-
connected, 2-crossing-critical graphs that are not obtained from planar substitu-
tions into a peripherally-4-connected graph. The bulk of the section is devoted
to explaining in detail how to obtain the remaining 3-connected 2-crossing-critical
graphs from peripherally-4-connected graphs. Finally, this theory is used to ex-
plain how to find all the 3-connected 2-crossing-critical graphs that do not contain
a subdivision of V8.

15.1. A 3-cut with two non-planar sides

In this section we find the four 3-connected, not peripherally-4-connected, 2-
crossing-critical graphs that are not obtained by substituting planar pieces into
degree-3 vertices in a peripherally-4-connected graph (this substitution process be-
ing the remainder of the section). We start by describing the four graphs and
showing that they are 2-crossing-critical.

Definition 15.2. The graph K∗3,4 is obtained from disjoint copies of K2,3 by
joining the parts of the bipartition having three vertices in each of the copies by a
perfect matching M .

Observe that K3,4 is obtained from K∗3,4 by contracting all the edges of the
matching M . The following generalizes the well-known fact that K3,4 is 2-crossing-
critical.

Lemma 15.3. If H is obtained from K∗3,4 by contracting some subset of M , then
H is 2-crossing-critical.

Proof. Suppose e is an edge of K∗3,4 not in M . Then there is a 1-drawing of
K∗3,4 − e in which no edge of M is crossed. Thus, cr(H − e) ≤ 1. If e ∈ M , then
H − e is planar. It remains to show cr(H) ≥ 2.
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15.1. A 3-CUT WITH TWO NON-PLANAR SIDES 127

Suppose to the contrary that H has a 1-drawing D. Let H1 and H2 be the
K2,3 subgraphs of H contained in K∗3,4 −M . For each vertex v of degree 3 in H2,
there are three disjoint vH1-paths in H; adding v and these paths to H1 yields a
subdivision Hv of K3,3 in H. Thus, D[Hv] has a crossing, and, since there are two
choices for v, this crossing involves only edges of H1 and M .

Interchanging the roles of H1 and H2 shows the crossing in D involves only
edges of M . But then D[Hv] has its only crossing on branches incident with v,
which is impossible.

We remark that there are splits of K3,4 that have crossing number 1 — split
two of the degree 4 vertices so that the two partitions of the four neighbors are
different. Fortunately, they do not occur in our context.

In order to show that these are the only four graphs with “non-planar 3-cuts”,
we need to understand just what “non-planar 3-cuts” are.

Definition 15.4. Let S be a 3-cut in a 2-connected graph, so there are sub-
graphs H and K of G such that G = H ∪K and H ∩K = ‖S‖. For L ∈ {H,K},
L+ denotes the graph obtained from L by the addition of a new vertex adjacent to
precisely the vertices in S.

We will see that, in the case G is 2-crossing-critical, with the exception of K3,4,
there are at most three non-trivial S-bridges, and so at least one of H and K is
an S-bridge. Our next goal is to show that the four graphs in Lemma 15.3 are the
only four that have both H+ and K+ non-planar. We start with the following,
which is likely well-known; however, we could not find a reference. It extends Hall’s
Theorem [16] that there is a subdivision of K3,3.

Lemma 15.5. Let G be a 3-connected non-planar graph different from K5 and
let v be a vertex of G. Then G has a subdivision H of K3,3 in which v is an H-node.

Proof. Here is an outline of the easy, but tedious, proof. As a first step, we
show that there is a subdivision of K3,3 containing v. By Hall’s Theorem [16], G
contains a subdivision L of K3,3. If v /∈ L, then there are three disjoint vL-paths.
There are three possibilities for the ends of these paths in L: two are in the same
closed L-branch; two are in L-branches incident with a common L-node; and the
L-branches containing the ends of the paths are pairwise disjoint. In the first case,
v is incorporated into the interior of a branch of a new subdivision of K3,3, while
in the other cases, v is incorporated as a node of the new subidivision of K3,3.

So now assume that v is in L, but not as a node. Then v is interior to some
L-branch b with ends u and w. Let L′ = L − 〈b〉 — this is a subdivision of K3,3

less an edge. Because there are, in G, disjoint L′-avoiding v{u,w}-paths, standard
proofs of Menger’s Theorem imply that there are three disjoint L′-avoiding vL′-
paths, having u and w among their three L′-ends. Therefore, we may assume not
only is v in the interior of b, but there is an L-avoiding vx-path from v to some
other vertex x of L′.

Up to symmetry, there are three possibilities for x: it is a node of L other than
u and w; it is interior to an L-branch incident with u but not with w; and it is
interior to an L-branch not incident with either u or w. Let y and z be nodes of
L′ (note that u and w are not actually nodes of L′). We can assume x is either y,
or in the L-branch [w, y], or in the L-branch [y, z]. Let Y be a {u,w, x}-claw with
centre v, so that Y ∩ L′ is just u, w, and x.
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128 15. ON 3-CONNECTED GRAPHS THAT ARE NOT PERIPHERALLY-4-CONNECTED

If x is either z or in 〈y, z〉, then (L′ ∪ Y )− 〈w, x〉 is a subdivision of K3,3 with
v as a node. If x is in 〈y, z〉, then (L′ ∪ Y )− 〈w, y〉 is a subdivision of K3,3 having
v as a node.

We are now ready for the classification of the 3-connected 2-crossing-critical
graphs with two non-planar sides to a 3-cut.

Theorem 15.6. Let G ∈ M3
2 have subgraphs H and K of G and a set S of

three vertices of G such that:

(1) G = H ∪K;
(2) H ∩K = ‖S‖;
(3) H and K both have an ‖S‖-bridge having all of S as attachments; and the

two graphs H+ and K+ are both non-planar.

Then G is one of the four graphs obtained from K∗3,4 by contracting some subset of
M .

Proof. Let u, v, and w be the vertices in S. For L ∈ {H,K}, let v+
L denote

the vertex in L+, but not in L. The graph L+ is a subdivision of a 3-connected
graph (the only possible vertices of degree 2 are u, v, and w). Since L+ is not
planar and has a vertex of degree 3, it is not a subdivision of K5 and, therefore,
by Lemma 15.5 contains a subdivision L′ of K3,3 in which v+

L is a node. Now

G′ = (H ′ − v+
H) ∪ (K ′ − v+

K) is a subdivision of K∗3,4, with some subset of M
contracted. By Lemma 15.3, cr(G′) = 2, so G′ = G, as required.

15.2. 3-reducing to peripherally-4-connected graphs

In this section, we discuss the general details of reducing a 3-connected graph to
a peripherally-4-connected graph. These results apply in some generality and not
just in the context of 2-crossing-critical graphs. These are the first of several steps
toward finding all the 3-connected 2-crossing-critical graphs that do not contain a
subdivision of V8.

These results are fairly technical but essential to this part of the theory.

Definition 15.7. (1) A 3-cut S in a 3-connected graph is reducible if
G − S has at most 3 components and they partition into two subgraphs
each having at least two vertices.

(2) The set K consists of those 3-connected graphs that do not contain a
subdivision of K3,4.

The following result is obvious from the definitions and begins to explain the
appearance of K3,4 in Definition 15.7 (2).

Lemma 15.8. Let G be a 3-connected graph that is not peripherally-4-connected.
Then either G has a reducible 3-cut or G has K3,4 as a subgraph.

The next result sets up the basic scenario that we will use throughout our
reduction to peripherally-4-connected graphs.

Lemma 15.9. Let G ∈ K. Then there is a sequence G0, G1, . . . , Gk of 3-
connected graphs in K so that: G0 = G; Gk is peripherally-4-connected; and, for
each i = 1, 2, . . . , k, there is a 3-cut Si in Gi−1 and a non-trivial, planar Si-bridge
Bi so that Nuc(Bi) has at least two vertices and Gi is obtained from Gi−1 by con-
tracting the nucleus of Bi.
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15.2. 3-REDUCING TO PERIPHERALLY-4-CONNECTED GRAPHS 129

Proof. SupposeGi−1 is 3-connected. Among all the choices of Si and Si-bridges Bi
so that Nuc(Bi) has at least two vertices, choose Bi to be inclusion-wise maximal.
We claim that the graph Gi obtained from Gi−1 by contracting Nuc(Bi) to a vertex
is 3-connected.

Otherwise, there is some pair {u, v} of vertices so that Gi − {u, v} is not con-
nected. If the vertex of contraction of Nuc(Bi) is neither u nor v, then {u, v} is a
2-cut in Gi−1, a contradiction. Therefore, we can assume u is the contraction of
Nuc(Bi).

Let H and K be components of Gi − {u, v}, with the labelling chosen so that
|Si∩V (H)| ≥ |Si∩V (K)|; in particular, |Si∩V (K)| ≤ 1. Let h ∈ V (H); if there is
a vertex k ∈ V (K) \ Si, then {v} ∪ (Si ∩ V (K)) separates k from h in Gi−1, which
contradicts the assumption that Gi−1 is 3-connected.

Therefore V (K) ⊆ Si, so there is a single vertex s in K, and s ∈ Si. It follows
that s is adjacent to only vertices in Nuc(Bi) and possibly to v. But this contradicts
the maximality of Bi: let S′ = (S \ {s}) ∪ {v}. Observe that Bi + s is a planar
S′-bridge, contradicting maximality of Bi.

Lastly, we show that if Gi−1 does not have a subdivision of K3,4, then neither
does Gi. Any subdivision of K3,4 in Gi must contain the vertex vi of contraction.
Since vi has degree 3 in Gi and Bi−1 is an S-bridge, we can reroute the subdivision
of K3,4 in Gi into Bi−1 to obtain a subdivision of K3,4 in Gi−1.

Definition 15.10. Let G ∈ K.

(1) Then G reduces to G′ by 3-reductions if there is a sequence G0, G1, . . . , Gk
of 3-connected graphs so that G0 = G; Gk = G′; and, for each i =
1, 2, . . . , k, there is a 3-cut Si in Gi−1 and an Si-bridge Bi, whose nucleus
at least two vertices, so that Gi is obtained from Gi−1 by contracting the
nucleus of Bi.

(2) For each vertex v ofG′ and each i = 0, 1, 2 . . . , k, Ki
v denotes the connected

subgraph of Gi that contracts to v. We also set Kv = K0
v .

(3) If v has just three neighbours x, y, and z in G′, then Gv is the graph
obtained from Kv by adding x, y, and z, and, for each t ∈ {x, y, z} and
each edge v′t′ of G with v′ ∈ Kv and t′ ∈ Kt, adding the edge v′t.

We now commence a lengthy series of technical lemmas that all play vital roles
in usefully reducing the 3-connected graph 2-crossing-critical graph G to a smaller
3-connected 2-crossing-critical graph Grep(v). The culmination of this part of the
work is Theorem 15.25 in the next section, showing thatGrep(v) is 2-crossing-critical.
This will lead to a program for determining all the 3-connected 2-crossing-critical
graphs that reduce to a particular peripherally-4-connected graph.

Lemma 15.11. Let G ∈ K and suppose G reduces by 3-reductions to the peri-
pherally-4-connected graph Gp4c. For any two vertices u, v of Gp4c, there is a single
vertex in G incident with all edges having one end in Ku and one end in Kv.

Proof. Let G = G0, G1, . . . , Gk = Gp4c be a sequence of 3-reductions. Choose i
to be largest so that there are disjoint Ki−1

u Ki−1
v -edges ab and cd with a, c ∈ Ki−1

u

and b, d ∈ Ki−1
v . In Gi, either a and c have been identified or b and d have; by

symmetry, we may assume the former.
The vertices b and d are obviously attachments of Bi and so these are in Si.

Let zi be the third vertex in Si. Since Ki−1
u is connected and since, by Definition
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130 15. ON 3-CONNECTED GRAPHS THAT ARE NOT PERIPHERALLY-4-CONNECTED

15.10, u has three neighbours in Gp4c, zi ∈ Ku. Continue using the label a for the
vertex obtained by contracting Nuc(Bi).

At some point in the later 3-reductions, a and zi are identified and at another
point b and d are identified. We show that neither can be done before the other,
which is impossible.

Suppose zi and a are identified first. When this identification occurs, a 3-cut
Sj and an Sj-bridge Bj so that zi and a are in Nuc(Bj). The vertices b and d are
again attachments of Bj and so are in Sj ; let zj be the third vertex in Sj .

Because i is largest so there are disjoint Ki−1
u Ki−1

v -edges, all edges between
Kj
u and Kj

v at this moment are incident with a. It follows that {a, zj} is a 2-cut in
the current graph, separating zi from b. But this contradicts the fact that Gj−1 is
3-connected. Therefore, zi and a are not identified before b and d.

On the other hand, suppose b and d are identified first, by the contraction of
Nuc(Bj). When b and d are identified, the only neighbours of a are b, d, and zi.
Following the identification of b and d, the only neighbours of a are zi and the
vertex of identification, again contradicting 3-connection of Gj .

We need a slight variation on a standard definition.

Definition 15.12. Let G be a connected graph.

(1) An isthmus is a set I of parallel edges so that G− I is not connected.
(2) A cut-edge is an edge e so that G− e is not connected.

Obviously, e is a cut-edge of G if and only if {e} is an isthmus, but an isthmus
may have more than one edge. The distinction comes into play because at various
points we will consider edge-disjoint paths in certain subgraphs of our 2-crossing-
critical graph; if there are not two edge-disjoint uv-paths, then there is a cut-edge
separating u and v. On the other hand, the 3-connection of G does not preclude
the possibility of parallel edges; at several points we will be able to identify that
two vertices u and v have the property that they must be adjacent, but be unable
to distinguish whether they are joined by 1 or 2 edges. A common scenario will
have the set of edges between them making an isthmus in some subgraph.

In particular, the case that Kv has an isthmus is a central one in reducing
2-crossing-critical graphs.

Lemma 15.13. Let G ∈ K reduce to the peripherally-4-connected graph Gp4c by
a sequence of 3-reductions. Suppose there is a vertex v of Gp4c so that the graph
Kv has an isthmus I. Then, for each component K of Kv − I, there are at least
two neighbours x and y of v in Gp4c so that there are KKx- and KKy-edges in G.

Proof. At some moment in the reduction of G, Gi−1 has a 3-cut Si and Bi is the
planar Si-bridge in Gi−1 that contains I. Then Bi− I is not connected; the ends u
and w of the edge or edges in I are in different components K and L, respectively,
of Bi − I.

Let x, y, and z be the neighbours of v in Gp4c and let t be any vertex of Gi−1

not in Ki
v ∪Ki

x ∪Ki
y ∪Ki

z. (Since Gp4c is not planar, it has at least five vertices.)
In Gi−1 there are three pairwise internally-disjoint ut-paths. These three paths
leave Bi through distinct attachments of Bi; these are the vertices in Si. The same
argument applies for wt-paths.

In particular, two of the ut-paths leave K on edges incident with vertices in
Si. Likewise for L. Therefore, K and L are both joined by edges to the same
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15.2. 3-REDUCING TO PERIPHERALLY-4-CONNECTED GRAPHS 131

attachment s ∈ Si. It follows that s is not in Ki
v, so s is in Ki

x, say. Moreover,
since the Ki

v-ends of these two edges are not the same, Lemma 15.11 implies all the
edges between Ki

v and Ki
x are incident with s.

Since Gi−1 is 3-connected, Gi−1 − ({s} ∪ I) is connected. Therefore, there are
edges of Gi−1 leaving each of K and L; each of these edges is also leaving Ki

v and,
therefore, has its other end in one of Ki

x, Ki
y, and Ki

z. However, this other end

cannot be s and, consequently, cannot be in Ki
x, as required.

The connectivity of G has further implications about the structure of the Kv.

Lemma 15.14. Let G ∈ K reduce by 3-reductions to a peripherally-4-connected
graph Gp4c. Let v be a vertex of Gp4c with just the three neighbours x, y, and z
and suppose Kv has at least two vertices. For each t ∈ {x, y, z}, let t′ be any vertex
incident with all the KvKt-edges. Then x′, y′, and z′ are all distinct.

Proof. Suppose x′ = y′. Then x′ is in Kv. Observe that no vertex of Kv−{x′, z′}
is adjacent to any vertex of of G − {x′, z′} not in Kv. Since G is 3-connected, it
follows that Kv consists of just x′ and z′. In particular, z′ 6= x′. Also, recall that
Kv contracts to a single vertex in the sequence of planar 3-reductions.

At the moment of contraction of Kv, Gi−1 is 3-connected and x′z′ is an isthmus.
Therefore, Lemma 15.13 implies that z′ is joined to at least one of Ki

x and Ki
y; this

contradicts the fact that all edges from Ki
v to Ki

x ∪Ki
y are incident with x′.

The vertices x′, y′, and z′ are not uniquely determined. It is possible that there
is only one vertex in each of Kv and Kx incident with all KvKx-edges; one obvious
instance is if there is only one KvKx-edge. We will follow up on this a little later.

Here is a very simple and very useful observation.

Lemma 15.15. Let H be a simple, non-planar, peripherally-4-connected graph.
There is no 3-cycle of H having two vertices with just 3 neighbours.

Proof. Suppose to the contrary there are three vertices x, y, z making a 3-cycle,
with x and y having only three neighbours each. Let v and w be the other neigh-
bours of x and y. Then x and y are the vertices of one component of H −{v, w, z}.

Observe that H is non-planar, 3-connected, and has a vertex of degree 3. There-
fore H is not K5 and so contains a subdivision of K3,3. It follows that H has at
least six vertices. Thus, there is another component of H − {v, w, z}.

Since H is peripherally-4-connected, the only possibility is that there is exactly
one other component and it consists of a single vertex u, adjacent to all of v, w,
and z. The only other possible edges in H are between v, w, and z. However, the
resulting graph is planar, a contradiction.

The following result assures us that useful (and expected) paths exist in each
Kv.

Lemma 15.16. Let:

(1) G ∈ K reduce by 3-reductions to the peripherally-4-connected graph Gp4c;
(2) Gp4c have at least five vertices;
(3) v be a vertex of Gp4c so that Kv has at least two vertices; and
(4) x, y, and z be the neighbours of v in Gp4c, with corresponding vertices x′,

y′, and z′ in G as in Lemma 15.14.
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132 15. ON 3-CONNECTED GRAPHS THAT ARE NOT PERIPHERALLY-4-CONNECTED

Then:

a) for any vertex w in Kv − {x′, y′, z′}, there are three w{x′, y′, z′}-paths in
Gv that are pairwise disjoint except for w; and

b) if x′ ∈ Kv, then there are x′y′- and x′z′-paths in Gv − x that are disjoint
except for x′.

Proof. For a), let u be any vertex of G not in Kv ∪ Kx ∪ Ky ∪ Kt3 . Since
G is 3-connected, there are three pairwise internally-disjoint wu-paths in G. The
result follows from the observation that w and u are in different components of
G− {x′, y′, z′}.

If b) fails, then there is a vertex w of Gv − x that separates x′ from {y′, z′}.
Since Kv is an ‖{x, y, z}‖-bridge in Gv, w is in Kv (possibly w = y′ or w = z′).
Since {x′, w} is not a 2-cut in G, x′ and w are adjacent in Kv. But now they are
joined by an isthmus I in Kv. Since x′ is a component of Kv − I joined only to
Kx, we have a contradiction of Lemma 15.13.

15.3. Planar 3-reductions

In this section we now turn our attention to the particular case G ∈ M3
2.

We want to show that the 3-reductions can be taken to be contractions of planar
bridges. So suppose S is a non-peripheral 3-cut in G.

If there are four or more non-trivial S-bridges (that is, having a nucleus), then
G has a subdivision of K3,4 and so is K3,4. In the remaining cases, there are at
most three non-trivial S-bridges. If there are three and B is one of them so that B+

is not planar (as in Subsection 15.1), then the union K of the remaining S-bridges
has K+ not planar. Theorem 15.6 implies that G is one of four 2-crossing-critical
graphs. Thus, if there are three non-trivial S-bridges, we may assume that, for
each one B, B+ is planar. Finally, consider the case that there are precisely two
non-trivial S-bridges B1 and B2. Since S is not peripheral, both Bi have at least
two vertices. If both B+

i are non-planar, then we are in the case dealt with in
Theorem 15.6, so we may assume that one of them is planar. In summary, in every
case, we may assume that Gp4c is obtained from 3-reductions in G in which the
contracting Si-bridge Bi is always planar.

Definition 15.17. LetG be a 3-connected graph and letGp4c be a peripherally-
4-connected graph. Then G reduces to Gp4c by planar 3-reductions if there is a
sequence G = G0, G1, G2, . . . , Gk = Gp4c of 3-reductions so that, for each i =
1, 2, . . . , k, Gi is obtained from Gi−1 by contracting Nuc(Bi−1) and B+

i−1 is planar.

We need two results about Kv in the context of planar 3-reductions. This
requires further definitions.

Definition 15.18. Let G be a 3-connected graph that reduces by 3-reductions
to the peripherally-4-connected graph Gp4c. Suppose v is a vertex of Gp4c having
only the neighbours x, y, and z. For each t ∈ {x, y, z}, let mt denote the number of
vertices in Kv adjacent to vertices in Kt and let nt denote the number of vertices
in Kt adjacent to vertices in Kv. (Lemma 15.11 implies that at least one of mt and
nt is 1.)

(1) The subgraph Kmax
v induced by Kv together with, for each t ∈ {x, y, z}

with nt = 1, the vertex of Kt adjacent to vertices in Kv.
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15.3. PLANAR 3-REDUCTIONS 133

(2) The subgraph Kmin
v induced by Kv together with, for each t ∈ {x, y, z}

with mt > 1, the vertex of Kt adjacent to vertices in Kv.

We remark that Kv ⊆ Kmin
v ⊆ Kmax

v , and, for t ∈ {x, y, z}, Kmax
v has a vertex

t′ ∈ Kt that is not in Kmin
v precisely when nt = mt = 1.

Lemma 15.19. Let G ∈ K reduce by 3-reductions to a peripherally-4-connected
graph Gp4c. Let v be a vertex of Gp4c with just the three neighbours x, y, and z and
suppose Kv has at least two vertices. Then there is a cycle C in Kmin

v containing
all of x′, y′ and z′.

Proof. Suppose w is a cut-vertex of Kmin
v , so there are subgraphs X and Y of

Kmin
v with X ∪ Y = Kmin

v , X ∩ Y = ‖w‖, and both X − w and Y − w are not
empty. We may choose the labelling so that X has at least the two vertices x′ and
z′ from {x′, y′, z′}, while Y −w has at most one; we may further assume x′ 6= w. If
y′ /∈ Y −w, then w is a cut-vertex of G, contradicting the fact that G is 3-connected.
Therefore, y′ ∈ Y − w.

However, if y′ ∈ Kv, then we have a contradiction to Lemma 15.16 (b). There-
fore, y′ /∈ Kv. If there is a vertex in Y other than w and y′, then we contradict
3-connection of G, so y′ is adjacent only to w in Gv. But then y′ /∈ Kmin

v .
It follows that there is no cut-vertex in Kmin

v . Thus, there is a cycle C in Kmin
v

containing x′ and y′. Obviously, we are done if z′ ∈ C, so we assume z′ /∈ C.
Since there is no cut-vertex in Kmin

v , there are two z′C-paths P1 and P2 that
are disjoint except for z′. If the C-ends of P1 and P2 are not both on the same
x′y′-subpath of C, then G+

v contains a subdivision of K3,3. This contradicts the
fact that we are doing planar 3-reductions. Therefore, the C-ends of P1 and P2 are
on the same x′y′-subpath of C and it is easy to find the desired cycle through all
of x′, y′, and z′.

The following is the last lemma we need to get the main result of this section.

Lemma 15.20. Let G ∈ M3
2 and suppose G reduces by planar 3-reductions to

the peripherally-4-connected graph Gp4c. Let v and x be adjacent vertices in Gp4c.
Then there are at most two vertices in Kv adjacent to vertices in Kx.

Proof. This is obvious if Kv has at most one vertex. In the remaining case, v has
degree 3 in Gp4c; let y and z be its other neighbours.

Suppose by way of contradiction that s, t, and u are distinct vertices in Kv all
adjacent to vertices in Kx. By Lemma 15.11, there is a vertex x′ incident will all
the KvKx-edges and, evidently, x′ ∈ Kx.

In the planar embedding D+
v of G+

v , letting w denote the new vertex adjacent
to each of x, y, and z, we may choose the labelling so that the edges xw, xs, xt, xu
occur in this cyclic order around x.

Claim 1. There is an su-path in Kv containing t.

Proof. As Kv is connected, there is an su-path P in Kv. We are obviously
done if t ∈ P , so we assume t /∈ P . Let C be the cycle obtained by adding x′ to P
and joining it to s and u.

The rotation at x implies that t is on one side of D+
v [C], while w, y, and,

consequently, z, are on the other. Therefore, every t{y, z}-path in G+
v goes through

either x or P .
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134 15. ON 3-CONNECTED GRAPHS THAT ARE NOT PERIPHERALLY-4-CONNECTED

If there is a cut-vertex r in Kv separating t from P , then {r, x′} is a 2-cut in
the 3-connected graph G, which is impossible. Therefore, there are tP -paths Q and
R in Kv that are disjoint except for t. We can now reroute P through t to obtain
the desired path. �

Since G is 2-crossing-critical, there is a 1-drawing D of G−x′t. From Claim 1,
there is an su-path P in Kv containing t. Let C be the cycle obtained from P by
adding x′, x′s and x′u.

Claim 2. All the vertices of G− (Kv ∪Kx) are in the same face of D[C].

Proof. Suppose by way of contradiction that there are vertices in G− (Kv ∪
Kx) that are in different faces of D[C].

Case 1: there is a vertex p in Gp4c so that Kp contains vertices that are in
different faces of D[C].

In this case there is an edge f of Kp that crosses D[C]. As D has at most one
crossing, f is a cut-edge of Kp. Lemma 15.13 implies each component of Kp − f
is adjacent to at least two different Kn’s. If one of them is adjacent to both Kx

and Kv, then we have a 3-cycle pxv in Gp4c in which both p and v have degree 3,
contradicting Lemma 15.15.

Therefore, we may assume each is adjacent to one, say Kq and Kr, that is
neither Kx nor Kv. However, now {v, x, p} is a 3-cut in Gp4c separating q and r in
Gp4c. Therefore one of them — say q — is adjacent to precisely these three vertices
in Gp4c, producing the 3-cycle {q, v, x} in Gp4c that contradicts Lemma 15.15.

Case 2: any two vertices of G − (Kv ∪Kx) in different faces of D[C] are in
different Kp’s.

Since G − (Kv ∪ Kx) is connected, there is a path in G − (Kv ∪ Kx) joining
vertices in different faces of D[C]. Therefore, there is, for some vertices q and r of
Gp4c, a KqKr-edge f that crosses D[C]. It follows that D[C] has no self-crossings,
so D[C] has only two faces.

Clearly Gp4c − {x, v, f} has Kq and Kr in different components. Since Gp4c

has at least six vertices, it has a vertex m different from all of v, x, q and r. We
may choose the labelling so that D[Kq] is in one face of D[C], while D[Kr ∪Km] is
contained in the other. It follows that {v, x, r} is a 3-cut in Gp4c separating q from
m.

Since Gp4c is peripherally-4-connected, one of q and m — say q — is adjacent
precisely to v, x, and r, yielding the 3-cycle {v, x, q} in Gp4c that has two vertices
with only three neighbours, contradicting Lemma 15.15. �

We note that the crossing in D cannot involve two edges, each incident with a
vertex in Kv, as otherwise Gp4c is planar. In particular, D[C] is not self-crossing.

Claim 3. ODG+
v

(C) is isomorphic to ODG(C). In particular, ODG(C) is
bipartite.

Proof. The main point is that there is a single C-bridge in G containing
G− (Kv + x′). To prove this, we show that any two vertices in G− (Kv + x′) are
connected by a C-avoiding path. For vertices not in Kv ∪Kx, this is easy: for any
two vertices p and q in Gp4c − {v, x}, there is a pq-path in Gp4c − {v, x}, showing
that any two vertices in Kp ∪Kq are joined by a path in G− (Kv ∪Kx).
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15.3. PLANAR 3-REDUCTIONS 135

If p ∈ Kx−x′, then Lemma 15.14 implies that the three vertices separating Kx

from its neighbours are distinct. For one of these vertices w′ that is not x′, Lemma
15.16 implies there is a pw′-path in Kx − x′, completing the proof that there is a
single C-bridge B in G containing G− (Kv + x′).

Every other C-bridge in G is contained in Kv + x′. These are all C-bridges in
G+
v ; the only other C-bridge in G+

v is the one containing the vertex joined to x, y,
and z. This C-bridge has precisely the same attachments as B. This shows that
ODG(C) and ODG+

v
(C) are isomorphic.

Since G+
v (C) is planar, ODG+

v
(C) is bipartite, yielding the fact that ODG(C)

is bipartite. �

Suppose first that C is clean in D. Since B is the unique non-planar C-bridge
in G, D yields a 1-drawing of C ∪B with C clean. Therefore, Corollary 4.7 implies
cr(G) ≤ 1, a contradiction.

If, on the other hand, C is not clean in D, then C is crossed by an edge f . By
Claim 2, f is incident with a vertex in Kv ∪Kx. If f is incident with a vertex in
Kv, then contract Kv (with a vertex inserted at the crossing point, if necessary, to
get a 1-drawing of Gp4c so that both edges incident with the crossing are incident
with v. This implies the contradiction that Gp4c is planar.

If f is not incident with x′, then Kx − x′ has vertices on both sides of D[C].
One of these is in a component K1

x of Kx − f that is on the side of D[C] that does
not contain any vertex of G − (Kv ∪Kx). Lemma 15.13 implies K1

x − x is joined
to a vertex in some other Kw, w 6= v, which cannot happen without crossing D[C]
a second time, a contradiction. It follows that f is incident with x′. Furthermore,
Lemmas 15.19 and 15.16 (a) imply that f is in a cycle Cf in G−Kv. The ends of
the edge ev of Kv crossed in D are separated by D[Cf ], so ev is a cut-edge of Kv.
Moreover, ev is in C.

We now see that the C-bridges are B, those contained in one component of
Kv − ev, and those contained in the other component of Kv − ev. Notice that B is
a cut-vertex of ODG(C), and so it overlaps C-bridges of both the other types.

Since ODG(C) is connected and bipartite, it follows that the C-bridges in either
of the components of Kv − ev occur on the same side of D[C] that they do in D+

v .
In particular, x′t may be reintroduced to D to obtain a 1-drawing of G, which is
impossible.

Strategy. The strategy now is to show that if we replace any Kv with a smallest
possible representative subject to the preceding observations, then we produce a 2-
crossing-critical graph. This is the last part of this section. This implies that Gp4c

turns into a 2-crossing-critical graph by choosing these smallest possible represen-
tatives. From this, it is then possible to determine (although not in a theoretical
sense, but rather in a definite, finite — really manageable — way that we shall de-
scribe) all the 3-connected 2-crossing-critical graphs that have these configurations
and reduce to Gp4c by planar 3-reductions.

There will remain the issue of determining all the possible Gp4c. Of course, one
can list them all, but it is not clear at what point to stop. Fortunately, Theorem
2.14 shows that we do not need to do this when G contains a subdivision of V10,
as we already know what G looks like. When G does not contain a subdivision
of V8, a theorem of Robertson plus some analysis implies that Gp4c has at most
9 vertices. We are left with the open question of finding the graphs in M3

2 that
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136 15. ON 3-CONNECTED GRAPHS THAT ARE NOT PERIPHERALLY-4-CONNECTED

contain a subdivision of V8 but do not contain a subdivision of V10. In Section 16,
we show that any such graph has at most about 4 million vertices.

We next characterize certain properties of the graphs Gv; our goal is to show
that these (more or less) determine the crossing number of G.

Definition 15.21. Let x, y, and z be vertices in a graph H so that H is an
‖{x, y, z}‖-bridge. Then:

• T is the set of vertices w ∈ {x, y, z} so that there are edge-disjoint
w({x, y, z} \ {w})-paths in H; and
• U is the set of vertices w ∈ {x, y, z} for which there are edge-disjoint paths

in H − w joining the two vertices in {x, y, z} \ {w}.
• (H, {x, y, z}) is a (T,U)-configuration if the graph H+ obtained from H

by adding a new vertex adjacent just to x, y, and z is planar.

Our entire argument depends on the fact, to be proved in the next section,
that the pairs (T,U) effectively characterize 2-criticality. Theorem 15.24, the main
point of this section, shows that substituting one (T,U)-configuration for another
retains the fact that the crossing number is at least 2.

For a (T,U)-configuration, obviously there are only four possibilities for |T |. It
is a routine analysis of cut-edges to see that, if |T | ≤ 1, then U is empty, while if,
for example, T = {x, y}, then U = {z}. Thus, for |T | ≤ 2, U is determined by T .
This is not the case for |T | = 3. In this instance, if z /∈ U , then there is a cut-edge
in Gv − z separating x and y. From here and the fact that T = {x, y, z}, one easily
sees that x, y ∈ U . Thus, if T = {x, y, z}, then |U | can be either 2 or 3. Therefore,
there are in total five possibilities for the pair (|T |, |U |).

We first show that replacing a (T,U)-configuration with another (T,U)-con-
figuration does not lower the crossing number below 2. First the definition of
substitution.

Definition 15.22. Let G reduce by planar 3-reductions to the peripherally-4-
connected graph Gp4c. Suppose v is a vertex of Gp4c with neighbours x, y, and z so
that (Gv, {x, y, z}) is, for some subsets T and U of {x, y, z}, a (T,U)-configuration.
Let N be the set of vertices t in {x, y, z} for which Kmax

v ∩Kt is null. (See Definition
15.18 for Kmax

v .) Let N̄v denote the attachments of Kmax
v : these are the vertices

that are of the form t′, t ∈ {x, y, z}, chosen to be in Kt whenever possible.

(1) A (T,U)-configuration (H, {x, y, z}) is (G,Kv)-compatible if:
(a) for each t ∈ N , then there is only one neighbour of t in H;
(b) the degrees of each t ∈ {x, y, z} are the same in both Gv and H; and
(c) setting N̄H to consist of the union of the set of vertices of H in
{x, y, z} \N together with the neighbours in H of the vertices in N ,
H −N either has a single vertex or contains a cycle through all the
vertices in N̄H .

(2) The substitution of the Kv-compatible (T,U)-configuration (H, {x, y, z})
for Kv in G is the graph GHv obtained from G by adding H − N by
identifying the vertices in N̄v with those in N̄H in the natural way, and
then deleting all vertices in Kmax

v − N̄v.

We are almost ready for a major plank in the theory.
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15.3. PLANAR 3-REDUCTIONS 137

Our plan is to show that we can replace a “large” (T,U)-configuration by a
“small” (T,U)-configuration and still be 3-connected and 2-crossing-critical. There
is one special case that requires particular attention.

Definition 15.23. A (T,U)-configuration (H, {x, y, z}) is doglike with nose n
if |T | = 3 and |U | = 2 and n is the vertex in T \ U .

Theorem 15.24. Let G reduce by planar 3-reductions to the peripherally-4-
connected graph Gp4c. Suppose v is a vertex of Gp4c with precisely the neighbours
x, y, and z so that Kv has at least two vertices so that (Gv, {x, y, z}) is, for some
subsets T and U of {x, y, z}, a (T,U)-configuration. Let (H, {x, y, z}) be a (G,Kv)-
compatible (T,U)-configuration. If cr(G) ≥ 2, then cr(GHv ) ≥ 2.

Proof. We remark that the non-planarity of G and the fact that we are doing
planar 3-reductions implies Gp4c is not planar. This fact will be used throughout
the proof.

Let H ′ = H − {x, y, z} and let N be the set of vertices t in {x, y, z} so that
Kmax
v ∩Kt is null. By way of contradiction, we suppose GHv has a 1-drawing D.

We start with two simple observations.

Claim 1. Some edge of H ′ is crossed in D.

Proof. If no edge of H ′ is crossed in D, then Definition 15.22 (1b) implies we
may resubstitute Kv for H ′ to obtain a 1-drawing of G, a contradiction. �

Claim 2. There is no drawing D′ of GHv in which each crossed edge is incident
with a vertex in H ′.

Proof. Otherwise, insert a vertex at each crossing point, and add this vertex
to H ′. Then contract every edge in the new graph that has both ends in H ′, and
also contract all the Ku to single vertices. The result is a planar embedding of
Gp4c, a contradiction. �

Therefore, we may assume the crossing edges are ev ∈ H ′ with some other edge
f not incident with any vertex in H ′. Observe that H ′ cannot be a single vertex.

Claim 3. f is not a cut-edge of GHv −H ′.

Proof. Suppose f is a cut-edge of GHv −H ′. Since D[GHv −H ′] has no crossing,
it is planar. Therefore, the faces on each side of f in D[GHv − H ′] are the same.
Thus, the ends of ev are in the same face of D[GHv −H ′].

Consider now the planar embedding D[GHv − ev]. The two ends of ev are in
the same face of the subembedding D[GHv − H ′] and so may be joined by an arc
that is disjoint from D[GHv − H ′]. This produces a drawing of GHv in which all
the crossings involve ev and edges incident with at least one vertex in H ′. This
contradicts Claim 2. �

Since f is not a cut-edge of GHv −H ′, there is a cycle Cf of GHv −H ′ containing
f . Moreover, D[Cf ] separates the two ends of ev, so ev is an cut-edge of H ′. Let
H1 and H2 be the two components of H ′ − ev.

The next claim is central to the remainder of the argument.

Claim 4. Let t ∈ {x, y, z} be a common neighbour of H1 and H2. Then f is
incident with t′ ∈ Kt and one of the faces of H ′ + t′ incident with both t′ and ev is
empty except for the segment of f from t′ to the crossing with ev.
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138 15. ON 3-CONNECTED GRAPHS THAT ARE NOT PERIPHERALLY-4-CONNECTED

Proof. Let C be any cycle in H ′ + t′ containing ev. Since ev is a cut-edge of
H ′, t′ ∈ C. Since Gp4c − {v, t} is connected, G− (Kv ∪Kt) is connected.

Suppose by way of contradiction that there are vertices u and w of G−(Kv∪Kt)
on both sides of D[C]. By the preceding paragraph, there is a uw-path P in
G− (Kv ∪Kt). Since P is graph-theoretically disjoint from C, but D[u] and D[w]
are on different sides of D[C], D[P ] crosses D[C]; this must be at the unique crossing
of D, so f ∈ P and the crossing of D[P ] with D[C] is the crossing of f with ev.

Moreover, D[Cf ] crosses D[C] at the crossing of D and so they must cross
somewhere else. As Cf and H ′ are disjoint, the second crossing is at the vertex t′.
Since this is true of any cycle Cf in G−Kv, f is a cut-edge of (G−Kv)− t′.

We now consider two cases.

Case 1: there are distinct vertices t1 and t2 of Gp4c − {t, v} so that D[Kt1 ]
and D[Kt2 ] are on different sides of D[C].

In this case, either (i) for some vertex s of Gp4c, f ∈ Ks, in which case t1 and
t2 are in different components of Gp4c − {t, v, s}, or (ii) since Gp4c is non-planar
and so has at least five vertices, for some vertex s of Gp4c that is an end of f , we
may choose t1 and t2 to again be in different components of Gp4c − {t, v, s}.

In either case, the internal 4-connection of Gp4c implies that there is an i ∈
{1, 2} so that ti is the only vertex in its component of Gp4c − {t, v, s}. But then
tvti is a 3-cycle in Gp4c having v and ti as degree 3 vertices, contradicting Lemma
15.15.

Case 2: there are not distinct vertices t1 and t2 of Gp4c−{t, v} so that D[Kt1 ]
and D[Kt2 ] are on different sides of D[C].

In this case, there is a vertex s of Gp4c − {t, v} so that f ∈ Ks and all the
vertices of G− (Kv ∪Kx) on one side of D[C] are in one component K1

s of Ks− f ,
while all the other vertices of G − (Kv ∪Kx), including the other component K2

s

of Ks − f , are on the other side of D[C].
Lemma 15.13 implies that K1

s has neighbours in two Kr’s. According to D,
these can only be Kv and Kt. But now the 3-cycle tvs has the two degree 3 vertices
v and s, contradicting Lemma 15.15.

Since f is on both sides of D[C], but one side has no vertex, it must be that
the end of f on that side is in C. But f is disjoint from H ′, and so this end can
only be t′. �

Our proof proceeds by considering how many common neighbours among Kx,
Ky, and Kz there are for H1 and H2. We start by noting that there cannot be
three, since then the graph H+ is not planar, contradicting Definition 15.21.

Claim 5. H1 and H2 have exactly one common neighbour.

Proof. We have already ruled out the possibility that H1 and H2 have three
common neighbours.

To rule out two common neighbours, suppose by way of contradiction that H1

and H2 have the two common neighbours Kx and Ky. By the preceding remark,
at least one of H1 and H2 does not have a neighbour in Kz. Since H ′ does have
a neighbour in Kz, we may choose the labelling so that H1 has a neighbour in Kz

and H2 does not.
Claim 4 implies f is incident with both x′ and y′. But now D[f ] can be rerouted

along the other side of the x′H2-edges, around H2, and on to y′ so that GHv has
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15.4. REDUCING TO A BASIC 2-CROSSING-CRITICAL EXAMPLE 139

no crossings. This implies the contradiction that Gp4c is planar. We conclude that
H1 and H2 have at most one common neighbour.

If they have no common neighbours, then H1 has neighbours just in Kx, while
H2 has neighbours in Ky and Kz, but not in Kx. In this case, ev is a cut-edge
in H separating x from {y, z}. It follows that x /∈ T . Since Gv is also a (T,U)-
configuration, there is an cut-edge e′v of Gv separating x from {y, z}. Now we can
replace H ′ in T with Kv in such a way that e′v (in fact the only edge of Gv incident
with x) is crossed by f to yield a 1-drawing of G. This contradiction completes the
proof of the claim. �

We conclude from Claim 5 that H1 and H2 have precisely one common neigh-
bour x′. Claim 4 implies that f is incident with x′.

If, for some i ∈ {1, 2}, Hi has no other neighbour, then we may reroute f to go
around D[Hi], yielding a planar embedding of GHv and, therefore, of the non-planar
graph Gp4c, a contradiction.

Thus, we may choose the labelling so that H1 has at least one neighbour in
Ky, while H2 has at least one neighbour in Kz. If, say, H1 is joined to Ky by only
one edge, then y /∈ T ; therefore, y is incident with a unique edge in Gv and we can
replace D[H] with the planar embedding of Kv so that it is the yKv-edge that is
crossed by f . This yields that contradiction that G has a 1-drawing.

Thus, we may assume that T = {x, y, z}. However, there are not edge-disjoint
yz-paths in H − x (ev is a cut-edge separating y and z). Therefore, U = {y, z},
showing Gv is doglike. It follows that Gv − x has a cut-edge e′v separating y and
z. We may substitute the planar embedding of Kv for D[H] so that e′v crosses f ,
yielding the final contradiction that G has a 1-drawing.

15.4. Reducing to a basic 2-crossing-critical example

In this section, we show that if G is a 3-connected 2-crossing-critical graph that
reduces by planar 3-reductions to a peripherally-4-connected graph, then there is
a “basic” 3-connected 2-crossing-critical graph from which G is obtained by the
regrowth mechanism of the preceding section.

Theorem 15.25. Let G ∈M3
2 reduce by planar 3-reductions to a peripherally-

4-connected graph Gp4c. Let v be a vertex of Gp4c with just the three neighbours x,
y, and z, so that (Gv, {x, y, z}) is a (T,U)-configuration and Kv has at least two
vertices. Let Grep(v) be the graph obtained from G by contracting as indicated in
the following cases.

(1) If (Gv, {x, y, z}) is doglike, then let e be the cut-edge of Kv and contract
each component of Kv − e to a vertex.

(2) If (Gv, {x, y, z}) is not doglike, then we have the following subcases.
(a) If none of Gx, Gy, and Gz is doglike, then contract Kv to a vertex.
(b) If (|T |, |U |) = (3, 3), then contract Kv to a vertex.
(c) If Gx is doglike and y /∈ T , then let C be a cycle in G+

v containing
x′, y′, and z′, delete everything in Kv −E(C) and contract the edges
of C to the 3-cycle x′y′z′.

Then Grep(v) ∈M3
2.

There is one clarification that is required to understand one fine detail ofGrep(v).
If, for example, the vertex x′ is in Kv, then we proceed precisely as described in the
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140 15. ON 3-CONNECTED GRAPHS THAT ARE NOT PERIPHERALLY-4-CONNECTED

statement. If, however, x′ is in Kx and x ∈ T , then in Grep(v) we retain only two
edges between x′ and the contracted vertex in Krep(v) to which it is joined. This
especially applies in the case 2c: if z′ ∈ Kz, then we keep only the two edges of C
incident with z′, while if z′ ∈ Kv, then we keep all the z′Kz-edges.

There is also an important remark to be made. We had long thought that
it was possible to reduce each Kv to a single vertex and retain 2-criticality. This
might be true in the particular cases of 3-connected 2-crossing-critical graphs with
no subdivision of V8, but it is certainly not true of all 3-connected 2-crossing-critical
graphs.

In Definition 2.10 we described the set S of all graphs that can be obtained
from the 13 tiles and the two frames. These graphs are all 3-connected and 2-cros-
sing-critical. Consider any one of these that uses the right-hand frame in Figure
2.1 and uses the second picture in the third row of Figure 2.2. With appropriate
choices of the neighbouring pictures, the 3-cycle in the upper half of the picture is
part of a doglike Gv that contains the parallel edges in the picture and the parallel
edges in the frame: the horizontal edge in the 3-cycle is Kv. The vertical edge in
the other 3-cycle in the picture is a Kx. When we do the planar 3-reductions in
this case, the contractions of Kx and Kv produce a pair of parallel edges not in
the rim. The conclusion is that the resulting peripherally-4-connected graph plus
parallel edges is not 2-crossing-critical. Thus, the technicalities we must endure in
the statement of Theorem 15.25 seem to be unavoidable.

Proof. We use the notation Krep(v) for the contraction of Kv in Grep(v).

Phase 1: showing Grep(v) is 3-connected.

Let t and u be vertices of Grep(v). We show Grep(v) − {t, u} is connected.

Let wt and wu be the vertices of Gp4c so that t ∈ Kwt and u ∈ Kwu (taking, for
example, Kwt to be Krep(v) if t ∈ Krep(v)). It follows from Lemma 15.16 that every
vertex of every Ks has a path in G− {t, u} to at least one neighbour of Ks that is
not one of Kwt or Kwu . This is also true of Krep(v), as may be seen by checking
the analogues for Krep(v) of Lemma 15.16 in the three cases for which Krep(v) has
at least two vertices. (Note there are two possible outcomes for Krep(v) in Case 2c,
depending on whether z′ ∈ Kv, in which case Krep(v) is a 3-cycle, or z′ ∈ Kz, in
which case Kv is an edge.)

Since each Ks is connected, Grep(v) − {t, u} is connected.

Phase 2: showing cr(Grep(v)) ≥ 2.

The graph K̄rep(v) obtained from Krep(v) by adding x, y, and z is a (G,Kv)-
compatible (T,U)-configuration. Therefore, Phase 2 follows immediately from The-
orem 15.24.

Phase 3: showing that Grep(v) is 2-crossing-critical.

Let e be any edge of Grep(v). Then there is an edge eG in G naturally corre-
sponding to e (in the sense that precisely the same contractions and deletions of G
and G− eG can be used to obtain both Grep(v) and Grep(v) − e).

Special situation. There is one case where the choice of eG must be made
with special care. Suppose Kv contracts down to the single vertex v and e is one
of two parallel edges vx. In the case Kv has a cut-edge e′, Lemma 15.13 implies
each component of Kv− e′ is joined to two of the neighbours of v. Suppose that Kx
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15.4. REDUCING TO A BASIC 2-CROSSING-CRITICAL EXAMPLE 141

is the only common neighbour of these two components. Since Gv is not doglike,
some component L of Kv − e′ is joined by exactly one edge to its other neighbour;
choose eG to be an xL-edge.

Definition 15.26. For each vertex w of Krep(v), Lw denotes the subgraph of
Kv that contracts to w.

Since G is 2-crossing-critical, there is a 1-drawing D of G − eG. If no edge
of any Lw ⊆ Kv is crossed in D, then these may each be contracted to obtain a
1-drawing of Grep(v) − e, and we are done.

Claim 1. If there is a drawing of G−eG in which all the crossings are between
edges incident with vertices in Lw, then Grep(v) − e is planar.

Proof. Insert vertices at each crossing point and contract every edge in the
new graph that has both ends in some Lu. The result is a planar embedding of
Grep(v) − e. �

Therefore, we may assume the crossing edges are ev ∈ Lw ⊆ Kv with some
other edge f not incident with any vertex in Lw.

Case 1: f is a cut-edge of (G− eG)− Lw.

In this case, D[(G− eG)− Lw] has no crossing, so it is planar. Therefore, the
faces on each side of f in D[(G− eG)−Lw] are the same. Thus, the ends of ev are
in the same face of D[(G− eG)− Lw].

Consider now the planar embedding D[(G− eG)− ev]. The two ends of ev are
in the same face of the subembedding D[(G− eG)− Lw] and so may be joined by
an arc that is disjoint from D[(G− eG)− Lw]. This produces a drawing of G− eG
in which all the crossings involve ev and edges incident with at least one vertex in
Lw. Claim 1 implies Grep(v) − e is planar, as required.

Case 2: f is not a cut-edge of (G− eG)− Lw.

In this case, f is in a cycle Cf of (G − eG) − Lw. Moreover, D[Cf ] separates
the two ends of ev, so ev is a cut-edge of Lw. Let L1

w and L2
w be the components

of Lw − ev.
We consider separately two cases for Gv.

Subcase 2.1: Gv is doglike.

In this subcase, Krep(v) is two vertices w and w̄ joined by a cut-edge e′ of
Gv − x, each joined by an edge to x′, w is joined by at least two edges to Ky and
w̄ is joined by at least two edges to Kz. Lemma 15.20 implies that Kx has at most
two neighbours in Kv. We already know there is one in each of Lw and Lw̄. Lemma
15.11 now implies there is a vertex x′ ∈ Kx incident with all the KvKx-edges in G.
Thus, we may choose the labelling of L1

w and L2
w so that the neighbour of x′ in Lw

is in L1
w.

We see that x′ and the end of ev in L2
w are neighbours of vertices in L1

w, and
neither of these vertices is in L1

w. The only other possibilities for neighbours of L1
w

outside of L1
w are in Ky and Lw̄, the latter being the end of e′. A similar remark

holds for L2
w: it has the neighbour (via ev) in L1

w, and can have at most neighbours
in Ky and Lw̄ (via e′).

Since G is 3-connected, for each i = 1, 2, Liw has at least two neighbours outside
of Liw other than x′. From the neighbour analysis of the preceding paragraph, there
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142 15. ON 3-CONNECTED GRAPHS THAT ARE NOT PERIPHERALLY-4-CONNECTED

are at most three in total: two to Ky and one to Lw̄. There are two ways this can
happen.

In the first way, both edges from Lw to Ky have their ends in L2
w, while e′ has

an end in L1
w. But then ev is a cut-edge of Kv that violates Lemma 15.13: the edge

eG cannot connect L2
w to either x′ (Lemma 15.20 or Kz (because e′ is a cut-edge

of Gv − x), so the component L2
w of Kv − ev is joined only to Ky.

Therefore, e′ has one end in L2
w and the two KvKy edges have ends in different

ones of L1
w and L2

w. It follows that y′ is incident with these edges, so Lemma 15.20
implies y′ has precisely these neighbours in Kv.

Contract D[ev] so that L1
w is pulled across f and, if necessary, shrink D[L1

w] so
that we obtain a new drawing D1 of G − eG in which f crosses the edges from x′

and y′ to L1
w.

Claim 2. f /∈ Lw̄.

Proof. If f ∈ Lw̄, then exactly the same analysis as for Lw implies that Lw̄−f
has two components L1

w̄, from which there is an edge to x′ and an edge to z′, and
L2
w̄, from which there is an edge to z′ and L2

w. But now the graph-theoretically
disjoint cycles in Lw + y′ containing ev and Lw̄ + z′ containing f cross exactly once
in D, which is impossible. �

It follows from Claim 2 that f /∈ Lw̄. We contract the uncrossed D1[Lw] and
D1[Lw̄] to obtain a drawing D2 of Grep(v) − e, in which the only crossings are of f

with the edges from x′ and y′ to L1
w. In D2, there are parallel edges y′w; the one

from y′ to L2
w is not crossed in D2, so we may make all the others go alongside the

uncrossed one. This yields a drawing D3 of Grep(v) − e in which the only crossing

is x′w with f , so D3 is a 1-drawing of Grep(v) − e, as required.

Subcase 2: Gv is not doglike.

Subcubcase 2.1: there is a neighbour x of v in Gp4c so that Gx is doglike and
x′ ∈ Kv is the nose of Gx.

Let C be the cycle in Gv that we contracted to the 3-cycle x′y′z′. We let GC

be the subgraph of G obtained by deleting all edges between the various Lu except
the one or three edges in C. Choose the labelling so that y is a neighbour of v in
Gp4c so that there is exactly one KvKy-edge in G; thus y′ ∈ Kv.

Let r be that element of {x, y, z} so that r′ ∈ Lw. There are precisely two
edges e1 and e2 in GC coming out of Lw in Gv − r.

Let L1
w be the component of Lw − ev containing r′ and let L2

w be the other.
Since C goes through r′, at least one of e1 and e2 is incident with a vertex in L1

w.
Therefore, at most one of e1 and e2 has an end in L2

w.
We claim that L2

w is not joined to any other vertex in GC . The only possibility
is that there is an edge from L2

w to Kx ∪Ky ∪Kz. Since all the KvKx- and KvKy-
edges in G are incident with x′ and y′, respectively and x′ and y′ are not in L2

w,
there are no edges in G from L2

w to Kx ∪Ky.
As for the possibility of an L2

wKz-edge, this can only exist if z′ ∈ Kz. But z′

already has two known neighbours in Kv, namely the Kv-ends of the edges of C
incident with z′. Lemma 15.20 implies these are the only vertices of Kv adjacent to
vertices in Kz. Therefore these known z′-neighbours are the only ones; in particular,
z′ has no neighbour in L2

w, as claimed.
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15.5. GROWING BACK FROM A GIVEN PERIPHERALLY-4-CONNECTED GRAPH 143

We obtain a 1-drawing of Grep(v) − e by partially contracting D[ev] and, if

necessary, scaling D[L2
w] down so that L1

w and L2
w are now drawn on the same side

of f . The only crossing in this new drawing is of the edge of D[GC ], if it exists,
that is not ev and joins L2

w to the rest of GC . Now we may contract all the Lu to
single vertices to obtain the required 1-drawing of Grep(v) − e.

Subsubcase 2: there is no neighbour x of v in Gp4c so that Gx is doglike and
x′ ∈ Kv is the nose of Gx..

At this stage, Kv contracts to a single vertex of Grep(v). In this case, Kv − ev
has two components K1

v and K2
v . Lemma 15.13 implies each of K1

v and K2
v are

connected in G to at least two of Kx, Ky and Kz. Because G+
v is planar, at most

two of Kx, Ky, and Kz can be adjacent to both K1
v and K2

v .
If both Kx and Ky have neighbours in both K1

v and K2
v , then there is an

i ∈ {1, 2} so that Ki
v has adjacencies only in those two. Now pull D[Ki

v] across
f and, scaling D[Ki

v] if necessary, to obtain a planar embedding of G − eG. This
contracts to a planar embedding of Grep(v) − e, as required.

Thus, we may assume K1
v and K2

v have precisely one common neighbour in G.
Each has its own neighbour. Since Gv is not doglike, one of these, say K1

v , is joined
by a single edge to that unique neighbour and now we can drag K1

v across f . This
works unless e goes to K2

v and K2
v is joined to its unique neighbour by two edges.

But this is the special situation, and e is joined to K1
v , not K2

v .

15.5. Growing back from a given peripherally-4-connected graph

The important corollary of Theorem 15.25 is that, if we replace each Kv with
its Krep(v), then we get a 2-crossing-critical model of Gp4c with very simple re-

placements for the vertices of Gp4c. In this section, we explain how to obtain all
the 3-connected 2-crossing-critical graphs that reduce by planar 3-reductions to a
particular peripherally-4-connected graph.

Let L be a non-planar peripherally-4-connected graph. For each vertex v of
L having only three neighbours x, y, and z, we decide on the type of v; that
is, we choose Tv ⊆ {x, y, z} and, in the case |Tv| = 3, we decide on Uv: either
Uv = {x, y, z}, or Uv consists of two of {x, y, z}. For each edge of L joining two
vertices of degree at least 4, we decide whether the edge will be a single edge or a
parallel pair.

The choices must be made so that x ∈ Tv if and only if v ∈ Tx. If, for some v,
(|Tv|, |Uv|) = (3, 2) (v is chosen to be doglike), then some other implications (as in
Theorem 15.25) must be maintained. Choose the labelling so that x /∈ Uv. Then x
is the nose of the dog, v is replaced with Kv, so that Kv is an edge y′z′, so that y′

incident with two edges going to Ky, and likewise for z′ to Kz. Each of y′ and z′

is also incident with an edge to x′ ∈ Kx. Furthermore, Kx can be either a vertex,
or, if |Tx| 6= 3, an edge, or a 3-cycle.

Once all these choices have been made, the resulting graph is tested for 2-
criticality. Thus, for a given peripherally-4-connected graph L, there will be many
graphs that require testing. If one of the resulting graphs L′ is found to be 2-cros-
sing-critical, then there may be many other 3-connected 2-crossing-critical graphs
that arise from L′. Recall that, for each vertex of L that has only three neighbours,
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144 15. ON 3-CONNECTED GRAPHS THAT ARE NOT PERIPHERALLY-4-CONNECTED

we have made a choice as to what type that vertex has. The following lemma
explains what may replace the vertex of each type.

Lemma 15.27. Suppose the peripherally-4-connected graph L has choices as
explained in the preceding paragraphs to produce a 3-connected 2-crossing-critical
graph L′. Suppose G is a 3-connected 2-crossing-critical graph that reduces by planar
3-reductions to L so that L′ is the graph obtained from G by the replacements
described in Theorem 15.25. Then, for each Kv in L′, Kv is replaced by one of the
possibilities shown in Figures 15.1, depending on (Tv, Uv).

Proof. We only illustrate the tedious proof in a couple of cases.

Case 1: (Tv, Uv) = ({x, y, z}, {y, z}).
Let e be a cut-edge in Gv−x separating y and z. Let Kv−e have the two com-

ponents Ky
v , containing the neighbour(s) of y, and Kz

v , containing the neighbour(s)
of z. If Ky

v , for examples, is not just either a single vertex or an edge joining the
two neighbours of y, then it contains a subdivision of one of these (either pick a
path in Ky

v joining the neighbour of y to the Ky
v -end of e or pick a path joining the

two neighbours of y). It is easy to see that the subdivision (making a similar choice
on the z-side) is also a (Tv, Uv)-configuration. By Theorem 15.24, the subgraph has
crossing number 2, and so is all of G. Thus, Kv can be at most one of the three
figures in Figure 15.1 corresponding to (|T |, |U |) = (3, 2).

Case 2: Tv = {x, y, z} = Uv.

In this case, Gv − x contains edge-disjoint yz-paths. Therefore, it contains two
such paths P and Q that make a digonal pair. If P and Q are internally disjoint,
then there is a (P − {y, z})(Q − {y, z})-path R. If P and Q are not internally
disjoint, then set R = ∅. In either case, set M = P ∪ Q ∪ R. There are two
x(M − {y, z})-paths R1 and R2 in Gv.

If the ends of P and Q are in the same digon of P ∪ Q, then planarity of G+
v

implies R1 and R2 have their ends in the same one of P and Q. It follows that
M ∪R1 ∪R2 is a (Tv, Uv)-configuration, and so is Gv by 2-criticality and Theorem
15.24.

The fact that G is 3-connected implies that there cannot be more than four
common internal vertices to P and Q, as if there were six digons, then some two
consecutive ones would not contain an end of either R1 or R2. This would readily
yield a 2-cut in G, which is impossible. This is why the number of possibilities for
Gv in this case is finite.

In some of the larger (T,U)-configurations, there are edges that are not required
to produce the relevant paths between s, t, and u, but, rather, are there to maintain
the connectedness of the configuration. These edges might be deletable without
reducing the crossing number below 2. Thus, each candidate 3-connected graph
produced by the method described needs to have its criticality checked.

15.6. Further reducing to internally-4-connected graphs

In order to find the 2-crossing-critical graphs that do not contain V8, we wish
to use the characterization by Robertson of V8-free graphs. This characterization,
described in the next section, is in terms of internally-4-connected graphs. These
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15.6. FURTHER REDUCING TO INTERNALLY-4-CONNECTED GRAPHS 145

Figure 15.1. The possible (T,U)-configurations.

graphs are very closely related to peripherally-4-connected graphs and it is the
purpose of this section to describe the reduction of a peripherally-4-connected graph
to an internally-4-connected graph, and back again.

Definition 15.28. A hug in a graph G is an edge e in a triangle T whose
vertex v not incident with e has degree 3. The triangle T is the e-triangle, v is the
head of the hug and the two edges of T other than e are the arms of the hug.

Definition 15.29. A G is internally-4-connected if it is peripherally-4-connec-
ted and has no hugs.
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146 15. ON 3-CONNECTED GRAPHS THAT ARE NOT PERIPHERALLY-4-CONNECTED

u

t

v

z

y

x

w

Figure 15.2. The thick edge is a bear hug. The dotted edges tw
and vz might be subdivided, and the dashed edge uw need not be
present. If uw is not present, then {ux, uy} is a simultaneously
deletable pair of bear hugs.

It is not correct that simply deleting (successively) the hugs from a peripherally-
4-connected graph produces an internally-4-connected graph. There is a particular
situation that arises that needs special care.

Definition 15.30. (1) A hug e with head v is a bear hug if there is an
end u of e, incident with a second hug uy whose head t is different from v,
and so that, with w the other end of e, the neighbours of u are contained
in the union of {t, v, w} and the set of neighbours of t. (See Figure 15.2.)

(2) A hug is deletable if it is not a bear hug.
(3) A pair of bear hugs having a common end is simultaneously deletable.

We are now in a position to reduce a peripherally-4-connected graph to an
internally-4-connected graph.

Theorem 15.31. Let G be a non-planar peripherally-4-connected graph and let
G = G0, G1, . . . , Gk be a sequence of graphs so that, for each i = 1, 2, . . . , k, there
is either a hug hi or a simultaneously deletable pair hi of bear hugs in Gi−1 so that
Gi = Gi−1 − hi. Then, for i = 0, 1, 2, . . . , k:

(1) Gi is a subdivision of a non-planar peripherally-4-connected graph;
(2) if v has degree 2 in Gi but not in Gi−1, then hi is a simultaneously deletable

pair of bear hugs in Gi−1, both incident with v; and
(3) every degree 2 vertex in Gi has two degree 3 neighbours in Gi.

Furthermore, if the sequence G0, G1, . . . , Gk is maximal, then Gk is a subdivi-
sion of an internally-4-connected graph.

We emphasize that, in the reduction process described in the statement, Gi is
obtained from Gi−1 by the deletion of either one or two edges.

Proof. Suppose by way of contradiction that i is least so that Gi is planar. Since
G0 is not planar, i > 0, so Gi = Gi−1 − hi. Each edge in hi joins two neighbours
of a degree 3 vertex in Gi and so may be added to the planar embedding of Gi
to produce a planar embedding of Gi together with that edge of hi. In the case
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15.6. FURTHER REDUCING TO INTERNALLY-4-CONNECTED GRAPHS 147

|hi| = 2, the heads of the hugs are not adjacent. Thus, both hugs may be added
simultaneously, while preserving planarity. Thus, Gi−1 is planar, contradicting the
choice of i.

By way of contradiction, we may let i be least so that Gi is not a subdivision
of a peripherally-4-connected graph. Thus, i ≥ 1. Throughout the proof, when
we refer to the vertices t, u, v, w, x, y, z, we are always referring to the labelling in
Figure 15.2. In each of the three cases, there are two possibilities for hi to be
considered.

It will be helpful to notice that, in the case hi consists of a simultaneously
deletable pair of bear hugs, the vertex u is not a node of Gi and is incident with
both deleted edges.

Claim 1. Gi is a subdivision of a 3-connected graph.

Proof. Let a and b be distinct nodes of Gi. Then a and b are distinct nodes
of Gi−1, so there are three internally disjoint ab-paths P1, P2, P3 in Gi−1.

If e ∈ hi, then the head c of the e-triangle has degree 3. If e is in some Pi and
T is the triangle containing e and its head, then we may replace Pi ∩ T with the
path in T complementary to Pi ∩ T . The at most two modifications result in three
internally disjoint paths that are also paths in Gi. �

Claim 2. If a has degree at least three in Gi−1 and degree 2 in Gi, then:

(1) |hi| = 2;
(2) a is incident with both edges in hi; and
(3) both neighbours of a have degree 3 in Gi.

Proof. Let e ∈ hi. The head b of the e-triangle has degree 3 in Gi−1 and,
since Gi−1 is a subdivision of a peripherally-4-connected graph, no other vertex of
the e-triangle has degree 3, so Lemma 15.15 shows they both have degree at least
4. It follows that if e is the only edge in hi, then the ends of e have degree at least
3 in Gi and no new vertex of degree 2 is introduced in Gi.

Therefore hi is a deletable pair. The only new vertex of degree 2 in Gi is u, so
a = u. Also, the only neighbours of u in Gi have degree 3 in Gi. �

The remaining possibility is that there is a set {a, b, c} of nodes of Gi and a
3-separation (H,J) of Gi so that H ∩ J = ‖a, b, c‖ and both H − {a, b, c} and
J − {a, b, c} have at least two nodes of Gi.

Because Gi−1 is a subdivision of a peripherally-4-connected graph, there is an
edge e ∈ hi having one end rH in H − {a, b, c} and one end rJ in J − {a, b, c}.

Suppose for the moment that hi has a second edge. Since Gi−1 is a subdivision
of a peripherally-4-connected graph, not all the neighbours of u in Gi−1 can be in
the same one of H and J . We may choose the labelling so that x = rJ . As t is a
common neighbour of u = rH and x = rJ , we conclude that t ∈ {a, b, c}, say t = a.

It follows that at least one of v and y (the other two neighbours of u) is in H−
{t, b, c}. Since v and y are adjacent, it follows that both are in H and, furthermore,
uy is also in H. In particular, there is a unique edge in hi that has one end in
H − {a, b, c} and one end in J − {a, b, c}.

Now the two possibilities for hi are merged: e is the unique edge in hi having
one end rH in H − {a, b, c} and one end rJ in J − {a, b, c}. The head q of the
e-triangle must be in {a, b, c}, say q = a.

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
19

3,
 D

ec
em

be
r 

13
, 2

01
3



148 15. ON 3-CONNECTED GRAPHS THAT ARE NOT PERIPHERALLY-4-CONNECTED

b c

rJ

rH

q

Figure 15.3. When s = b, Gi−1 is a subgraph of the illustrated
planar graph.

Since q has degree 3, we may choose the labelling so that rH is the only neigh-
bour of q in H − {q, b, c}. The neighbour rJ of q is in J − {q, b, c}. Note that rH
and rJ are both nodes of Gi−1.

The third neighbour s of q is in J , so {rH , b, c} is a 3-cut in Gi−1. Since Gi−1

is peripherally-4-connected, there is a unique node p in H − rH , which is joined by
branches in Gi−1 to all of rH , b, and c.

If s ∈ {b, c}, then the discussion in the preceding paragraph applies with rJ
and J in place of rH and H, respectively. The nodes of Gi−1 are now all known
(there are only 7), and the edges are almost completely determined. In particular,
Gi−1 is a subgraph of the planar graph shown in Figure 15.3, contradicting the fact
that Gi−1 is non-planar. Therefore, s is in J − {q, b, c}.

The vertex rH is the only candidate for the second branch vertex (after p) of
Gi in H − {q, b, c}, so it must be joined by a Gi-branch to at least one of b and c;
choose the labelling so that b is an end of such a Gi-branch.

If b has only one neighbour in J − {q, b, c}, then p and b are both degree 3
vertices in a triangle in Gi−1; since Gi−1 is a subdivision of a peripherally-4-con-
nected graph, this contradicts Lemma 15.15. The same reasoning implies that both
rH and b have degree at least 4 in Gi−1. These imply that rHp, rHb, and pb are all
edges of Gi−1.

Because rHrJ is in hi and q is the head of the rHrJ -triangle, we know that
rHrJ , qrH , and qrJ are all edges of Gi−1. Furthermore, rHs is not a Gi−1-branch
(it would yield a second edge with one end in each of H−{a, b, c} and J−{a, b, c}).

The triangles prHb and qrHrJ show that rHrJ is a bear hug. Since it was
deleted, it must be in a simultaneously deletable pair of bear hugs. This implies
that rHb is the other edge in that pair. Thus, H − {a, b, c} has only one node
in Gi, a contradiction that completes the proof that each Gi is a subdivision of a
peripherally-4-connected graph.

We move on to showing that a maximal sequence ends in a subdivision of an
internally-4-connected graph. So suppose Gi is not a subdivision of an internally-
4-connected graph. Since it is a subdivision of a peripherally-4-connected graph
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15.7. THE CASE OF V8-FREE 2-CROSSING-CRITICAL GRAPHS 149

H, there is a 3-cut {a, b, c} in H so that ab is an edge of Gi. Since H is periphe-
rally-4-connected, there is a vertex p adjacent in H to all of a, b, c and with no
other neighbours in H. Lemma 15.15 shows that the triangle p, a, b has at most
one vertex of degree 3; since p is such a vertex, a and b have degree at least 4 in
H. It follows that pa and pb are edges of Gi and, therefore, ab is a hug in Gi.

It is evident from the definitions that, as soon as Gi has a hug, then either Gi
has a hug that is not a bear hug or Gi has a pair of simultaneously deletable bear
hugs. In either case, Gi is not the last in a maximal sequence.

We conclude this section with a brief discussion of the reverse process: how
to generate all the peripherally-4-connected graphs that reduce to a given non-
planar internally-4-connected graph G. Every graph created through iterating the
following procedure is peripherally-4-connected and non-planar. We choose either
two non-adjacent neighbours of a degree 3 vertex and add the edge between them,
or we choose an edge e joining degree 3 vertices and a neighbour of each vertex
incident with e, subdivide e once, and join both the chosen neighbours to the
vertex of subdivision.

Every internally-4-connected graph produces only finitely many peripherally-
4-connected graphs through this process, as the number of possible additions is
initially finite and strictly decreasing.

15.7. The case of V8-free 2-crossing-critical graphs

In this section, we complete our analysis of peripherally-4-connected 2-crossing-
critical graphs by considering the case of 3-connected 2-crossing-critical graphs that
do not contain a subdivision of V8. This is the whole reason for studying periphe-
rally-4-connected graphs, since there is a characterization of the closely related
internally-4-connected graphs that do not contain a subdivision of V8.

Two important classes of graphs in this context are the following.

Definition 15.32. (1) A bicycle wheel is a graph consisting of a rim,
which is a cycle C, and an axle, which is consists of two adjacent vertices
x and y not in the rim, together with spokes, which are edges from {x, y}
to C.

(2) A 4-covered graph is a graph G containing a set W of four vertices so that
G−W has no edges.

Maharry and Robertson [22] prove Robertson’s Theorem that an internally-4-
connected graph with no subdivision of V8 is one of the following:

(1) a planar graph;
(2) a non-planar graph with at most seven vertices;
(3) C3 2C3;
(4) a bicycle wheel; and
(5) a 4-covered graph.

Suppose G is a 3-connected graph that does not contain a subdivision of V8

and G reduces by planar 3-reductions to the peripherally-4-connected graph Gp4c.
It follows that Gp4c has no V8. Eliminating hugs as described in Theorem 15.31
produces an internally-4-connected graph Gi4c. Deleting hugs does not affect the
planarity of the graph; since Gp4c is not planar, so is Gi4c. By Robertson’s Theorem,
one of the following happens:
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150 15. ON 3-CONNECTED GRAPHS THAT ARE NOT PERIPHERALLY-4-CONNECTED

(1) Gi4c is not planar and has at most seven vertices;
(2) Gi4c is C3 2C3;
(3) Gi4c is a bicycle wheel; and
(4) Gi4c is a 4-covered graph.

Our ambition in the remainder of this section is to explain how to determine
all the peripherally-4-connected graphs Gp4c that can be the outcome of a sequence
of planar 3-reductions starting from a 3-connected, 2-crossing-critical graph G that
has no subdivision of V8. Any peripherally-4-connected graph with no subdivision
of V8 that either has crossing number exactly 1 or is itself 2-crossing-critical needs
to be tested. Those with crossing number 1 might extend to a 2-crossing-critical
example by duplication of edges and/or replacing vertices of degree 3 by one of the
basic (T,U)-configurations, as explained in the preceding section.

The first two items arising from Robertson’s Theorem are easily dealt with. A
computer program can easily find all internally-4-connected graphs with at most 7
vertices and determine which ones either have crossing number 1 or are 2-crossing-
critical. The graph C3 2C3 is itself 2-crossing-critical, so this is one of the 3-
connected, 2-crossing-critical graphs that do not contain a subdivision of V8.

Definition 15.33. Let Gp4c be a peripherally-4-connected graph and let Gi4c

be the internally 4-connected graph obtained from Gp4c by simplifying (that is,
leaving only one edge in each parallel class) and eliminating hugs. Then Gp4c is a
peripherally-4-connected extension of Gi4c.

We conclude this section by showing how to which bicycle wheels and 4-covered
graphs Gi4c can have such a 2-crossing-critical Gp4c as an extension. In particular,
Gi4c must either have crossing number 1 or itself be 2-crossing-critical; in the latter
case Gp4c = Gi4c.

CASE 1: the bicycle wheels.

Let x and y be the adjacent vertices making the axle of the bicycle wheel Gi4c,
and let C be the cycle that is the rim. Our goal is to provide sufficient limitations
on C to show that the computation is feasible. Here is our first limitation, which
can very likely be improved.

Lemma 15.34. Suppose G ∈ M3
2 reduces by planar 3-reductions to the graph

Gp4c that is a peripherally-4-connected extension of Gi4c. If Gi4c is a bicycle wheel
with axle xy and rim C, then x is not adjacent in Gi4c to six consecutive vertices
on C, none of which is adjacent to y.

Proof. Suppose by way of contradiction that x1, x2, x3, x4, x5, x6 are six consecutive
(in this order) vertices of C adjacent to x but not y. Lemma 15.15 implies no two
consecutive ones of these vertices have only three neighbours in Gp4c. By symmetry,
we may assume x3 has a neighbour u that is not adjacent to x3 in Gi4c.

Because Gp4c is a peripherally-4-connected extension of Gi4c, there are vertices
w and z so that x3, u, and w are the neighbours (in both graphs) of z and no other
vertex has just these three neighbours. Since y is not adjacent to x3 and x has more
than 3 neighbours, z ∈ C. If follows that x3 and u are the C-neighbours of z and w is
the neighbour of z that is in {x, y}. In particular, z, being a neighbour of x3 is either
x2 or x4, so w = x. In either case, three consecutive vertices from x1, x2, . . . , x6 are
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15.7. THE CASE OF V8-FREE 2-CROSSING-CRITICAL GRAPHS 151

such that the outer two are adjacent by a chord in Gp4c; if necessary, we relabel so
these are x1, x2, x3. In particular, x2 has just three neighbours in Gp4c.

Let D be a 1-drawing of Gp4c − xx2 and let K be the subgraph of Gp4c − xx2

induced by x, x1, x2, and x3.

Claim 1. K is clean in D.

Proof. In Gp4c − xx2, x2 has only two neighbours, so the edge x1x3 and the
path (x1, x2, x3) make a pair of parallel edges. Therefore, we may assume neither
of these is crossed in D.

It suffices to prove that xx1 is not crossed in D, as the proof for xx3 is sym-
metric. Suppose by way of contradiction that xx1 is crossed in D and consider the
planar embedding of Gp4c −{xx1, xx2} induced by D. Since Gi4c −{xx1, xx2} is a
subgraph, it is also planar, embedded in the plane by D.

Since x3 has only three neighbours in Gi4c − {xx1, xx2}, we can add the edge
xx2 alongside the path (x, x3, x2) to obtain a planar embedding of Gi4c−xx1. Then
we may add the edge xx1 alongside the path (x, x2, x1) to get a planar embedding
of Gi4c. However, this contradicts the fact that Gi4c is not planar. �

Now let K be the subgraph of Gp4c−xx2 induced by x, x1, x2, and x3. Because
x1, x2, and x3 are consecutive along C, there is a unique K-bridge B in Gp4c−xx2.
The claim shows K is clean in D, so D[B] is contained in one face F of D[K].

Adjusting which of D[x1x3] and D[(x1, x2, x3)] is which, if necessary, we may
arrange D so that both x and x2 are incident with a face of D[K] that is not F .
This permits us to add xx2 to D without additional crossings, to obtain a 1-drawing
of G. This final contradiction yields the result.

Along the same lines, we have the following limitation.

Lemma 15.35. Suppose G ∈ M3
2 reduces by planar 3-reductions to the graph

Gp4c that is a peripherally-4-connected extension of Gi4c. If Gi4c is a bicycle wheel
with axle xy and rim C, and there are four distinct vertices of C adjacent to both
x and y, then these are the only six vertices of Gi4c.

Proof. Suppose to the contrary that u1, u2, u3, and u4 are distinct vertices of C
adjacent to both x and y in Gp4c and there is another vertex u5. We may choose
the labelling of x and y so that xu5 ∈ Gi4c. Let D be a 1-drawing of Gp4c − xu5.

Let K be the subgraph of Gp4c − xu5 consisting of C and all edges between x
and vertices of C. (We do not include any chords of C that might exist in Gp4c.)
If x and y are both in the same face of D[C], then y is in some face F of D[C]
and at least two of u1, u2, u3, and u4 are not incident with F . This implies the
contradiction that D has at least two crossings.

We conclude that y is not in the same face of D[C] with x. It follows that xy
crosses C in D and this is the only crossing. We claim we can add the edge xu5 to
D to obtain a 1-drawing of Gp4c.

Let F be the unique face of D[K] incident with both u5 and u and let C ′ be
the cycle bounding F . If we cannot add xu5 in F , then there is an edge e of Gp4c

that has an end in each of the two components of C ′ − {x, u5}. Since C ′ − x ⊆ C,
it follows that both ends w1 and w2 of e are in C.

Since e is not an edge of Gi4c, there are vertices w3 and z of Gp4c so that z
has just the neighbours w1, w2, and w3. Since both x and y have at least four
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152 15. ON 3-CONNECTED GRAPHS THAT ARE NOT PERIPHERALLY-4-CONNECTED

neighbours, z /∈ {x, y}. Since one of x and y is a neighbour of z, w3 ∈ {x, y}.
Finally, z has at least two neighbours in C, so these are w1 and w2. We conclude
that z = u5.

We note that xy cannot cross the 3-cycle u5w1w2 in D. Therefore, we can move
w1w2 to the face of D[C] that contains y; in this new 1-drawing of Gp4c − xu5, x
and u5 are incident with the same face, giving the contradiction that Gp4c has a
1-drawing.

The final limitation is the following.

Lemma 15.36. Suppose G ∈ M3
2 reduces by planar 3-reductions to the graph

Gp4c that is a peripherally-4-connected extension of Gi4c. Suppose Gi4c is a bicycle
wheel with axle xy and rim C, and there are six distinct vertices x1, y1, x2, y2, x3,
y3 in this cyclic order on C, so that, for i = 1, 2, 3,, xi is adjacent to x and yi is
adjacent to y. Then these are the only six vertices of C.

We remark that we allow for the possibility that some (or all) of the xi are also
adjacent to y and, likewise, some of the yi can be adjacent to x.

Proof. Suppose to the contrary that there is another vertex u in C. If possible,
choose the xi, yi and u so that u is adjacent to only one of x and y. We may assume
that u occurs between x1 and y1 in the cyclic order on C. By the choice of the xi,
yi, and u, if u is adjacent to both x and y, then so are x1 and y1 and all vertices
between them on C.

Let D be a 1-drawing of Gp4c − xu. Let K be the subgraph of Gp4c − xu
consisting of C and all edges between x and vertices of C. (We do not include any
chords of C that might exist in Gp4c.) If x and y are on the same side of D[C],
then at most one of the yi is incident with the face of D[K] containing y, showing
D has at least two crossings, a contradiction. Therefore, the crossing of D is of xy
with an edge of C.

There is a face of D[K] incident with both x and u; let C ′ be its bounding
cycle. If we cannot add xu to D, it is because there is an edge e of Gp4c − xu with
an end in each of the components of C ′ − {x, u}. Since C ′ − x ⊆ C, it follows that
the ends w1 and w2 of e are both in C. Because Gp4c is a peripherally-4-connected
extension of a bicycle wheel, there are vertices z and w3 so that z has only the
neighbours w1, w2, and w3.

Both x and y have at least four neighbours in Gi4c, so z /∈ {x, y}; thus, z ∈ C.
Since z has two neighbours in C and at least one in {x, y}, it follows that w3 ∈
{x, y}, while w1 and w2 are the two C-neighbours of z. Therefore, z = u. As u is
adjacent to x, we conclude that u is not also adjacent to y. But now we can move
the edge w1w3 to the other side of C so that the resulting 1-drawing of Gp4c − xu
extends to a 1-drawing of G, a contradiction.

Lemmas 15.34, 15.35, and 15.36 effectively limit the possibilities for Gi4c. Each
of these must be checked for either having crossing number 1 or being 2-crossing-
critical. Those with crossing number 1 must have their peripherally-4-connected
extensions tested for 2-criticality. No matter what improvement is made to Lemma
15.34, this will require computer work to complete.

CASE 2: the 4-covered graphs.
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15.7. THE CASE OF V8-FREE 2-CROSSING-CRITICAL GRAPHS 153

We begin our analysis by describing three particular internally-4-connected 2-
crossing-critical graphs that are 4-covered.

Definition 15.37. (1) The 3-cube Q3 is the 3-regular, 3-connected, pla-
nar, bipartite graph with 8 vertices.

(2) The graph Qv3 is the bipartite graph obtained from Q3 by adding one new
vertex joined to all four vertices on one side of the bipartition of Q3.

(3) The graph Q2e
3 is the bipartite graph obtained from Q3 by adding two of

the four missing (bipartite-preserving) edges.
(4) The graph Qt3 is the graph obtained from Q3 by adding a 3-cycle abc on

one side of the bipartition of Q3 together with one edge joining the fourth
vertex d of the same part to the non-adjacent vertex in the other part of
the bipartition.

Lemma 15.38. The graphs Qv3, Q2e
3 , and Qt3 are all 2-crossing-critical.

Proof. We start with the following observation.

Claim 1. If D is a 1-drawing of Q3, then D is the unique planar embedding
of Q3.

Proof. If e and f are two non-adjacent edges of Q3, then it is easy to see that
they are in disjoint cycles. Therefore, no two edges of Q3 cross in D. �

We use Claim 1 to show that cr(Qv3) ≥ 2, cr(Q2e
e ) ≥ 2, and cr(Qt3) ≥ 2.

Adding the one vertex to the planar embedding of the 3-cube yields 2 crossings,
since each face of the 3-cube is incident with only 2 of the four vertices joined to
the new vertex. This shows cr(Qv3) ≥ 2.

For Q2e
3 , each of the two new edges joins vertices not on the same face of Q3

and so each has a crossing with Q3. Thus, cr(Q2e
3 ) ≥ 2.

For Qt3, the new edge e incident with d must cross Q3 in any drawing D of Qt3
for which D[Qt3] has no crossings. If the 3-cycle D[abc] also has a crossing with
Q3, then D has two crossings. Otherwise, D[abc] separates the two ends of D[e],
so D[e] crosses D[abc]. Thus, cr(Qt3) ≥ 2.

We now consider 2-criticality in each case.
For Qv3, deleting any edge of the 3-cube makes a face incident with 3 of the

four vertices and so yields a 1-drawing. Likewise deleting one of the edges incident
with the new vertex yields a 1-drawing.

For Q2e
3 , obviously deleting either of the edges not in Q3 yields a 1-drawing.

On the other hand, if e is an edge of Q3 incident with at most one of the vertices of
Q2e

3 of degree 4, then deleting e makes one of the newly adjacent pairs now lie on
the same face, yielding the required 1-drawing. If e is one the remaining two edges
of Q3, there is a 1-drawing of Q3− e with one crossing that extends to a 1-drawing
of Q2e

3 − e.
For Qt3, criticality of all the edges not incident with d is obvious, as it is the

new edge e incident with d. The remaining three edges are symmetric. Deleting
any one of these results in a subgraph that has crossing number 1 (we may move
the other end of e to the other side of abc to get a 1-drawing).
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154 15. ON 3-CONNECTED GRAPHS THAT ARE NOT PERIPHERALLY-4-CONNECTED

Lemma 15.39. Suppose G ∈M3
2 reduces by planar 3-reductions to a peripherally-

4-connected Gp4c with at least 8 vertices that is an extension of the internally-4-
connected 4-covered graph Gi4c. Then either G is one of the graphs Qv3, Q2e

3 , or
Gp4c has exactly 8 vertices.

Proof. Let a, b, c, d be the four vertices so that Gi4c−{a, b, c, d} is an independent
set I. For each x ∈ {a, b, c, d}, let X be the set of vertices in I adjacent to everything
in {a, b, c, d} \ {x}, and let R be the remaining vertices in I; a vertex in R is joined
to all of {a, b, c, d}.

Note that a vertex in R has degree 4 in Gi4c, so it is also a vertex of G; it
cannot be the outcome of any 3-reductions. If |R| ≥ 3, then G contains K3,4 and
so G = K3,4, a contradiction. Thus, |R| ≤ 2.

If, for some x ∈ {a, b, c, d}, |X| ≥ 2, then {a, b, c, d} \ {x} is a 3-cut in Gi4c

that separates any two vertices v, w in X from all the other vertices in I \ {v, w},
of which there are at least two. This contradicts the fact that Gi4c is internally
4-connected. Thus, |X| ≤ 1.

This implies that Gp4c has at most 10 vertices, but we can proceed a little
further.

If R = ∅, then Gi4c is planar (adding the K4 on {a, b, c, d} does not affect
planarity), which is a contradiction. Thus, |R| > 0.

If, for each x ∈ {a, b, c, d}, |X| = 1, then the bipartite subgraph of Gi4c consist-
ing of {a, b, c, d} and the four vertices in A ∪B ∪ C ∪D is the 3-dimensional cube
Q3. Adding one of the vertices in R to Q3 produces Qv3. That is, if all of A, B, C,
and D are not empty, |R| = 1 and G = Qv3.

Thus, we may assume R 6= ∅ and D = ∅.
If |R| = 2, then for Gi4c to have at least 8 vertices, at least two of A, B, and C

are not empty. Thus, Q2e
3 ⊆ Gp4c, so Gp4c = Q2e

3 .
In the final situation, we have |R| = 1 and, because Gp4c has at least 8 vertices,

all of A, B, and C are not empty. In particular, Gp4c has exactly 8 vertices, as
required.

A computer search can find all the peripherally-4-connected graphs having 8
vertices. These will include all the examples that are peripherally-4-connected
extensions of internally-4-connected, 4-covered graphs having 8 vertices. This com-
pletes our analysis of 3-connected, 2-crossing-critical graphs with no subdivision of
V8.
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CHAPTER 16

Finiteness of 3-connected 2-crossing-critical graphs
with no V2n

This section is devoted to showing that, for each n ≥ 3, there are only finitely
many 3-connected 2-crossing-critical graphs that do not contain a subdivision of
V2n. In particular, Theorem 16.14 asserts that if G has a subdivision of V2n but no
subdivision of V2n+2, then |V (G)| = O(n3).

The finiteness has been proved previously by completely different methods in
[13]. In our particular context, this shows that there are only finitely many 3-
connected 2-crossing-critical graphs that have a subdivision of V8 but do not have a
subdivision of V10; these are the only ones missing from a complete determination
of the 2-crossing-critical graphs.

The first subsection shows that, if G is a 3-connected 2-crossing-critical graph
that does not contain a subdivision of V2n+2, then, for any V2n

∼=H ⊆ G, each
H-bridge in G has at most 88 vertices. The second subsection shows that, for a
particular subdivision H of V2n, there are only O(n3) H-bridges having a vertex
that is not an H-node. These easily combine to give the O(n3) bound of Theorem
16.14.

16.1. V2n-bridges are small

The main result of this subsection is to show that if G ∈M3
2 and V2n

∼=H ⊆ G,
then anyH-bridge B is a tree with a bounded number of leaves, so that |V (B)| ≤ 88.
In the next subsection, we show that there are only O(n3) non-trivial H-bridges.

The next lemma will have as a corollary the first main result of this subsection.

Lemma 16.1. Let G ∈ M3
2, V2n

∼=H ⊆ G, n ≥ 3, and B an H-bridge. Then
|att(B)| ≤ 11n+ 12.

Proof. Let e be an edge of B incident with x ∈ att(B) and y ∈ Nuc(B). Then
De[B − e] is contained in a face F of De[H]. Because we know the 1-drawings of
V2n, we know that each face of De[H] is incident with at most n + 1 H-branches.
Moreover, B − e is an H-bridge in G − e and attG−e(B − e) is either attG(B) or
attG(B) \ {x}.

If B has at least 11(n + 1) + 2 attachments, then some H-branch b contains
at least 12 attachments of B − e. Let a1 . . . a12 be any 12 distinct attachments of
B − e occurring in this order in b. Let T ⊆ B be a minimal tree that meets att(B)
at a1, a3, a4, a6, a7, a9, a10, and a12, so that these ai are the leaves of T , and let
Q = [a1, b, a12]. Set Y = T ∪Q.

For i = 1, 4, 7, 10, there is a unique cycle Ci ⊆ Y that meets b precisely in
aiQai+2. Let I ⊆ {1, 4, 7, 10} be the subset such that, for i ∈ I, x /∈ Ci; clearly
|I| ≥ 3.
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156 16. FINITENESS OF 3-CONNECTED 2-CROSSING-CRITICAL GRAPHS WITH NO V2n

For each i ∈ I, let Mi be the Ci-bridge in G− e with H ⊆Mi ∪Ci. As x /∈ Ci,
x ∈ Nuc(Mi). Let Bi be the Ci-bridge in G − e containing y or Bi = y if y ∈ Ci.
Let Pi be a minimal subpath of Ci containing Bi ∩ Ci, so that aiQai+2 6⊆ Pi.

Claim 1. Let i, j, k ∈ I be distinct. If y /∈Mi ∪Mj , then:

• Bi = Bj ;
• Pi = Pj ⊆ Ci ∩ Cj ; and
• y ∈Mk.

Proof. If u and v are vertices in Ci ∩Cj , then u and v are not in b and there
is a unique uv-path P in T . We note that P ⊆ Ci ∩ Cj . Thus, Ci ∩ Cj is a path.

If there were a yCi-path disjoint from Cj , then y ∈Mi, a contradiction. There-
fore, every yCi-path meets Cj and, symmetrically, every yCj-path meets Ci. Thus,
every y(Ci ∪ Cj)-path has one end in Ci ∩ Cj . It follows that if y ∈ Ci ∪ Cj , then
y ∈ Ci ∩ Cj , so in this case Bi = Bj = ‖y‖.

In the case y /∈ Ci ∪ Cj , let B be the (Ci ∪ Cj)-bridge containing y. The
preceding paragraphs show that att(B) ⊆ Ci ∩ Cj , so that in fact B is also both a
Ci- and a Cj-bridge. In particular, Bi = Bj = B.

For the last part, we assume y /∈ Mk and note that B = Bi = Bj = Bk and
Ci∩Cj∩Ck is a non-null path P ′. If P ′ has length at least one, then P ′∪Ci∪Cj∪Ck
contains a subdivision of K2,3 and yet has all three of the vertices on one side
incident with a common face, which is impossible. Therefore, P ′ consists of a single
vertex z.

If z is not y, B has only z as an attachment in G− e. It follows that either z or
{z, x} is a cut-set of G, contradicting the fact that G is 3-connected. Thus, z = y,
and so, for some t ∈ {i, j, k}, y is an attachment of Mt; in particular, y ∈ Mt, a
contradiction. �

By Claim 1, there is an i ∈ I such that y ∈Mi. For such an i, set C = Ci and
note that x ∈Mi − att(Mi), so that M = Mi + e is a C-bridge in G. Furthermore,
attG(M) = attG−e(M − e).

Notice that De[C] is clean, since the crossing of De is between disjoint H-
branches. Thus, C has BOD in G − e. Also, any C-bridge B′ 6= M has C ∪ B′
planar. As attG(M) = attG−e(M − e), C has BOD in G.

Recall that the H-bridge B has ai, ai+1, and ai+2 as attachments. For any
vertex u of B not in b, there is an H-avoiding uai+2-path, whose edge e′ incident
with u is in some C-bridge B′. Since x and y are on the same side of De[C], M is
contained on that side of De[C] and e′ is on the other side. Therefore, B′ 6= M .

In De′ , the crossing is in H and De′ [C] is clean. That is, De′ [C ∪ M ] is a
1-drawing with C clean. Corollary 4.7 shows cr(G) ≤ 1, the final contradiction.

The following corollary is the first main result of this section.

Corollary 16.2. Let G ∈ M3
2, V2n

∼=H ⊆ G, n ≥ 3, B an H-bridge. Then
|att(B)| ≤ 45.

Proof. If n = 3, then the result is an immediate consequence of Lemma 16.1. Thus,
we may assume n ≥ 4. If B has attachments in the interiors of non-consecutive
spokes, then G is the Petersen graph and the result clearly holds.

Otherwise, B has attachments in at most two consecutive spokes. Thus, there
is a subdivision H ′ of V6 contained in H that contains all the attachments of B.
Applying Lemma 16.1 to H ′, we again see that |att(B)| ≤ 45.
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16.1. V2n-BRIDGES ARE SMALL 157

We now turn to the other half of the argument that bounds the number of
vertices in an H-bridge, namely, that the bridge is a tree. We need a new notion.

Definition 16.3. Let T ∗ be a graph consisting of subdivision of a K2,3 together
with three pendant edges, one incident with each of the three degree 2 vertices in
the K2,3. A tripod is any graph T obtained from T ∗ by contracting any subset of
the pendant edges; if all three pendant edges are contracted, then an edge is added
between the two copies of K1,3, but not having a vertex of contraction as an end
— this may be done in any of three essentially different ways. The attachments of
the tripod are the degree 1 and 2 vertices in T .

We are now ready for the second half of the main result of this section.

Lemma 16.4. Suppose G ∈ M3
2, V2n

∼=H ⊆ G, n ≥ 3, G has no subdivision of
V2(n+1), and B is an H-bridge. Then either B is a tree or B has a tripod, n = 3
and |V (G)| ≤ 10.

Proof. By way of contradiction, suppose B has a cycle C. If att(B) ∩ C 6= ∅,
let e be an edge of C incident with u ∈ att(B). If C ∩ att(B) = ∅, then let e be
any edge of C. The choice of e shows that B − e is an H-bridge in G− e and that
attG−e(B−e) = attG(B). Since De[H] contains the crossing in De[G−e], De[B−e]
is contained in a face F of De[H].

Let C ′ = ∂F×, so C ′ is a cycle in G′ = (G − e)×. Since G′ is planar, C ′ has
BOD in G′ and C ′∪B′ is planar for each C ′-bridge B′ in G′. If C ′∪B were planar,
then G′ + e would be planar, in which case cr(G) ≤ 1, a contradiction. Therefore,
C ′ ∪B is not planar.

We now introduce a convenient notion.

Definition 16.5. Let G be a graph. The graph Gt is the graph whose vertices
are the G-nodes and whose edges are the G-branches.

Claim 1. (C ′ ∪B)t is 3-connected.

Proof. Let L = (C ′ ∪ B)t. If |V (Nuc(B))| = 1, then L is a wheel and the
claim follows. So assume |V (Nuc(B))| ≥ 2. We show that any two vertices of L
are joined by three internally disjoint paths. For u,w ∈ Nuc(B), this is true in G,
so let P1, P2, P3 be such paths in G. If at least one Pi is contained in B−C ′, then
we can easily modify the others to use C ′ rather than G−B to get three paths in
L. If all three intersect Ce, then B ∩ (P1 ∪P2 ∪P3) is two claws Yu and Yw. There
is a YuYw-path in Nuc(B), which returns us to the previous case.

If u ∈ Nuc(B) and w ∈ C ′, then w is an attachment of B. Let Y be a claw in
B with centre u and talons on C ′. Using a C ′-avoiding wY -path in B, if necessary,
we can assume w is a talon of Y . It is then easy to use C ′ to extend the other two
paths in Y to w.

Finally, if u,w ∈ C ′, then both u and w are attachments of B, so there is a
C ′-avoiding path joining them. This path and the two uw-paths in C ′ yield the
required three paths. �

Definition 16.6. Let C be a cycle in a graph G and let P1 and P2 be disjoint
C-avoiding paths in G. Then P1 and P2 are C-skew paths if the two C-bridges in
C ∪ P1 ∪ P2 overlap.

As C ′ ∪B has no planar embedding, [25] implies B has either a tripod whose
attachments are in C ′ or two C ′-skew paths.
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158 16. FINITENESS OF 3-CONNECTED 2-CROSSING-CRITICAL GRAPHS WITH NO V2n

Claim 2. If B has a tripod T , then n = 3, G = H ∪ T and |V (G)| ≤ 14.

Proof. Let S be the attachments of T . As H ∪T is 2-connected and, relative
to the cut S, both H ′+ (taking H ′ to be any V6 containing S) and T+ are non-
planar. By Theorem 15.6, cr(H ′ ∪ T ) ≥ 2. Thus, G = H ′ ∪ T , so n = 3 and, again
by Theorem 15.6, |V (G)| ≤ 10. �

Thus, we can assume B has no tripod. Then B has C ′-skew paths, say P1 and
P2. Since these do not exist in B− e, e is in one of them. If C ∩ att(B) = ∅, choose
e′ any edge of C not in P1 ∪ P2. If C ∩ att(B) 6= ∅, choose e′ to be the other edge
of C incident with the same attachment as e.

Repeat with G − e′. This yields C ′′ so that B has C ′′-skew paths u′1u
′
2 and

w′1w
′
2 (e′ incident with u′1). Since u1u2 ∪w1w2 ⊆ B − e′, they are not C ′′-skew. In

C ′, we have the cyclic order u1, w1, u2, w2, say. In C ′′ we have u1u2w1w2. Likewise
in C ′ we have u′1u

′
2w
′
1w
′
2, while in C ′′ we have u′1w

′
1u
′
2w
′
2.

Let D and D′ be 1-drawings of H having all attachments of B on faces F, F ′,
respectively, so that the cyclic orders of att(B) are different in ∂F and ∂F ′.

Claim 3. n ≥ 4.

Proof. Let H be a subdivision of V6 in G. We remark that if f and f ′ are any
disjoint H-branches having internal vertices that are ends of an H-avoiding path P
in G, then H ∪ P is a subdivision of V8 in G.

We consider first the case that att(B) is not contained in any 4-cycle of H.
Because we know the 1-drawings of H and att(B) is contained in the boundary ∂F
of a face F of such a 1-drawing, ∂F is ×v1v2v3×. If B has attachments in both
〈×v1〉 and 〈v3×〉, then G has a subdivision of V8, as required. Thus, we may assume
that att(B) is contained in a 4-cycle Q of H, which we may take to be [v1v2v3v4v1].

In at least one of D and D′, Q is self-crossed (otherwise the cyclic orders of
att(B) are the same) and B is drawn in the face ×v1v6v3×. However, in this case
att(B) ⊆ 〈×, v1] ∪ [v3,×〉 and at least two attachments of B are in each. In this
case, we again have a subdivision of V8 in G, as required. �

Claim 4. B has no (interior) spoke attachment.

Proof. From Claim 3, we know that n ≥ 4. By way of contradiction, we
assume B has an attachment in 〈s0〉. From the listing of the faces of 1-drawings of
V2n, the only possibilities for each of ∂F and ∂F ′ are:

: (1) [v0, r0, v1, s1, vn+1, rn, vn, s0, v0];
: (1’) [v0, r−1, v−1, s−1, vn−1, rn−1, vn, s0, v0];
: (2) 〈v1, r0, v0, s0, vn, rn, vn+1, rn+1, vn+2〉;
: (2’) 〈v−1, r−1, v0, s0, vn, rn−1, vn−1, rn−2, vn−2〉;
: (3) 〈vn−1, rn−1, vn, s0, v0, r−1, v−1, r−2, v−2〉;
: (3’) 〈vn+1, rn, vn, s0, v0, r0, v1, r1, v2];
: (4) 〈v−1, r−1, v0, s0, vn, rn, vn+1〉;
: (4’) 〈vn−1, rn−1, vn, s0, v0, r0, v1〉;
: (5) [v0, v1, v2, . . . , vn, s0, v0];
: (5’) [v0, s0, vn, vn+1, vn+2, . . . , v−1, v0].

We now consider these possibilities in pairs. In every case, the ends of the skew
paths will occur in the same cyclic order on the boundaries of the two faces, which
is impossible.
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16.1. V2n-BRIDGES ARE SMALL 159

: (1,1’) att(B) ⊆ s0; same cyclic order, a contradiction.
: (2,2’) att(B) ⊆ s0; same cyclic order, a contradiction.
: (3,3’) att(B) ⊆ s0; same cyclic order, a contradiction.
: (4,4’) att(B) ⊆ s0; same cyclic order, a contradiction.
: (5,5’) att(B) ⊆ s0; same cyclic order, a contradiction.
: (1,2) att(B) ⊆ 〈v1, r0, v0, s0, vn, rn, vn + 1]; same cyclic order, a contradiction.
: (1,2’) att(B) ⊆ [v0, s0, vn]; same cyclic order, a contradiction.
: (1,3) att(B) ⊆ s0; same cyclic order, a contradiction.
: (1,3’) att(B) ⊆ 〈vn+1, rn, vn, s0, v0, r0, v1]; same cyclic order, a contradiction.
: (1,4) att(B) ⊆ 〈v1, r0, v0, s0, vn]; same cyclic order, a contradiction.
: (1,4’) att(B) ⊆ [v1, r0, v0, s0, vn]; same cyclic order, a contradiction.
: (1,5) att(B) ⊆ [v1, r0, v0, s0, vn]; same cyclic order, a contradiction.
: (1,5’) att(B) ⊆ [vn+1, rn, vn, s0, v0]; same cyclic order, a contradiction.
: (2,3) att(B) ⊆ s0; same cyclic order, a contradiction.
: (2,3’) att(B) ⊆ 〈vn+1, rn, vn, s0, v0, r0, v1]; same cyclic order, a contradiction.
: (2,4) att(B) ⊆ 〈vn+1, rn, vn, s0, v0]; same cyclic order, a contradiction.
: (2,4’) att(B) ⊆ 〈v1, r0, v0, s0, rn]; same cyclic order, a contradiction.
: (2,5) att(B) ⊆ 〈v1, r0, v0, s0, vn]; same cyclic order, a contradiction.
: (2,5’) att(B) ⊆ [v0, s0, vn, rn, vn+1, rn+1, vn+2〉; same cyclic order, a contradic-

tion.
: (3,4) att(B) ⊆ 〈v−1, r−1, v0, s0, vn]; same cyclic order, a contradiction.
: (3,4’) att(B) ⊆ 〈vn−1, rn−1, vn, s0, v0]; same cyclic order, a contradiction.
: (3,5) att(B) ⊆ 〈vn−1, rn−1, vn, s0, v0]; same cyclic order, a contradiction.
: (3,5’) att(B) ⊆ 〈v−2, r−2, v−1, r−1, v0, s0, vn]; same cyclic order, a contradiction.
: (4,5) att(B) ⊆ [v0, s0, vn]; same cyclic order, a contradiction.
: (4,5’) att(B) ⊆ 〈v−1, r−1, v0, s0, vn, rn, vn+1〉; same cyclic order, a contradiction.

As any pair gives the same cyclic order, we always get a contradiction. �

Claim 5. B is not a local H-bridge.

Proof. Suppose B is local, with att(B) ⊆ Q0. From Claims 3 and 4, we may
assume n ≥ 4 and B has no spoke attachment. Thus, att(B) ⊆ r0 ∪ rn. Moreover,
B cannot have attachments in both 〈r0〉 and 〈rn〉 because G has no subdivision of
V2(n+1). On the other hand, B has at least two attachments in both r0 and rn or
else the cyclic order of the ends of the skew paths is always the same. So we may
assume att(B) ∩ r0 = {v0, v1}. We need two attachments in rn. From the listing
of faces in 1-drawings of V2n, the only possibilities for ∂F and ∂F ′ occur when Q0

is not self-crossed and so the cyclic orders of the attachments of B are the same in
both cases, a contradiction. �

Claim 6. For some i, att(B) ⊆ ri ∪ ri+n+1.

Proof. By Claims 3, 4, and 5, n ≥ 4, B has no spoke attachments, and B is
not local.

We consider in turn the possibilities for the face of De[H] that contains B − e.
We know B is not local, so it can only be contained in a face whose boundary has
one of the following forms:

(1) [×, ri, vi, si, vi+n, ri+n−1,×];
(2) [×, ri, vi, ri−1, vi−1, si−1, vn+i−1, rn+i−1,×];
(3) [×, ri, vi+1, ri+2, . . . , vi+n−1, ri+n−1,×];
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160 16. FINITENESS OF 3-CONNECTED 2-CROSSING-CRITICAL GRAPHS WITH NO V2n

(4) [vi, si, vn+i, rn+i, vn+i+1, . . . , ri−1, vi]; or
(5) [×, ri, vi+1, ri+1, . . . , rn+i−1, vn+i, rn+i,×].

As in the proof of Claim 4, the faces of De[H] and De′ [H] containing B − e
and B − e′, respectively, cannot both be of one of the types (3, 4, 5): the vertices
of att(B) will occur in the same order in both cases.

If one of the drawings has B − e or B − e′ in a face of type (1), then we are
done: att(B) ⊆ ri ∪ ri+n−1. The remaining case is that one of the drawings has
B − e or B − e′ drawn in a face of type (2).

All other possibilities having been eliminated, we may assume (taking i = n+1)

att(B) ⊆ [×, r1, v1, r0, v0, s0, vn, rn,×] .

Because B is not local, att(B)∩〈r1〉 6= ∅. Because att(B) occurs in different orders
in ∂F and ∂F ′, att(B) ∩ rn 6= ∅. By way of contradiction, we suppose B also has
an attachment in [v0, r0, v1〉. The only other face which could allow these three
attachments is [×, r0, v1, r1, . . . , vi−1, ri−1, vn, rn,×]. Notice v0 is not in this second
boundary, so one attachment is in 〈r0〉. Because V2(n+1) 6⊆ G, no attachment is in
〈rn〉. Thus att(B) ∩ rn = {vn}. But then, once again, the attachments of B occur
in the same cyclic orders in ∂F and ∂F ′, a contradiction. �

As we have seen above, the alternative to “B is neither a tree nor contains a
tripod” is that B has the C ′-skew paths P1 and P2, as well as the C ′′-skew paths
P ′1 and P ′2. Claim 6 shows the four ends of P1 and P2 are in r0 ∪ rn+1. If three
of them are in r0, say, then they occur in the same cyclic order in ∂F and ∂F ′, a
contradiction. So two are in r0 and two in rn+1. If P1 has both ends in r0, say,
then the ends of P1 and P2 can never interlace, a contradiction as they interlace in
∂F . So each has one end in each of r0 and rn+1. Likewise for P ′1, P

′
2.

Adding at most 3 paths in B − att(B) to P1 ∪ P2 ∪ P ′1 ∪ P ′2, we obtain B′ ⊆ B
containing P1 ∪ P2 ∪ P ′1 ∪ P ′2 so that B′ is an H-bridge in H ∪B′.

Recall that n ≥ 4 by Claim 3. All the attachments of B′ are in H − 〈s3〉.
Suppose D′′ is a 1-drawing of (H ∪ B′) − 〈s3〉. Then D′′[B′] is in a face F ′′ of
D′′[H − 〈s3〉]. Since r0 and rn+1 both have at least two attachments of B′, they
are both incident with F ′′. Thus one of the pairs P1, P2 and P ′1, P

′
2 is a ∂F ′′-

skew pair. Therefore, cr((H ∪ B′) − 〈s3〉) ≥ 2, contradicting the fact that G is
2-crossing-critical.

Combining Corollary 16.2 and Lemma 16.4, we immediately have the main
result of this section.

Theorem 16.7. Let G ∈ M3
2, V2n

∼=H ⊆ G, n ≥ 3, and suppose G has no
subdivision of V2(n+1). If B is an H-bridge, then |V (B)| ≤ 88.

This completes the first main step of our effort to show that 3-connected, 2-
crossing-critical graphs with no subdivision of V2n have bounded size.

16.2. The number of bridges is bounded

This subsection, the final leg of this work, is devoted to showing that there is
a particular subdivision H of V2n in G so that there are at most O(n3) H-bridges
in G that have a vertex that is not an H-node. Theorem 16.7 shows that, for any
V2n
∼=H ⊆ G, all H-bridges have at most 88 vertices (when there is no subdivision

of V2(n+1)). The combination easily implies G has at most O(n3) vertices.
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16.2. THE NUMBER OF BRIDGES IS BOUNDED 161

Definition 16.8. Let G be a graph and let n be an integer, n ≥ 3. A subdivi-
sion H of V2n in G is smooth if, whenever B is an H-bridge with all its attachments
in the same H-branch, B is just an edge that is in a digon with an edge of H.

We begin by showing that every G ∈M3
2 with a subdivision V2n has a smooth

subdivision H of V2n. For such an H, every vertex of G either is an H-node or is
in an H-bridge that does not have all its attachments in the same H-branch. So it
will be enough to show that the number of these H-bridges is O(n3).

This analysis is completed in three parts. We start with the result that there
are not many H-bridges having an attachment in a particular vertex of H and an
attachment in the interior of some H-branch. This is useful for H-bridges having
both node and branch attachments, but is also used in the second part, which is
to bound the number of H-bridges having attachments in the interiors of the same
two H-branches. The final part puts these together with those H-bridges having
attachments in three or more H-nodes.

We start by showing that every G ∈M3
2 with a subdivision of V2n has a smooth

subdivision of V2n.

Lemma 16.9. Let G ∈ M3
2 and suppose G contains a subdivision of V2n, with

n ≥ 3. Then G has a smooth subdivision of V2n.

Proof. Choose H to be a subdivision of V2n in G that minimizes the number of
edges of G that are in H. We claim H is smooth.

To this end, let B be an H-bridge with all attachments in the same H-branch b
and let P be a minimal subpath of b containing att(B). Set K = B ∪P and notice
that K is both H-close and 2-connected. By Lemma 5.13, K is a cycle, so B is just
a path and, since G is 3-connected, just an edge. It remains to prove that P is just
an edge as well.

Let H ′ = (H ∪ B) − 〈P 〉. Evidently H ′ is a subdivision of V2n in G and
|E(H ′)| = |E(H)| − |E(P )|+ 1. Since |E(H)| ≤ |E(H ′)| by the choice of H, we see
that |E(P )| ≤ 1, and, therefore, P is just an edge, as required.

We now turn our attention to the H-bridges of a smooth subdivision H of V2n.
There are three main steps.

Step 1: Bridges attaching to a particular vertex and branch.

The first step in bounding the number of H-bridges is to bound the number of
them that can have an attachment at a particular vertex of H and in the interior
of a particular H-branch. This is the content of this step.

Lemma 16.10. Let G ∈ M3
2, V2n

∼=H ⊆ G, n ≥ 3 and suppose H is smooth.
For a vertex (not necesssarily a node) u of H and an H-branch b, there are at most
41 H-bridges with an attachment at u and an attachment in 〈b〉 − u.

Proof. Suppose there are 42 such H-bridges. Let B0 be one of them, let e ∈ E(B0)
and let D be a 1-drawing of G − e. If u /∈ 〈b〉, then at most 4 faces of D[H] are
incident with 〈b〉, and therefore at least 11 of these H-bridges (other than B0)
are in the same face F of D[H]. If u ∈ 〈b〉, then precisely two faces of D[H] are
incident with u, so at least 21 of these bridges are in the same face F of D[H] and
of these at least 11 have an attachment in the same component of D[b−u]∩ (∂F )×.
In both cases, let B be the set of 11 bridges, contained in F , having u as an
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162 16. FINITENESS OF 3-CONNECTED 2-CROSSING-CRITICAL GRAPHS WITH NO V2n

attachment and an attachment in the same component b′ of D[b− u] ∩ (∂F )×. As
D[(∂F )× ∪ (∪B∈BB)] is planar with (∂F )× bounding a face, no two (∂F )×-bridges
in B overlap.

Let P = b′ and Q = (∂F )× − 〈P 〉. Lemma 4.8 applies to (∂F )×, P , Q, B. As
there are no digons disjoint from H, there is a unique (up to inversion) ordering
B1, . . . , B11 of B so that P = PB1

. . . PB11
and Q = QB1

. . . QB11
.

Because u ∈ QB1∩QB2∩· · ·∩QB11 and the QBi are internally disjoint subpaths
of Q, all of QB2 , . . . , QB10 are just u. For i = 1, . . . , 11, let ai and a′i be the ends of
Pi, so that P = (. . . , a2, . . . , a

′
2, . . . , a3, . . . , a

′
3, . . . , a10, . . . , a

′
10, . . .).

Claim 1. For i ∈ {2, . . . , 9}, ai 6= a′i+1.

Proof. Otherwise, ai = a′i = ai+1 = a′i+1, implying that Bi and Bi+1 consti-
tute a digon disjoint from H, which is impossible. �

For i, j ∈ {2, 3, . . . , 10} with i < j, set Kij = (∪jk=iBk) ∪ aiPa′j .

Claim 2. For i, j ∈ {2, . . . , 10} with i < j, Kij is 2-connected.

Proof. Let Ri be an H-avoiding uai-path in Bi, and Rj an H-avoiding ua′j-
path in Bj . Then Cij := Ri ∪ Rj ∪ aiPa′j ⊆ Kij is a cycle containing u and
aiPa

′
j .

For x ∈ Bk, i ≤ k ≤ j, x /∈ H, for any H-node w 6= u, G has 3 internally
disjoint xw-paths; at least two of these leave Bk in akPa

′
k, and so no cut vertex of

Kij separates x from Cij . �

Since b′ is not crossed in D, D[Ki,i+2] is clean and is contained in F ∪ ∂F .
There is a unique face Fi of D[Ki,i+2] so that Fi 6⊆ F ; since Ki,i+2 is 2-connected,
Fi is bounded by a cycle Ci. As D[Ki,i+2] ⊆ F ∪ ∂F , ∂F ⊆ Fi ∪ ∂Fi. As D[u] ∈
∂F ∩D[Ki,i+2], D[u] ∈ ∂Fi. Likewise D[aiPa

′
i+2] ⊆ ∂Fi.

Thus, u ∈ Ci and aiPa
′
i+2 ⊆ Ci. Therefore, Ci ∩ H is u and aiPa

′
i+2, from

which we deduce that there is a Ci-bridge Mi so that H ⊆ Ci ∪Mi. Observe that
Bi+1 is a Ci-bridge different from Mi.

For i = 2, 5, 8, let ei be an edge of Bi+1 incident with u, and let Di be a
1-drawing of G− ei.

Claim 3. For i ∈ {2, 5, 8}, Ci has BOD in G and Di[Ci] is not clean.

Proof. At most one of D2[Ci], i ∈ {2, 5, 8} is crossed, so for at least one
i ∈ {5, 8}, De[Ci] is clean. It follows that Ci has BOD in G− e.

By Claim 1, a3 6= ai, whence B3 ⊆ Mi, and B3 − e ⊆ Mi − e. Furthermore,
u ∈ H, so u ∈ att(Mi − e). Thus attG−e(Mi − e) = attG(Mi) and Mi − e is a
Ci-bridge in G− e. We conclude that the overlap diagrams for Ci in G− e and G
are isomorphic and, therefore, Ci has BOD in G.

We now show that all three Cj , j ∈ {2, 5, 8}, have BOD in G. If Di[Ci] is clean,
then Di[Ci∪Mi] is a 1-drawing of Ci∪Mi, implying via Corollary 4.7 that cr(G) ≤ 1,
a contradiction. So Di[Ci] is not clean, and, therefore, for j ∈ {2, 5, 8} \ {i}, Di[Cj ]
is clean. Thus, Cj has BOD in G − ei, and, following the argument above for Ci,
we deduce that Cj has BOD in G. �

Claim 4. For i ∈ {2, 5, 8}, one face of Di[Ci] contains all H-nodes, other than
(possibly) u.
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16.2. THE NUMBER OF BRIDGES IS BOUNDED 163

Proof. Let e′i be the edge of H so that Di[e
′
i] crosses Di[aiba

′
i+2] and let b′i

be the H-branch containing e′i. If n = 3, let R be a hexagon in H containing b and
b′i. For n ≥ 4, both b and b′i are in the rim R of H.

Since b and b′i are disjoint, for n ≥ 3, R− (〈b〉 ∪ 〈b′〉) has two components, each
with at least two nodes of H. Either of these with ≤ n nodes has all its nodes
adjacent by spokes to the other component. Obviously, there is at least one such.

Observe that if A is any path in R − (〈b〉 ∪ 〈b′i〉) such that Di[A] has a vertex
in each face of Di[Ci], then u ∈ V (A) and the two paths P, P ′ in A having u as an
end are such that Di[P ] and Di[P

′] are in different faces of Di[Ci].
Let K be a component of R−(〈b〉∪〈b′i〉) not containing u and let L be the other.

Then Di[K] is in the closure of a face Fi of Di[Ci]. We claim that Di[L] ⊆ Fi∪{u}.
Any H-node w in L that is joined by a spoke to an H-node w′ in K has

Di[w] ⊆ Fi ∪Di[u], since otherwise Di[ww
′] crosses Di[Ci].

If there is an H-node w in L that is not adjacent by a spoke to any vertex in
K, then w is adjacent by a spoke to another H-node w′ in L and, moreover, w and
w′ are the first and last nodes of L. As Di[ww

′] is disjoint from Di[Ci], we deduce
that there is a face F of Di[Ci] so that Di[w] and Di[w

′] are both in F ∪ Di[u].
Therefore, Di[L] is contained in that face. As at least one H-node in L is adjacent
by a spoke to an H-node in K, we conclude that Di[L] ⊆ Fi ∪Di[u]. �

Let Fi be the face of Di[Ci] containing all the H-nodes and let F ′i be the other
face of Di[Ci].

Claim 5. For i ∈ {2, 5, 8}, the crossing in Di is not in
〈
ai+1, b, a

′
i+1

〉
.

Proof. Suppose by way of contradiction that e′i is an edge of G − ei so that
Di[e

′
i] crosses

〈
ai+1, b, a

′
i+1

〉
. Clearly, ai+1 6= a′i+1. Since H − 〈b〉 is 2-connected,

there is a cycle C ′ ⊆ H containing e′i. Let P be an H-avoiding ai+1a
′
i+1-path in

Bi+1 and let C be the cycle P∪[ai+1, b, a
′
i+1]. Then C and C ′ are graph-theoretically

disjoint and Di[C]∩Di[C
′] contains the crossing of Di. But then Di[C] and Di[C

′]
must cross a second time, a contradiction. �

Claim 6. The only Ci-bridge that overlaps Bi+1 is Mi.

Proof. Let B be a Ci-bridge different from Mi overlapping Bi+1. Then
att(B) ⊆ [aiba

′
i+2] ∪ {u}. As H is smooth, u ∈ att(B). We claim both Bi+1

and B overlap Mi.
By Claim 1, ai 6= a′i+1, so Bi+1 either has an attachment in

〈
ai, a

′
i+2

〉
or it

has both ai and a′i+2 as attachments. In either case, Bi+1 overlaps Mi (which has
attachments at u, ai, a

′
i+2).

Likewise B either has two attachments in
[
ai, a

′
i+2

]
or at least one attachment

in
〈
ai+1, a

′
i+1

〉
⊆
〈
ai, a

′
i+2

〉
, so B overlaps Mi. But now Bi+1, Bi, and Mi make a

triangle in OD(Ci), contradicting Claim 3. �

Let b′ be the H-branch that crosses Ci in Di and let x be the H-node so that
the crossing is in [x, b′, u].

Claim 7. Let L be the graph [Di[G−ei]∩(cl(F ′i ))]
×∪Bi+1. Then the Ci-bridge

containing [×, b′, u] overlaps Bi+1 in L.

Proof. If L embeds in the plane with Ci bounding a face, then this embedding
combines with Di restricted to the closure of F to yield a 1-drawing of G, which
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164 16. FINITENESS OF 3-CONNECTED 2-CROSSING-CRITICAL GRAPHS WITH NO V2n

is impossible. As each individual Ci-bridge B in L has Ci ∪ B planar, there are
overlapping Ci-bridges in L.

By definition, L is planar with all Ci-bridges other than Bi+1 on the same side
of Ci. Therefore Bi+1 overlaps some other Ci-bridge in L. By Claim 6, this is not
any Ci-bridge other than Di[Mi]

×∩Di[L], that is, the one containing [×, b′, u]. �

By Claim 4, [ai, b, a
′
i+2]−× has a component A containing att(Bi+1)− u. Let

z be the one of ai and ai+2 that is an end of A and let Q be the minimal subpath
of A containing all of z, ai+1, a

′
i+1. By Claim 7, Mi has an attachment wi ∈ [zQ〉

and an H-avoiding path Qi from wi to a vertex xi ∈ 〈×, b′, u〉. Notice that, if
j ∈ {2, 5, 8} \ {i}, then Qi ∩ Cj = ∅.

There are at most two H-branches (or subpaths thereof) incident with u that
can cross b. Thus for some i, j ∈ {2, 5, 8}, b′i = b′j . Choose the labelling so that
xi is no further in b′i from u than xj is. Since xb′ju contains xi, Dj [xi] ⊆ F ′j but
Dj [wi] ⊆ Fj . Since Qi ∩ Cj = ∅, Dj [Qi] crosses Cj , the final contradiction.

The other steps in the argument are to show that a smooth subdivision H of
V2n in G has few bridges with attachments in the interiors of distinct H-branches.
There are two parts to this: either the branches do or do not have a node in
common. We first deal with the latter case.

Step 2: H-bridges joining interiors of disjoint H-branches.

Lemma 16.11. Let G ∈ M3
2, V2n

∼=H ⊆ G, n ≥ 3, H smooth and suppose G
has no subdivision of V2(n+1). If b1, b2 are disjoint H-branches, then there are at
most 164n+ 9 H-bridges having attachments in both 〈b1〉 and 〈b2〉.

Proof. Suppose there is a set B of 164n + 10 H-bridges having attachments in
both 〈b1〉 and 〈b2〉. Let B0 ∈ B and let e ∈ B0. In De, at most 4 faces are incident
with 〈b1〉, so there is a set B′ consisting of 41n+ 3 elements of B \{B0} in the same
face of De[H]. By Lemma 4.8, there is a unique ordering (B1, . . . , B41n+3) of the
elements of B′ so they appear in this order in both 〈b1〉 and 〈b2〉. It follows that
B2, . . . , B41n+2 have all attachments in 〈b1〉 ∪ 〈b2〉. By Lemmas 4.8 and 16.10, Bi
and Bi+41 are totally disjoint. So there are n + 1 totally disjoint 〈b1〉 〈b2〉-paths
with their ends having the same relative orders on both.

We aim to use these disjoint paths to find a subdivision of V2(n+1) in G. We
need the following new notion.

Definition 16.12. Let e = uw and f = xy be edges in a graph G. Two
cycles C and C ′ in G are ef -twisting if C = (u, e, w, . . . , x, f, y, . . . ) and C ′ =
(u, e, w, . . . , y, f, x, . . . ), i.e., C and C ′ traverse the edges e and f in opposite ways.

We note that V6 has edge-twisting cycles: if e = uw and f = xy are disjoint
edges in V6, with u, x not adjacent, then the 4-cycle (u,w, x, y, u) and the 6-cycle
(u,w, z, y, x, z′, u) are ef -twisting.

Next suppose n ≥ 4. There are three possibilities for b1 and b2.

: Case 1: Both b1 and b2 are in R. We may assume without loss of generality
(recall that b1 and b2 are not adjacent) that b1 = r0, b2 = ri, 2 ≤ i ≤ n.
Set H ′ = R ∪ s0 ∪ s1 ∪ s2, so H ′ ∼= V6. Then b1 and b2 are in disjoint
H ′-branches and so H ′, and therefore H, contains b1b2-twisting cycles.
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16.2. THE NUMBER OF BRIDGES IS BOUNDED 165

: Case 2: One is in R, the other is a spoke. We may assume without loss of
generality that b1 = r0, b2 = si, i /∈ {0, 1}. Set H ′ = R∪s0∪s1∪si. Then
b1 and b2 are in disjoint H ′-branches, so H ′, and therefore H, contains
b1b2-twisting cycles.

: Case 3: Both b1 and b2 are spokes. We may assume without any loss of generality
that b1 = s0, b2 = si. Then there exists j ∈ {0, . . . , n − 1} \ {0, i}. Set
H ′ = R ∪ s0 ∪ si ∪ sj . Then b1 and b2 are in disjoint H ′-branches and so
H ′, and therefore H, contains b1b2-twisting cycles.

Choose the cycle C in the twisting pair in H for b1 and b2 so that C traverses
b1 and b2 in order so that the ends ui, wi of the n + 1 disjoint paths occur in C
as u1, u2, . . . , un+1, . . . , w1, . . . , wn+1. Then C and these paths are a subdivision of
V2(n+1) in G, contradicting the assumption that G has no subdivision of V2(n+1).

Next is the third and final consideration.

Step 3: H-bridges joining interiors of H-branches having a common node.

Lemma 16.13. Let G ∈ M3
2, V2n

∼=H ⊆ G, n ≥ 3, and let b1, b2 be adjacent
H-branches. Then at most 2 H-bridges have attachments in both 〈b1〉 and 〈b2〉.

Proof. By way of contradiction, suppose there is a set {B1, B2, B3} of 3 such
H-bridges. For each i ∈ {1, 2, 3}, let ei ∈ Bi. There is precisely one face Fi, of a
1-drawing Di of G− ei, that is incident with both 〈b1〉 and 〈b2〉. Thus, for each Bj ,
j 6= i, Di[Bj ] ⊆ Fi. Clearly for {j, k} = {1, 2, 3} \ {i}, Bj and Bk do not overlap
on Fi. In particular, their attachments in b1 and b2 are in the same order as we
traverse them from their common end u. Thus we may assume B1, B2, B3 appear
in this order from u on both b1 and b2.

Notice that att(B3) 6= att(B2). Therefore, there is a cycle C ⊆ B2 ∪ b1 ∪ b2
consisting of a 〈b1〉 〈b2〉-path in B2 and a subpath of b1 ∪ b2 containing u, such that
C does not contain some attachment w of B3. Reselect e3 ∈ B3 to be incident with
w. Let MC be the C-bridge so that H ⊆ C ∪MC .

Then w ∈ Nuc(MC), so B3 ⊆ MC . Furthermore, if e3 is incident with an
attachment x of MC , then x is contained in R. In particular, it is incident with
another edge of MC . Thus, MC − e3 is a C-bridge in G − e3 having the same
attachments as MC has in G. Because C is H-close, D1[C] is clean; furthermore,
D1[C ∪MC ] is a 1-drawing of C ∪MC . Since D3[C] is also clean, C has BOD in
G− e3 and hence in G. Corollary 4.7 implies the contradiction that cr(G) ≤ 1.

We end this section with the asserted finiteness of 3-connected 2-crossing-cri-
tical graphs with no subdivision of V2n+2.

Theorem 16.14. Suppose G ∈ M3
2 and there is an n ≥ 3 so that G has a

subdivision of V2n, but no subdivision of V2(n+1). Then |V (G)| = O(n3).

Proof. By Lemma 16.9, G has a smooth subdivision H of V2n. We may assume
no H-bridge contains a tripod, as otherwise |V (G)| ≤ 14 by Lemma 16.4.

We first claim that a vertex u of H that is not an H-node is an attachment
of some H-bridge B not having all its attachments in the same H-branch. Since
u has degree 2 in H and degree greater than 2 in G, u is an attachment of some
H-bridge. Because H is smooth, an H-bridge that has all its attachments in the
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166 16. FINITENESS OF 3-CONNECTED 2-CROSSING-CRITICAL GRAPHS WITH NO V2n

same H-branch is an edge in a digon. If all the H-bridges attaching at u are such
edges, then u has only two neighbours and G is not 3-connected, a contradiction.

Thus, every vertex of G is either an H-node or is in some H-bridge that does
not have all its attachments in the same H-branch. We bound the number of these
H-bridges as follows.

We claim that, for any three H-nodes u, v, w, at most two H-bridges have all
three of u, v, w as attachments. To see this, suppose three nontrivial H-bridges
Bi, i = 1, 2, 3, all have all of u, v, w as attachments. Each Bi contains a claw Yi
having u, v, w as talons. Then Y1 ∪ Y2 ∪ Y3 ∪ H contains a subdivision of K3,4,
in which case 2-criticality implies G is K3,4. Thus, at most two H-bridges have

attachments in any three nodes. So there are at most 2
(

2n
3

)
nontrivial H-bridges

with only node attachments.
Every other H-bridge of concern has an attachment in the interior of some

H-branch and at some vertex of H not in that H-branch. Lemma 16.10 implies
that there are at most (2n)(3n)41 H-bridges with an attachment in an H-node and
in an open H-branch.

Lemma 16.11 implies there are at most (
(

3n
2

)
−6n)(164n+ 9) H-bridges having

attachments in the interiors of disjoint H-branches.
Lemma 16.13 implies there are at most 2 H-bridges with attachments on two

given adjacent H-branches and so there are at most 6n(2) H-bridges with attach-
ments on two adjacent H-branches.

Every H-bridge has at most 88 vertices, and every vertex of G is either an
H-node or in one of these enumerated H-bridges. Therefore,

|V (G)| ≤ 88

{
2

(
2n

3

)
+ 2n · 3n · 41 + 6n(2) +

[(
3n

2

)
− 6n

] [
164n+ 9

]}
.
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CHAPTER 17

Summary

This short section provides a single theorem and some remarks summarizing
the current state of knowledge about 2-crossing-critical graphs.

Theorem 17.1 (Classification of 2-crossing-critical graphs). Let G be a 2-
crossing-critical graph.

(1) Then G has minimum degree at least two and is a subdivision of a 2-cros-
sing-critical graph with minimum degree at least three.

Thus, we henceforth assume G has minimum degree at least three.
(2) If G is 3-connected and contains a subdivision of V10, then G ∈ T (S)

(Definition 2.12). That is, G is a twisted circular sequence of tiles, each
tile being one of the 42 elements of S (Definition 2.10).

(3) If G is 3-connected and does not have a subdivision of V10, then G has at
most three million vertices (so there are only finitely many such examples).
Each of these examples either
• has a subdivision of V8 or
• is either one of the four graphs described in Theorem 15.6 or obtained

from a 2-crossing-critical peripherally-4-connected graph with at most
ten vertices by replacing each vertex v having precisely three neighbors
with one of at most twenty patches, each patch having at most six
vertices (so G has at most sixty vertices).

(4) If G is not 3-connected, then either
• G is one of 13 examples that are not 2-connected, or
• G is 2-connected, has two nonplanar cleavage units, and is one of 36

graphs, or
• G is 2-connected, has one nonplanar cleavage unit, and is obtained

from a 3-connected 2-crossing-critical graph by replacing digons with
digonal paths.

We conclude with some remarks on what remains to be done to find all 2-
crossing-critical graphs.

Remark 17.2. In Section 15.7, we provided a method for finding all 3-connected,
2-crossing-critical graphs not containing a subdivision of V8. It would be desirable
for this program to be completed.

Remark 17.3. The remaining unclassified 3-connected, 2-crossing-critical graphs
have a subdivision of V8 but not of V10. The works of Urrutia [36] and Austin [3]
have found many of these, but more work is needed to find a complete set. It
may be helpful to note that we have found all such examples that do not have a
representativity 2 embedding in the projective plane. The known instances are all

167
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168 17. SUMMARY

quite small, so it is reasonable to expect that each of these has at most 60 vertices
or so.
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(T, U)-configuration, 137

<uPv>, 17

<uPv], 17

AB-path, 14

Au, 84

Aw, 84

BOD, 14

C-exterior, 24

C-interior, 24

C-skew paths, 158

Ce, 112

GH
v , 137

Gt, 158

Gp4c, 137

Gi4c, 151

Gv , 130

H-avoiding, 14

H-bridge, 14

H-close, 17

H-face, 19

H-friendly, 31

H-green, 30

H-hyperquad, 17

H-node, 11

H-quad, 17

H-rim, 12

H-yellow, 74

K-prebox, 17

K\, 79

Kmax
v , 133

Kmin
v , 134

Kv , 130

compatible, 137

compatible substitution, 137

Ki
v , 130

K∗3,4, 127

Krep(v), 141

L−
⊗
AP B, 17

L∼=H, 11

L+, 128

Lw, 142

M∆e , 84

NBOD, 14

OD(C), 14

P ′i , 112

PQ, 17

Pu, 84

Pw, 84

Q3, 154

Qt
3, 154

Qv
3 , 154

Q2e
3 , 154

Qi-local H-bridge, 61

R, 12

R-separated, 76

V2n, 1, 11

embeddings, 12

[uPv>, 17

[uPv], 17

∆e, 84

Au, 84

Aw, 84

Pu, 84

Pw, 84

ue, 84

we, 84

xe, 84

peak, 87

sharp, 87

Loc(H), 65

Nuc(B), 14

Π-pretidy, 63

Π-tidy, 64

α, 12

β, 12

P
←i, 79

P
→i, 79

S, 7

cl(Q), 74

H#, 19

γ, 12

‖W‖, 14

[uPvQw], 17

=i, 79

M3
2, 12

N̄H , 137
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N , 51

D, 12

M, 12

K, 129

µ(e), 62

⊗, 5

i<, 79

tcr, 5

T (S), 9
←
P i, 79
→
P i, 79

{x, y, z}-claw, 17

a, 12

att(B), 14

b, 12

e-triangle, 146

ef -twisting, 165

k-bond, 121

k-drawing, 5

u-consecutive, 99

ue, 84

w-backslope, 115

w-chord, 115

w-chord+w-slope, 115

w-consecutive, 99

w-slope, 115

we, 84

xe, 84

((G,H,Π, γ)), 50

internally-4-connected, 146

peripherally-4-connected, 127

extension, 151

1-drawing, 5

2-jump, 69

2-separation, 121

2.5-jump, 69

3-equivalent bridges, 14

3-jump, 69

3-reductions, 130

planar, 133

3-rim path, 74

4-covered graph, 150

arm (of a hug), 146

attachment, 14

attachments

of a tripod, 158

avoiding, 14

axle, 150

backslope, 115

bearhug, 147

bicycle wheel, 150

axle, 150

rim, 150

spokes, 150

bipartite overlap diagram, 14

BOD, 14

bond, 121

box, 20

bridge, 14

attachment, 14

bipartite overlap diagram, 14

equivalent, 14

global, 61

local, 61

Möbius, 17

nucleus, 14

overlap, 14

overlap diagram, 14

planar C-bridge, 15

residual arc, 14

skew, 14

skew paths, 158

centre, 17

chord, 115

chord+slope, 115

chordless, 57

claw, 17

centre, 17

talon, 17

clean, 15

cleavage unit, 121

close, 17

closure, 74

compatible, 137

substitution, 137

complement, 79

configuration, 137

consecutive, 99

crossbar, 115

crossing-critical, 1

cut-edge, 131

deletable (hug), 147

simultaneously deletable, 147

digon, 120

digonal path, 120, 125

doglike, 138

nose, 138

equivalent, 14

exceptional, 30

exposed, 23

exterior, 24

face, 19

friendly, 31

friendly, standard quadruple, 50

fsq, 50

global H-bridge, 61

green, 30

head (of a hug), 146

hinge, 121

hinge-separation, 121
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hug, 146

arm, 146

bearhug, 147

deletable, 147

head, 146

simultaneously deletable, 147

hyperquad, 17

inside, 52

interior, 24

isthmus, 131

jump, 69

local H-bridge, 61

Möbius bridge, 17

Möbius ladder, 11

H-rim, 12

H-spoke, 11

rim, 11

rim branch, 11

spoke, 11

NBOD, 14

node, 1, 11

non-planar C-bridge, 15

non-trivial =i i<-path, 79

nose, 138

nucleus, 14

open H-claw, 17

outside, 52

overlap, 14

overlap diagram, 14

bipartite, 14

path, 14

AB-path, 14

peak, 87

planar C-bridge, 15

planar 3-reductions, 133

prebox, 17

pretidy, 63

quad, 17

red, 30

reduces (by 3-reductions), 130

reducible (3-cut), 129

representativity, 10

residual arc, 14

rim, 9, 11, 12

rim (of a bicycle wheel), 150

rim branch, 11

rim path, 74

scope, 79

separated, 76

separation, 121

sharp, 87

simultaneously deletable, 147

skew bridges, 14

skew paths, 158
slope, 115

smooth, 162

span, 69
spanned by, 69

spine, 79

spoke, 11
exposed, 23

spokes (of a bicycle wheel), 150

standard labelling, 23
substitution, 137

talon, 17
tidy, 64

tile, 5

k-degenerate, 6
compatible, 5

crossing number, 5

cyclization, 6
join, 5

tile drawing, 5
triangle (e-), 146

tripod, 158

attachments, 158
trivial =i i<-path, 79

twisting, 165

virtual edge, 121

yellow, 74
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