COMPOUND MODULES AS GOALS

UDK 681.3.06 PROLOG:519.682

Osnovna objektna interpretacija

in brisanje modulov,

Jezikov tipa

Nekateri jeziki te druzine (npr.
vzporedno/zaporedno kompozicijo in eksplicitno komunikacijo,
primerni za sgpecifikacijo komunikacijskih protokoclov.
pritujotega dela je lo¢itev poima modula od pojma cilja,

INFORMATICA 3/1988

Monika Kapus-Kolar
IJS, Ljubljana

Prolog je Kreiranje
Delta Prolog) uvajajo

zaradi ¢esar so
Najvaznejsa ideja
tako da lahko vsak

. modul sodeluje v ve¢ ciljih (sestavljenih modulih). Jezik Hornovih stavkov =z
vzporedno/zaporedno kompozicijo atomi¢nih dogodkovnih in nedogodkovnih ciljev
amo dopolnili =z novimi sintakti¢nimi elementi, ki v 1luéi nove izvedbene
semantike omogoc¢ajo bolj jedrnato specifikacijo komunikacijiskih protokolov,
pogebno tistih, pri Kkaterih so potrebne 3tevilne operacije na posamezni

zapleteni podatkovni strukturi.

Jedrnatost dosezemo s temeljito izrabo

moznosti, ki jih nudi struktura sestavljenih modulov, ki je ponavadi precej
preprostejsa kot sintaksa atomiénih modulov.

- The basic object paradigm of Prolog-type languages is creation and deletion of

modules. Some

languages of the family (e.g.
lel/sequential composition and explicit communication,

Delta Proleg) introduce paral-
what makes them sui-

table for gpecification of communication protocols. The main contribution of

the paper is separation of the "module"
that a module may participate in several goals

concept from the concept of "goal", so

(compound modules). Some

syntactic enhancements have been proposed for the language of Horn clauses
with parallel/sequential composition of atomic event and non-event goals,
which in the light of the new operational semantics provide for more concise

specification of protocols,
on a complicated piece of data.

particularly those requiring multiple operations
The core idea of the new language is full

exploitation of the structure of compound modules, which is usually much more

simple than the syntax of atomic modules.

1. Introduction

The basic idea behind languages of the Prolog
family is to find solutions to a problem (goal)
by its reduction into more and more trivial
subproblems (subgoals).

A Prolog program, [4}, 18 a set of universally
quantified first order axioms (Horn clauses) of
the form

A:- By ,Bz,...,Bs

where the A and the B's are atomic formulae,
also called atomic goals. A is called the
clause's head and the B's are called its body.
The computation proceeds by selection of a goal
Ay from the current conjunctive goal
(R, ,A=, ... ,An), which is then reduced with a
selected clause .

A’ :- By ,B=2,...,Bw

where A and A’ must be unifiable via the most
common substitution 6. The reduction step
transforms the current goal into

(As, ..., A1—1,Ba, ..., Bu,Arvs,....AL)0.

In the process of unification, some of the
variables of the initial goal are assigned

values, which constitute .the output of the
computation. The computation terminates suc-
cessfully, when the initial goal is reduced
into an empty goal, but may terminate unsuc-
cessfully, if no further reduction is possible,
or not terminate at all. Several successful
computations of a program may exist, resulting
from various selections of clauses for reduc-
tion.

Graphical representation of a Prolog program is
an AND/OR tree with AND nodes modelling compo-—
gition of goals into a clause body and OR nodes
enumerating the suitable clauses for reduction
of a particular goal. Several goals can Dbe
reduced in parallel (AND-parallelism) and seve-
ral alternative solutions searched for in pa-

rallel (OR-~parallelism). True concurrency is
allowed, if atomicity of reduction steps 1is
preserved.

The inherent AND-parallelism of Prolog programs
makes them suitable for operational specifica-
tion of communication protocols. An AND subtree
of the AND/OR tree models a particular execu-
tion of a system, while the search of the
entire AND/OR tree represents verification of
all ' possible behaviours of the system. Note,
that logic programming is also suitable for
axiomatic specification and verification of
communication protocols, but the paper does not
deal with this aspect.

The language has two major deficiencies: First,
by introducing AND-parallelism, the execution
order is controlled by the goal-subgoal rela-
tion only, 8o it iz difficult to describe
sequential protocols. Second, communication
between goals is implicit and asynchronous via
common variables, while partners in communica-
tion protocols are usually loosely coupled (not
sharing any variables).

To solve the first problem, many Prolog-type
languages (e.g. Delta-Prolog (DP) (6,7}, Con-
current Prolog (CP) (5], M~Proleg ([9]) make
distinction between the parallel (i!) and the
sequential (i) composition of goals. Declarati-
vely, the two composition operators are equjva-
lent to the AND-operator, but serve to specify
the execution order in the spirit of CCS (1],
CSP [2] or LOTOS [3].

In the literature, we meet two types of expli-
cit communication: communication on the level
of variables and communication on the level of
atomic goals. An example of the first type are
the '"read-only'" wvariables in CP, modelling
asynchronous broadcast. An example of the
second type are events in DP., Here, the wil-
lingness of a module to participate in an event
of a particular type is expressed by a goal of
a special kind - an event goal, which is
successfully reduced in cooperation with some
peer event goals of the (other) modules. The DP
concept of events allows wvarious cooperation
schemes, differing in the number of participa-
ting modules, the degree of their synchroniza-
tion and in side-effects of a particular event,
while in CP, a single cooperation scheme is
defined. Aiming towards an event—order specifi-
cation language, the DP concept of events is
adopted in the paper and extended.

2. The Architectural Aspect of the Language

An instantaneous representation of a sgystem,
described by a set of Horn clauses, is a tree -
the architectural trees. Nodes of the tree are
hierarchical parallel/sequential compositions
(trees) of goals, The root represents the top-
level structure of the system, 1.e. its static
architectural components (the initial execution
goal). Each atomic goal represents a declara-
tion of a particular module of the system. When
an atomic goal is reduced with a clause, the
body of the clause is introduced in the tree as
a descendant of the goal. A subtree, attached
to an atomic goal, represents dynamic architec-
ture of the module, declared by the goal. After
a node has been successfully executed (all its
atomic goals reduced to TRUE), it is deleted
from the tree.

As the overall activity of a system is repre-
sented as creation and deletion of modules,
there is no evident distinction between a
module, representing a quasi-static architectu-
ral component of the system, and a module,
representing a procedure. Such semantic
digtinction belongs to a lower level of
abatraction. The only feature that matters is
the capability of the language to specify
loosely coupled modules. Modules are declared
"loosely coupled" simply by keeping their va-
riable-sets disjoint.

Atomic goals, which are event goals, do not
generate subtrees, but are reduced in events.
Looking at an event as a common action of
geveral modules, it is a free module, not
embedded in the architectural tree, with its
submodules residing in various nodes of the
tree. According to the previous paragraph, it
is difficult to say which module does a parti-
cular event goal belong to, but it is no doubt

that it belongs to a certain node. As events
should serve for cooperation between loosely
coupled modules, it is reasonable to declare
that event goals, participating in a particular
event, must not belong to the same node.

The word '"goal" should not be used in the
architectural context ~ it denotes the inten-
tion of the current architecture to change, but
at that point, we are only interested in an
instantaneous picture of a gystem. Therefore,
atomic goals are rather called atomic modules.
They are basic elements of nodes and are
usually combined into compound modules by pa-
rallel/sequential composition operators.

Modules are further classified into explicit
and implicit ones. They can be best identified
by observing a clause body (e.g. Fig.1):

compound module: (A!B:!(CIiD/I(EIF)))
explicit modules:

A, B, C, D, E, F

(E:F)

(CIHiDII(EIF))

(AIBI(CIIDII(EIR)))

implicit modules:

(CiiD), (DII(EIF)), (Cii(EIF))
(AiB), (BI(CIiDIi(EIF)))

Fig.l: Explicit and implicit modules of a
compound module.

Atomic modules and bodies are explicit modules.
Operands of parallel and sequential composition
operators are explicit modules. Any proper
subgset of modules with more than one element,
belonging to a parallel composition of modules,
is an implicit module and itself a parallel
compogition of modules. Any proper subsequence
of modules with more than one element, belon-
ging to a sequential composition of modules, is
an implicit module and itself a sequential
compogition of modules.

The above definition illustrates the module-
grouping and module-ordering role of the two
composition operators. The parallel composition
operator groups modules into sets and the
gequential composition operator groups modules
into sequences. Explicit modules are the actual
and implicit modules the potential groups of
modules.

3. The Operational Aspects of the Language

3.1. Compound Modules as Goals

If a module is declared to be a goal, it
gpecifies a pending action. The goal Dbecomes
"executed", when the action is no longer pen-
ding. A node gains the right to be deleted from
the architectural tree, after all 1its goals
have been executed.

In DP, only atomic modules are goalg, every
atomic module is a goal and the pending action -
of each goal is its reduction into TRUE. The
main. contribution of the paper is the idea,
that the concept of module should be strictly
separated from the concept of goal, so that a
module might participate in =meveral goals
(compound modules). Note the importance of the
word ‘“participate” - a module itself is not

necessary a goal, but every module should be
included into some goal, otherwise it has no
practical role in the system.

Motivation for the new idea has been the fact
that in most casgses events serve just for some
kind of unification of modules, Dbelonging to
various nodes. From this aspect, event goals
are just communicated pieces of data. Assuming
that there is a group (composition) of modules,
there might be several nodes, each ‘interested
in a particular subgroup of the group and
willing to observe the whole subgroup in a
single event. It is8 much more elegant to
enumerate members of the group once and to
declare that each subgroup of the group is an
event goal, than to enumerate all subgroups as
atomic event goals. If a group of modules is a
set (parallel composition), it might serve as a
data-base (see gection 5 for the example in
Fig.6); 1if it is a sequence {sequential compo-
sition), it might serve for specification of a
data-stream with multiple observers, each wai-
ting for a particular subsequence. If the
unifying event goals are parallel

of modules, the unification rule could be less

strict (unification possibly preceded by permu-—

tation of modules) than for event goals, which
are sequences. The fact is, that sequences and
sets already exist in clause bodies, so why not
to use them (section 5). Similarly, if there
has been a non-event goal (a procedure)
ted, why should its declaration part be dupli-
cated just to communicate its exit results to
an observer. :

The central operational concepts of our lan—
guage are reduction goals and event goals. The
two names indicate that the concept of reduc-
tion has been separated from the concept of
event - without this step the realization of
our .ideas would not be possible. The role of
reduction goals is twofold: ' First, if they are
atomic, they enforce execution of procedures in
the ordinary sense (like non—-event goals in
DP). Second, they control execution order by
imposing hierachical execution of goals: No
goal can be executed, if some of its submodules
are pending reduction goals, so that no event
€can occur on exit results of a procedure, until
they are available. Because of the nature of
the two roles, only explicit modules may be
reduction goals, so that a reduction goal must
be entirely contained in another reduction
goal, or not at all.

Event goals support the idea of overlapping
goals, as they may be explicit or implicit
modules and may partially overlap. An event
goal is executed by an event, where the parti-
cipating part of a node is exactly the mecdule,
representing the goal. Event goals impose no
particular execution order — a dangerous dimen-
sion of freedom, which is partially compensated
with the execution-ordering role of reduction
goals and composition operators.

Depending on its reduction type (see section
3.3.), execution of a reduction goal is inde—
pendent from events or a reduction goal is a
submodule of an event goal and executed simul-
tanecusly with the event goal.

In DP, event goals never generate descendants
in the architectural tree, while event goals
with atomic submodules, which are reduction
goals, requiring the ordinary type of reduc-
tion, do. Nevertheless, when such an event goal
gaing permission for execution, all such reduc-
tion goals within it have already been executed
and their descendants deleted from the tree.

compodgitions-

execu— -

3.2. The Execution-ordering and the Selection
Role of Composition Operators

The basic role of composition operators is
their module—grouping and module-ordering role,
but for easy specification of sequential proto-—
cols they must also be assigned the execution-
ordering role. To employ the full power of the
two roles, it must be possible to use them
independently, while in DP they are not separa-
ted. Therefore we define that the parallel and
the sequential composition operator have no a
priori execution-ordering role.

When considering the execution-ordering role of
composition operators, the distinction between
compound modules, which are sets, and those,
which are sequences, is irrelevant, because the
attribute parallel/sequential, attached to com-
position operators, applies to another role.
Therefore, all compound modules will be treated
as gsequences of modules.

A composition operator separates a sequence of
modules into the left and the right subse-
quence,- A DP sequential composition operator
forces the goals from the left subsequence ‘to
be executed Dbefore the goals from the right
subsequence. But if a goal extends to the left
and to the right subsequence, which subsequence
does it belong to? Another guestion: Should the
composition operator delay actions on the right
subsequence until the reduction goals from the
left subsequence have been executed or until
the event goals have been executed or, perhaps,
just until all goals from the left subsequence
have been created. The answer depends on the
nature of a particular application, but as
default we propose that creation of all goals
of a node is an atomic action and that execu-
tion of a goal is treated as atomic in the
senge that if a goal A must be executed before
a goal B, then (at least virtually) the execu-—
tion of the goal B may not even start Dbefore
the execution of the goal B has been completed.

The execution order is effected by reduction
goals, implying that gome goals must be execu-
ted before some others. Beside that, aome
reduction goals are executed simultaneously
with an event goal, implying an OR composition
of relations, gpecifying simultaneous execu-
tion. In addition, the language should facili-
tate specification of further relations of the
"before’ type. :

Such a specification should be concise, there-—
fore we propose that goals are referred to-
gimply by their position in the node and that
the composition operator, to which a particular
‘'before” relation ig attached, 1is carefully
selected such that the goals of .the relation
are easily specified relatively to the position
of the operator (section 5).

The last requirement suggests distribution of
such relations all over the node. Anyway, the
execution order is determined by considering
all the relations simultaneously (in DP, it is
gufficient to consider relations, implied by
sequential composition operators, in a particu-
lar order). If a s3set of relations 1is in
contradiction (i.e. (a<b) and (b<a)), they are
ignored. With that rule, a programmer is free
to gspecify any relation, and if possible, it
will be respected (e.g. Fig.2). :

In comparison to LOTOS, the language lacks two
important features: a construct for expressing
intelligent selection (guarded commands) and . a
construct for expressing disruption of proces-
ges, I[f guards are not locatéd at the meta
level (as, for example, in Two-level Prolog
{8]), but at the object level, both problems

have a simple common solution - exclumive
composition operators.

body: (a){ULSCRS}
b: {RS.A<CURS.ULS}
¢! {LS.A{URS)
d) #M: (event goal = true;
reduction state = no-reduction)#

execution—-ordering relations:

l.composition operator: '
{(a), (aib), (aibic), (aitbicid)} <
{(b), (c), (d), (bic), (c:id), (bicid)}

2.composition operator:
{{c). (@)} < {(bic). (aibic), (bicid),
(aibicid)}

3.composition operator:
((a), (b), (c)} < {(d), (cid)., (bic:id),
(aibicid)}

ignored relations:

{(b)<>(aibicid),
(c}<>(aibic), (c)<>(aib!
(d}<>(aitbic), (d)<>(aib!

Fig.2: The execution-ordering role of
composition operators.

A compound module may be a non-exclusive or an
exclusive composition of modules. The non-
exclusive forms of the sequential and the
parallel composition operator are ! and |,
while their exclusive forms are / and //.
respectively. Each module of an exclusive com—
position of modules is attached a set of goals
(drawn from the set of all goals of the node)
representing the guard of the module (see
section 5 and Fig.3 for an example).

body: (((a#M: (reduction state = pending:;
reduction type = weak-common)#
'b#M: event goal = true#
)

c
d#M: event goal = true#
{

)
//
(

(11)M]
e#M: (reduction state = pending;
reduction type = weak~-common) #
V£
g
‘h#M: event goal = true#
)
//)
(i#M: (reduction state = pending:;

reduction type = weak—-common)#
'j#M: event goal = true# -
)
) #M: reduction state = no-reduction;
WM: event goal = true#

scenario:

execution of event goal
(((atb)icid)//Ceifigih) //(ii]1))

=> ((a:!b)ic'd) not ready for selection,
(etfigih) and (iii) ready for selection

=> the node transformed into (e!f.:g:.h)
or into (iij)

=> execution of event goal (h)
(or event goal (3)) :

Fig.3: An example of a guarded command.

After the guard of a module has been executed,

the next operation on the module may only be
its selection for further execution or its
deletion from the system. Several modules with
executed guards may exist, Dbut exactly one of
them is selected non-deterministically and the
entire exclusive composition of modules repla-
ced Dby the selected module, which from that
moment behaves like -an ordinary module. Because
guards are regular processes of a system and
one of the modules in exclusive composition
disrupts the others, this is a model of process
disruption, more general than the one of LOTOS.

3.3. Execution of Reduction Goals

In DP, a reduction goal is executed either by
the ordinary type of reduction (reduction of a
goal into more and more trivial subgoals), or
by participation 1in an event as exactly the
whole event goal. 1In our language, a reduction
goal can also be executed in event, where it is
just a submodule of the relevant event goal.
Hence, according to this criterion, there are
three types of reduction.

1. On-the-—spot reduction is the ordinary type
of reducfion and could serve for specifying an
internal process of a node. It may be non-
trivial or trivial. Reduction of an atomic
module is non-trivial, as it potentially crea-
tes descendants in the architectural tree.
Reduction of a compound module iz trivial, as
it is just an observation that all the reduc-
tion goals within the module have been execu-
ted.

2. Strong common reduction takes place, when a
module is a reduction goal and an event goal at
the game time (the DP-type event goal). When
the event goal is executed, the reduction goal
is executed, too. The adjective "common" steams
from the fact that the participants can execute
the reduction as a common action, without any
of them executing the reduction on the spot.
Common reduction could serve for exchange of
values of any origin.

3. Weak common reduction is like strong common
reduction, but the reduction goal may also be
just a submodule of the relevant event goal.

To . facilitate observation of final (exit)
results of modules, we introduce a fourth type
of reduction, which is a weak common reduction
with some additional requirements:

4. 'Observed reduction takes place, when a
reduction goal participates in an event, in
which one of the participating event goals
contains a submodule, unifiable with the reduc-
tion goal. That submodule must be an executed
reduction goal with reduction type ‘'"on-the-
spot" or must have been unified with such a
goal in one of the previocus events. In this
way, the node does not have to execute the
reduction goal on the spot (that might be a
difficult operation, if the event goal is
atomic), but just gathers the necessary results
by obaserving someone, who has already executed
a matching goal on the spot or has learned the
results from another node. Observation of exit
results 1is important from several agpect:
First, it can strongly reduce the execution
effort. Second, it can reduce non-determinism
by forcing various nodes to accept +the same
gsolution to various incarnations of the same
problem. Third, it could serve to implement
monitors of overall system activity. Fourth,
the concept of exit results is another step
towards LOTOS.

On-the-spot reduction may be thought of as
being executed in the node, containing the

reduction goal, observed reduction as executed
in another node and common reduction as execu-—
ted in the space between nodes. Observed and
common reduction are treated as trivial, as
they do not create descendants.

At the time of its creation, each module is
assigned its reduction type and state. The
possible reduction types are the four types,
declared above. The possaible states are
"executed”, "'pending" and "no-reduction"

If a module is a reduction goal, its 1initial
reduction state is "pending” and its initial
reduction type may be any type. If a module is
not a reduction goal, its initial reduction
state is "no-reduction®” and its reduction type
is "weak-common". When a reduction goal is
executed, its reduction state is set to
"executed".

If reduction type of a reduction goal is
"strong~common", the module is an event goal by
definition. If reduction type of a reduction
goal 1is ‘"observed" or '"weak-common' and the
module is not a submodule of any event goal it
is an event goal by definition.

Implicit modules are never able ‘to propagate
exit results of an on-the-spot reduction, while
explicit modules are always able to do that.
When created, reduction goals with the reduc-
tion type - "on-the—spot'" are assigned unique
reduction identifiers. Reduction identifiers of
cther modules are undefined, wuntil they begin
to propagate results of an on-the-spot reduc-
tion. In that case, their reduction type and
state are set to "on-the-spot” and ‘“executed”
and their reduction identifier is set to the
identifier of the reduction they propagate.
Reduction identifiers have been introduced to
distinguish among various incarnations 'of a
procedure and to facilitate specification of
events with a limited number of active roles,
in- which the participating event goals may
enroll (see section 5§ for the example in
Fig.7).

Each atomic reduction goal with reduction type
"on-the—gpot" is attached a predefined or user-
written procedure for unification with clauses'
heads. Similarly, heads are attached procedures
for wunification with reduction goals. Such
procedures may be treated as sets of con~
straints. A necessary condition for reduction
of a reduction. goal with a particular clause
is, that their proposed constraints can be
satisfied simultaneously. The reduction is exe-
cuted exactly according to the constraints,
proposed by the . goal or the head. The default
unification procedure is the most common sub-
stitution. : ‘

3.4. Execution of Event Goals

An event goal can execute, if it meets a group
of suitable event goals. Execution must be fair
in the sense that an event goal, which is ready
to execute, must not wait indefinitely, if
suitable groups keep occurring, and must be
allowed to Jjoin a group, 'which is able to
accept it. If there is more than one sSuitable
group, the event goal selects between them non-~
deterministically. While an event goal is wai-
ting for execution, its variables might be
getting assigned by other goals, 80 its selec~
tivity improves with time.

Each event goal is attached a predefined or
uger-written procedure for its execution. A
necessary an sufficient condition for a group
of event goals to realize an event 1is, that
their proposed constraints can be satisfied

3. relation between the state of the

simultaneously. The event is executed exactly
according to the congtraints, proposed by at
least one_participant.

When a group of event goals is ready to execute
a common event, the pending event is created in
the system as a free module, which may (or may
not) later Dbe executed (deleted from the
system). Each of the participating event goals
(according to its synchronization requirements)
may be executed simultaneously with the event
or before the event, but never after the event.
Event goals remain formal participants of an
event, until the event has been executed, even
if they have already been executed or even
deleted from the system. If not forbidden by
the existing participants, new participants
(sometimes even an unlimited number of them)
may join with time. In that case, a partici-
pant, which has not requested an immediate
execution, can not be executed while new parti-
cipants could potentially change its execution
results (e.g. if they could assign some of its
remaining variables). Regardless the type of
the execution procedure, an event must manda-
tory execute all reduction goals, that are
submodules 'of the participating event goals,
and must not introduce any new tight coupling
of nodes.

We propose to classify requirements, ' posed by
execution procedures, into those considering

1. the number of participants, ' !
synchronization,

2. timing relations (e.g.
delays) .

partici-
pants before and after the event, and

4, potential side-effects.

The proposed defaults are: any non-zero number
of participants, full ‘'synchronization (all
event goals executed simultanecusly with the
event), no special gide—-effects and the third
relation defined by the following unification
Procedure:

The procedure first tries to make the partici-
pating event goals unifiable via aubstitution,
together with a legal distribution of roles. If
it succeeds, the event goals are unified via
substitution and their pending reductions . exe-
cuted. The exclusive. and the non-exclusive
version of composition operators are treated as
equlvalent

To make the event goals unifiable via substitu-
tion, the procedure may apply to them the
following transformations, which are not
vigible after the event:

—~ permutation of modules in barallel composgi-
tion,

— grouping of modules (creation of explicit
modules for the time of the execution of the
event). The new modules are neither reduction
nor event goals and are unable to propagate
results of an on-the-spot reduction.

The first transformation type supports the idea
of using parallel and sequential composition
operators for data ordering and reflects the
fact’ that modules in parallel composition are
not ordered. The second transformation type
facilitates structured observation of unstruc-
tured data.

Usually, an event goal (EG) can be transformed
in several ways to meet the requirements. In
that case, the selection between the transfor-
mations is non-deterministic and the procedure

acts as a generator of permutations of modules
(e.g. Fig.4).

1.EG: (A!iB) — ready to receive data into
A and B
2.EG: (a!ib) - ready to send data—-items a and b

posaible transformations before unification and
the resulting EG:

1.EG 2.EG 1.EG after unification

A
1. (AiiB) (aiib) (aiib)
2. (A :B) (bita) (b!ila)
3. (BiiA) (ailb) (b:ia)
4. (BiiA) (biia) (aiib)
Fig.4: An event, which does not preserve

the order of data.

When the event goals have been made wunifiable
via substitution, sets of corresponding modules
can be identified (e.g. Fig.5). We are interes-
ted only in the explicit modules of the event
goals (the event goals themselves are treated
as explicit modules).

1.EG: (ai(b!

1Ciid))
2.EG: (ai(Xi:

Ci
ciid))

sets of corresponding modules:

-

D), (N }y: ((C),(c)): ((d),(d)}
aClid))
Y. (ai(Xiiciid)))

O A~

)

Fig.5: An example of sets of corresponding
modules.

A distribution of roles between the participa-
ting event goals is legal if the distribution
of reduction types, states and identifiers of
the corresponding modules is legal for all sets
of corresponding modules.

We define the procedure for checking the
distribution for a particular set of correspon-
ding modules from the point of one of the
modules of the set. The distribution from the
aapect of each module of the set must comply
with the following rules:

1. If the reduction type of a module is ‘'no-
reduction”, any distribution is legal from the
point of the module.

2. If the reduction type of a module is ‘"on-
the-spot”, the corresponding modules must not
have this property, unless they have the same
reduction identifier.

3. If the reduction state of a module is
"pending”, the required reduction must be tri-
vial.

4, If thé reduction type of a module is
"observed”, there must exist a corresponding
module with the reduction type "on—-the-spot"”.

5. If the reduction type of a module is
“atrong—-common" and its reduction state is
"pending", the module must be a whole partici-
pating event goal.

If the distribution of roles is 1legal, the
event goals are unified by a procedure, which

differs from the default procedure for unifying
atomic goals with clause heads only in the way
of unifying variables, which remain unassigned
in the event: The corresponding variables are
not unified into a single variable, but retain
their identities to prevent tight coupling of
loosely coupled modules.

The modules of the event goals, which have a
corresponding module with the reduction type
"on-the~spot" and are able to propagate results
of an "on-the-spot"” reduction, are assigned
this property.

4, The Problem of Verification

The ease of verification of gpecifications in
the new language depends on the nature of
procedures for execution of goals. For the case
of the proposed default procedures we provide
some basic guidelines, how clauses of the
language could be converted into the familiar
and widely treated form with just atomic event
and non-event goals, the classical parallel and
sequential composition, guarded sequences of
goals and synchronous eventa, which require
just pure unification.

The behaviour of a node can be represented as a
set of possible execution sequencea of "on-the-
spot” reduction goals and event goals. If a
reduction goal is executed simultaneously with
an event goal, it is not represented separa-
tely. As goals are not executed more than once,
the set 1is finite and so are the sequences.
Hence, they can be specified with the classical
composition operators and guards. Each event
goal 1is then replaced by an OR composition of
all its forms, that can be generated by grou-
ping and permutation of submodules. Changing
any term into an atomic goal is just a syntac-
tic operation, but an exotic component of the
language still remains, namely the procedure
for execution of event goals.

The problematic part of the proposed default
execution procedure is the role distribution
checking part. It involves checking and setting
of the three implicit wvariables, associated
with each submodule of the participating event
goals: the reduction type, state and identi-
fier. When changing an event goal into an
atomic goal, its modular structure must be
retained, so that every submodule can expli-
citly Dbe attached the three reduction varia-
bles. As the values of the variables are passed
between goals, every variable must have its
input and its output copy. Analogously, each
atomic non-event goal must be attached a var-
iable for generation of its reduction identi-
fier.

5. A Simple Form of the Language
and Some Examples

An elegant and detailed syntax for the language
is beyond the scope of the paper. To be able to
provide some examples, just a very gimple form
of the language is proposed informally.

A specification is a set of Horn clauses with
the following conventions:

a) All composition operators (i, i, /., [//)
should be used as infix operators. If all types
of composition operators are treated as one, a
clause's body 1is a hierarchical sequence of
modules. For each composition operator it is
obvious, which 1is the sequence, it helpg to
create. Each module of a sequence is explicitly

or implicitly followed by its belonging compo-—
sition operator. The presence of a composition
operator may be implicit, if it belongs to the
last module of a sequence and no comment needs
to Dbe attached to it. If there is a comment,
attached to a module, it may {(from the aspect
of the syntax) also be treated as attached to
the belonging composition operator.

In a comment, attached to a composition opera-
tor, various subsequences of the body can be
defined, relatively to the position of the
operator, with the following syntax:

B: the body.

M: the module, belonging to the composition
operator. :

8: the sequence, created by the composition
operator.

S(n); n:(0),1,2..: S(0) = S. S(n+l) is the
sequence, to which S(n) belongs as the right-
most element of its left subsequence.

L8(n): the left subsequence of the sequence
S(n). The left subsequence of S is the subse-
quence to the left of the composition operator.

R3(n): the right subsequence of the segquence
S(n). The right subsequence of S is the subse-
quence to the right of. the composition opera-
tor.

{nm)X: the subsegquence of a seguence X, star-
ting with the n-th element and ending with the
m—-th element of the sequence X. The constant s
denotes the size of a sequence X. Note: If X is
a sequence with a single element, (11)X denotes
the first element of the element, not the
element, and (mn)X denotes a subsequence of the
element. Sequences with a single element, which
is again a sequence with a single element, are
forbidden.

b) Sets of modules, referred to in comments,
may be constructed by intersection (.), wunion
(+) and difference (\) from the following
simple sets:

X: the set of all modules, belonging entirely
to a sequence X.

WX: the module, which covers exactly the whole
sequence X.

UX: the set of all modules, containing at least
a part of a sequence X.

E: the set of all explicit modules of the body.
I: the set of all implicit modules of the body.
the set of all atomic modules of the body.

the set of all compound modules of the body.

the set of all modules of the body, which
re goals.

PR O >

RG: the set of all modules of the body, which
are reduction goals.

EG: the set of ail modules of the body., which
are event goals.

¢) Each explicit module may be followed by a
comment #...#, declaring the non-default pro-
perties of sets of its submodules and itself.
If a property of a particular module is defined
in a comment, attached to an explicit module,
and again in a comment, attached to one of its
explicit submodules, the first declaration is
ignored. All specified sets of modules are

implicitly in intersection with M.

The non-predefined properties of modules are:
to be a reduction goal, to be an event goal,
the reduction type and, if the module is an
event goal, the required number of participants

~of the event, in which it will be executed.

d) Each composition operator may be followed by
a comment (..}, enumerating some execution—
ordering relations in the form S1<52 (the goals
of the set 51 must be executed before the goals
of the set 52). All specified sets of modules
are implicitly in intersection with G.

e) Each mecdule in an exclusive composition may
be followed by a comment [..], specifying its
guard. All specified sets of modules are impli-
citly in intersection with G.

f) The defaults are those, proposed earlier in
the paper, plus: .

— Modules are not event goals.

- Atomic modules are reduction goals with
reduction type “on-the—spot". o

— Compound modules are not reduction goals.

- Execution-ordering relation.of | and / opera-
tors: (A.RG.LS<URS}.

~ Execution-ordering relation of ! and //
operators: {}. :
- Guards: [A.RG.(11)M), if the module is com~

pound, or [RG.M], if the module ig atomic.

system:— sender!ireceiverl, ireceiver2.

sender:— ((waitl!iwait2)#A: (event goal = true;
’ reduction state =
no-reduction;
participants = 2)#
1 {EG.LS<EG.RS}
(a(X) i ib(Y)iic(2)
}#M: event goal = true#

receiverl:- ({c(X)!ia(¥Y)
) #WM: event goal = true:
A: reduction type = observed#
()
waitl#M: (event—-goal = true;
reduction state =
no-reduction;
participants = 2)#
i {LS<RS}
processal (X,Y)
).
processl(X,Y):—..........

receiver2:— ({a(X):ii:b(Y)

)#WM: (reduction type =

strong—common;
reduction state = pending):
A: reduction type = observed#

()

Wwait2#M: (event goal = true;
reduction state =

no-reduction;
participants = 2)#
1 {LS<RS}
process2(X,Y.2Z)

Proceds2(X,Y,Z) t=n.vun.on...

Fig.6: Distribution of subsets.

With these defaults, protocols can be specified
entirely in the c¢lassical style and (with a
slightly modified execution procedure for

events) the language used as a dialect for the
event-ordering part of LOTOS. Next, we provide
some motivation examples for the new features
of the language.

Example in Fig.6: A set of data-items is sent
to a community of modules, so that every module
receives exactly the items of its personal
interest in a single event. The sender produces
data and waits for creation of the receivers.
Whenever all the data-items, interesting for a
particular receiver, are generated, they are
transmitted and, because of the fairness requi-
rements, the receiver actually receives them.

system:— activel)iactivel! !passive.

activel:~ ((a(X)#M: reduction type
vraqy)

1ib(2)

J#WM: event goal = true#
1 {LS<RS}

processl

= observed#

Processl:—..... PN

({ a({X)
v1a(Y)#M: reduction type
1 1b(Z)#M: reduction type
)4WM: event goal = true#
1 {LS<RS}

procegss2

activel:-
= observed#
= ohsgerved#

processzz—.:
passive:— ((a(X)

1rady)

Vb (2)

)#WM: event goal = true;

A: reduction type = observed#

i {LS<RS}

process3
).
process3:—..... e

"Fig.7: Distribution of data from several
sources and the concept of roles.

Example in Fig.7: A synchronous event is speci-

fied, involving collection of data-items from
Several sources, merging of data into a com-
pound message and its dissemination to all

mo@ules of the system. activel and active2 will
wait for each other to execute the first event,
put will not wait for the passive observer, if
its event goal is created to late. If the event
was asynchronous, allowing an unlimited number
of participants, the passive observer could
receive the message regardless of the execution
speeds., There are three roles in the event (a,
a and b), the first played by active2 and the
others by activel. .

sender:— (Address#M:
i {LSCURS)

message .
J#WM: event goal = true:

A: reduction state = no-reduction#.

event goal = true#

Fig.8: Receving an address and sending a
message to the address.

The task in example from Fig.8 is

to receive
the addresas,

on which a particular message is

10

to be sent, and to send the message.

6. Conclumions

The basic object paradigm of Prolog-type lan-—
guages 1is creation and deletion of modules.
Some languages of the family (e.g. DP) intro-

duce parallel/sequential composition and expli-
cit communication, what makes them suitable for
gpecification of communication protocols.

The main contribution of the paper is sgepara-
tion of the "module" concept from the concept
of "goal", 8o that a module may participate in
gseveral goals (compound modules). Some syntac-—

tic enhancements have been proposed for the
language of Horn clauses with paral-
lel/sequential composition of atomic event and

non-event goals, which in the light of the new
operational semantics provide for more concise
specification of protocols, particularly those
requiring multiple operations on a complicated
piece of data. The core idea of the new
language is full exploitation of the structure
of compound modules, which is usually much more
simple than the syntax of atomic modules.

Three independent roles of composition
tors have been identified: In the

grouping and module-ordering role they facili-
tate specification of sets, subsets, sequences
and subsequences of modules. In the execution-
ordering role they facilitate specification of
the execution order of pending goals. In the
selection role they facilitate specification of
guarded commands and process disruption.

opera-
module-

The concept of reduction has been separated
from the concept of event by introducing inde-
pendent promotion of modules into reduction

goals or into event goals. Reductiop goals hgve
as well been assigned the execution-ordering

role,

To indicate to which extent the execution of a
reduction goal depends on execution of an event
goal, four reduction types have been introdu-
ced: on-the-spot reduction, strong common
reduction, weak common reduction and observed
reduction. The most original one is the obser-
ved reduction, which could serve for specifying
observation of exit results, for specifying
events with a limited number of roles, for
reduction of the computational effort, for
reduction of non-determinism and for implemen-
tation of monitors of the overall system acti-
vity.

The paper indicates, how the architectural and
the behavioural aspect of a system can be
unified into a single semantic model and effi-
ciently specified by a simple language.

References

A Calculus of Communicating
LNCS 92, Berlin 1980

R.Milner:
Springer verlag,

(1)
Systems,

Communicating Sequential Pro-
of the ACM, wvol.21,

{2) C.A.R.Hoare:
cesses, Communications
no.8, 1978, pp.666-677

{3 E.Brinksma: A Tutorial on LOTOS, in
"Protocol Specification, Testing, and Verifica-
tion, V", M.Diaz ed., North-Holland 1986, pp.
171~194

[4) L.M.Pereira, F.C.N.Pereira, D.L.D. Wa;ren:
User's Guide to DECsystem—10 PROLOG, Occasional
Paper 15, Dept.of AI, Edinburg 1979

{5] E.Y.Shapiro: A Subget of Concurrent Prolog
and Its Interpreter, ICOT TR-003 (1983)

for Distributed
of

[6] L.Monteiro: A Proposal.
Programming in Logic, in "Implementations
Prolog", J.Campbell ed., Ellis Horwood 1984

[7) L.M.Pereira, R.Nasr: Delta-Prolog: A
Distributed Logic Programming Language, Depar-

CALL FORPAPERS

ISMM International Conference

11

{8] A.Porto: Two-level Prolog Departamento de
Informatica, Universidade Nova de Lisboa, 1985

{91 M~Prolog, Language Reference Manual, Insti-

tute for Co-ordination of Computer Techniques,
Budapest, March 1983

MINI AND MICROCOMPUTERS

From Micros to Supercomputers

December 14-16, 1988
Miami Beach, Florida

tamento de Informatica, Universidade Nova de
Lisboa, 1985
SPONSORED BY
The intemational Sociaty for Mini and Microcomputers (ISMM)
Technical Committee on Computers
SUPPORTED BY

Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, U.S.A.

Modcomp, an AEG Company, Fort Lauderdale, Florida, U.S.A.

LOCATION
Hotel Hilton Fontainbleau, Mlami Beach, Florida, U.S.A.

SCOPE

Covers alt aspects of computer architecture, organization, and design, artificial intelligence, saftware systems, and computer applicalions.

» Computer architecture
+ Paraflel computers

+ Fault-tolerant systems
* VLS!and chip design
* RISC architecture

~ Expert systems

« Computer applications

* Real-time systems

+ Supercomputing

« Paraliel and concurrent programming
« Operating systemns and databases
« Sofware engineering

« Artificialintelligence

Al programming and ervironment
Software systems

Local area networks

Optimizing compilers

Three tutorials will be presented by teading experts In the field. Tentative topics are: Advanced Computer Architecturs, Parallel Compmer; and Artificial

Intelligence.

SUBMISSION OF PAPERS
Five copias of a 400-word summary
Notification of authors
Full papers In camera-ready form
Conference

June 15, 1988

July 15,1988
October 1, 1988
December 14- 16, 1988

Al papers shall be reviewed for possibie publication in one of the ISMM journals: International Journal of Mini and Microcomputers, and Microcomputer

Applications.
INTERNATIONAL PROGRAM COMMITTEE

G. Rabbat, General Chairman US.A. M. Kabuka
8. Furht, Program Chairman USA P. Liv

P. Alpar US.A. E. Luque

M. Carapic U.S.A. N. Marovac
R. Bisiani U.S.A G. Mastronardi
E. Femandez U.SA J.D. Meng

D. Guich USA V. Milutinovic
M. Hamza Canada D. Moidovan
C.C. Hsu R.O.C. S.C. Moon
T. tshiko Japan B.N. Naumov
ADDRESS :

U.S.A. V. Oklobdzija US.A
U.S.A D. Patkovic US.A,
Spain . AM. Salem Egypt
US.A. B. Soucek "USA.
Italy W.V. Subbararo USA.
US.A D. Tabak . USA.
US.A. M. Tapia USA-
US.A J. Urban US.A
Korea F. Vajda Hungary
USSR. P. Visuri Fintand
M. Vuskovic US.A

For correspondence, submission of extended summaries, and to be placed on the mailing list, write to: Dr. B. Furbt, Director of Advanced Technology.
Maodcomp, 1650 West McNab Road, £.0. Box 6099, Mall Stop 850, Ft. Lauderdale, FL 33340-6099, U.S.A.

Please compiete and return this formto: ISMM Secretariat, P.O. Box 25, Calgary, Alberta, Canada T3A 2G1

Please send me information conceming:

] The Intemational Jouma! of Mini and Microcomputers
O Microcomputer Applications Journal

[0 The International Journal of Robotics and Automation
O Expert Systems, Los Angeles, December 1588

{0 Computer Appiications in Design Simulation and Analysis, Reno, Nevada, U.S.A., February 1988

[0 Reliability and Quality Contrel, Los Angeles, December 1988,
[J Send me call for papers to conferences in the following areas:

