
COMPOUND MODULES AS GOALS INFORMATICA 3/1988

UOK 681.3.06 PR0L0G:519.682
Monika Kapus-Kolar

IJS, Ljubljana

Osnovna objektna interpretacija jezikov tipa Prolog je kreiranje
in brisanje modulov. Nekateri jeziki te družine (npr. Delta Prolog) uvajajo
vzporedno/zaporedno kompozicijo in eksplicitno komunikacijo, zaradi česar so
primerni za specifikacijo komunikacijskih protokolov. Najvažnejša ideja
pričujočega dela je ločitev pojma modula od pojma cilja, tako da lahko vsak
modul sodeluje v več ciljih (sestavljenih modulih). Jezik Hornovih stavkov z
vzporedno/zaporedno kompozicijo atomičnih dogodkovnih in nedogodkovnih ciljev
smo dopolnili z novimi sintaktičnimi elementi, ki v luči nove izvedbene
semantike omogočajo bolj jedrnato specifikacijo komunikacijskih protokolov,
posebno tistih, pri katerih so potrebne številne operacije na posamezni
zapleteni podatkovni strukturi. Jedrnatost dosežemo s temeljito izrabo
možnosti, ki jih nudi struktura sestavijenih modulov, ki je ponavadi precej
preprostejša kot sintaksa atomičnih modulov.

The basic object paradigm of Prolog-type language
modu les. Some languages of the farnily (e.g. De
lel/3equential composition and explicit communic
table for specification of communication protocol
the paper is separation of the "module" concept f
that a module may participate in several goal
svntactic enhancements have been proposed for t
with parallel/3equential composition of atomic
which in the light of the new operational semant
specification of protocols, particularlv those r
on a complicated piece of data. The core idea
exploitation of the structure of compound modules
simple than the 3yntax of atomic modules.

s is creation and deletion of
Ita Prolog) introduce paral-
ation, what makes them sui-
s. The main contribution of
rom the concept of "goal", so
s (compound modules). Some
he language of Horn clauses
event and non-event goals,
ics provide for more concise
equiring multiple operations
of the new language is full

vjhich is usually much more

1. Introduction

The basic idea behind languages of the Prolog
faniily is to find solutions to a problem (goal)
by its reduction into more and more trivial
subproblems (subgoals).

A Prolog program, [4], is a set of universally
quantified first order axioms (Horn clauses) of
the form

A:- Bi.Ba,...,Bo

vhere the fl and the B's are atomic formulae,
also called atomic goals. A is called the
clause's head and the B's are called its body.
The computation proceeds by selection of a goal
Al frora the current conjunctive goal
(Ai.Aa Am), which is then reduced with a
selected clause
A' :— Bt , B3, . . . ,Bi«

where A and A' must be unifiable via the most
common substitution 6. The reduction step
transforms the current goal into

(Al ,Ai_i,Bi,...,Bw,Ai-. ,A„)e.

In the process of unification, some of the
variables of the initial goal are assigned

values, vjhich constitute • the output of the
computation. The computation terminates suc-
cessfully, when the initial goal is reduced
into an empty goal, but may terminate unsuc-
cessfully, if no further reduction is possible,
or not terminate at ali. Several successful
computations of a program may exist, resulting
from various selections of clauses for reduc­
tion .

Graphical representation of a Prolog program is
an AND/OR tree with AlfD nodes mode 11 ing compo­
sition of goals into a clause body and OR nodes
enumerating the suitable clauses for reduction
of a particular goal. Several goals can be
reduced in parallel (AND-parallelism) and seve­
ral alternative solutions searched for in pa­
rallel (OR-parallelism). True concurrency is
allowed, if atomicity of reduction steps is
preserved.

The inherent AND-parallelism of Prolog programs
makes them suitable for operational specifica-
tion of communication protocols. An AND subtree
of the AND/OR tree mode Is a particular execu-
tion of a system, while the search of the
entire AND/OR tree represervts verification of
ali ' possible behaviours of the system. Note,
that logic programming is also suitable for
axiomatic specification and verification of
communication protocols, but the paper does not
deal with this aspect.

The language has two major deficiencies: First,
by introducing AND-parallelism, the execution
order is controlled by the goal-subgoal rela-
tion only, ao it is difficult to deacribe
3equential protocols. Second, communication
between goals is implicit and asynchronous via
coOTDon variables, vhile partners in communica­
tion protocols are usually loosely coupled (not
sharing any variables).

To solve the first problem, many Prolog-type
languages (e.g. Delta-Prolog (DP) [6,7]. Con-
current Prolog (CP) [5], M-Prolog [9]) maJ<e
distinction betveen the paral le 1 (!I) and the
seguential (!) composition of goals. Declarati-
vely, the two composition operators are equiva-
lent to the AND-operntor, but serve to 3pecify
the execution order in the špirit of CCS (11,
CSP [2] or LOTOS [3].

In the literature, we meet two types of expli-
cit consnunication: communication on the level
of variables and communication on the level of
atomic goals. An example of the first type are
the "read-only" variables in CP, modelling
asynchronou3 broadcast. An e^ample of the
second type are events in DP. Here, the wil-
lingness of a module to participate in an event
of a particular type is expreased by a goal of
a gpecial kind - an event goal, which is
3uccessfully reduced in cooperation with some
peer event goala of the (other) modules. The DP
concept of events allow3 various cooperation
schemes, differing in the number of participa-
ting modules, the degree of their 3ynchroniza-
tion and in side-effects of a particular event,
while in CP, a single cooperation acheme is
defined. Aiming tovards an event-order specifi-
cation language, the DP concept of events is
adopted in the paper and extended.

2. The Architectural Aopect of the Languasre

An instantaneous representation of a system,
described by a set of Horn clauses, is a tree -
the architectural tree. Nodes of the tree are
hierarchical paral lel/seguential compositions
(trees) of goals. The root represents the top-
level structure of the svstem, i.e. its static
architectural components (the initial execution
goal). Each atomic goal represents a declara-
tion of a particular module of the sy3tem. When
an atomic goal ia reduced with a clause, the
body of the clause is introduced in the tree as
a descendant of the goal. A aubtree, attached
to an atomic goal, represents dynamic architec-
ture of the module, declared by the goal. After
a node has been succe3sfully executed (ali- its
atomic goals reduced to TRUE), it is deleted
from the tree.

As the overall activity of a system is repre-
aented aa creation and deletion of modules,
there is no evident distinction betveen a
module, representing a guasi-static architectu­
ral component of the system, and a module,
representing a procedure. Such semantic
distinction belongs to a lower level of
abstraction. The only feature that matters is
the capability of the language to 3pecify
loosely coupled modules. Modules are declared
"loo3ely coupled" simply by Jceeping their va-
riable-sets disjoint.

Atomic goals, which are event goals, do not
generate subtrees, but are reduced in events.
Looking at an event as a common action of
several modules, it ia a free module, not
embedded in the architectural tree, with its
submodules residing in various nodes of the
tree. According to the previous paragraph, it
ia difficult to say which module does a parti­
cular event goal belong to, but it is no doubt

that it belongs to a certain node. As events
should serve for cooperation between loo3ely
coupled modules, it is reasonable to declare
that event goals, participating in a particular
event, must not belong to the same node.

The word "goal"
architectural co
tion of the curre
at that point
instantaneous pic
atomic goals are
They are basic
U3ually combined
rallel/sequential

should not be used in the
ntext - it denotes the inten-
nt architecture to change, but
we are only interested in an
ture of a 3y3tem. Therefore,
rather called atomic modules.
elements of nodes and are
into compound moduleo by pa-
composition operators.

Moduleo are further classified into expllclt
and implicit ones. They can be best identified
by observing a clause body (e.g. Fig.l):

compound module: (AlBl(C. ID;;(EIF)))

explicit modules:

A, B, C, D, E. F
(EIF)
(Cl IDI I(EIF))
(AlBl (Cl IDI I(EIF)))

implicit modules:

(CIID), (DIKEIF)), (CIKEIF))
(AIB), (BI(ClID!I(EIF)))

Fig.l: Explicit and implicit modules of a
compound module.

Atomic modules and bodies are exp
Operands of paral lel and 3equenti
operators are explicit modules
subaet of modules with more than
belonging to a parallel compositi
is an implicit module and itsel
composition of modules. Any prop
of modules with more than one el
ging to a seguential composition
an implicit module and itself
composition of modules.

licit modules.
al composition

Any proper
one element,
on of modules,
f a parallel
er subsequence
ement, belon-
of modules, is
a seguential

The above definition illustrates the module-
grouplng and raodule-orderlng role of the two
composition operators. The parallel composition
operator groups modules into seta and the
sequential composition operator groups modules
into 3equence3. Explicit modules are the actual
and implicit modules the potential groups of
modules.

3. The Operatlonal Aapects of the Language

3.1. Compound Modules as Goals

If a module is declared to be a goal, it
specifies a pending action. The goal becomes
"executed", when the action is no longer pen­
ding. A node gains the right to be deleted from
the architectural tree, after a H ita goals
have been executed.

In DP, only atomic modules are goala, every
atomic module is a goal and the pending action
of each goal is its reduction into TRUE. The
main. contribution of the paper is the idea,
that the concept of module should be fltrlctly
oeparated from the concept of goal, so that a
module might participate In several goals
(compound modules). Note the importance of the
word "participate" - a module itself ia not

necessarv a goal, but every module ahould be
included into some goal, ofhervise it has no
practical role in the sy3tem.
Motivation for the new idea has been the fact
that in most cases events aerve juat for 3ome
kind of unification of modules, belonging to
various nodea. From this aapect, event goala
are just communicated pieces of data. Aasuming
that there is a group (compoaition) of modulea,
there might be aeveral nodes, each intereated
in a particular subgroup of the group and
villing to obaerve the whole subgroup in a
single event. It is much more elegant to
enumerate members of the group once and to
declare that each subgroup of the group is an
event goal, than to enumerate ali subgroups aa
atomiC event goals. If a group of modules is a
set (parallel composition), it might aerve as a
data-baae (see aection 5 for the example in
Fig.6); if it is a sequence {sequential compo­
sition) , it might serve for specification of a
data-stream with multiple obaervers, each wai-
ting for a particular sub3equence. If the
unifying event goals are parallel compoSitiona
of modulea, the unification rule could be less
strict (unification posaiblv preceded by permu-
tation of modulea) than for event goals, which
are sequences. The fact ia, that seguences and
aeta already exist in clause bodies, so why not
to use them (aection 5). Similarly, if there
has been a non-event goal (a procedure) execu-
ted, why should ita declaration part be dupli-
cated just to communicate ita exit resulta to
an obaerver.

The central operational concepts of our lan-
guage are reduction goala and event goals. The
two naraes indicate that the concept of reduc­
tion has been separated from the concept of
event - without thia step the realization of
our ideas vrould not be possible. The role of
reduction goals is tvofold: First, if they are
atomic, they enforce execution of procedurea in
the ordinary sense (like non-event goala in
DP). Second, they control execution order by
impoaing hierachical execution of goals: No
goal can be executed, if some of its submodules
are pending reduction goals, so that no event
can occur on exit resulta of a procedure, until
they are available. Becauae of the nature of
the two roles, only explicit modules may be
reduction goals, so that a reduction goal must
be entirely contained in another reduction
goal, or not at ali.

Event goala aupport the idea of overlapping
goala, as they may be explicit or implicit
modulea and may partially ov"erlap. An event
goal is executed by an event, where the parti-
cipating part of a node ia exactly the module,
repreaenting the goal. Event goala impoae no
particular execution order - a dangerous dimen-r
aion of freedom, which ia partially compenaated
with the execution-ordering role of reduction
goals and composition operators.
Depending on its reduction type (see section
3.3.), execution of a reduction goal is inde-
pendent from events or a reduction goal is a
submodule of an event goal and executed simul-
taneou3ly with the event goal.
In DP, event goals never generate deacendants
in the architectural tree, while event goals
with atomic submodules, which are reduction
goals, requiring the ordinary type of reduc­
tion, do. Nevertheless, when such an event goal
gains permission for execution, ali auch reduc­
tion goala vrithin it have already been executed
and their deacendants deleted from the tree.

3.2. The Execution-ordering and the Selection
Role of Composition Operatora

The basic role of composition operators is
their module-grouping and module-ordering role,
but for ea3y specification of 3equential proto-
cols they must alao be assigned the execution-
orderlng role. To employ the full power of the
two roles, it must be possible to use them
independently, while in DP they are not separa­
ted. Therefore we define that the parallel and
the sequential composition operator have no a
priori execution-ordering role.
When considering the execution-ordering role of
composition operators, the distinction between
compound modules, which are aets, and those,
which are sequences, is irrelevant, because the
attribute parallel/3equential, attached to com­
position operators, applies to another role.
Therefore, ali compound modules vri 11 be treated
as aequence3 of modules.
A composition operator separates a sequence of
modulea into the left and the right subse-
quence. A DP 3equential composition operator
forces the goals from the left subsequence to
be executed before' the goals from the right
subsequence. But if a goal extends to the left
and to the right 3ub3equence, which subseguence
does it belong to? Another que3tion: Should the
composition operator delay actions on the right
3ub3equence until the reduction goals from the
left 3ubsequence have been executed or until
the event goals have been executed or, perhaps,
just until a H goals from the left 3ub3equence
have been created. The anaver depends on the
nature of a particular application, but as
default we propoae that creation of ali goala
of a node ia an atomic action and that execu-
tion of a goal is treated as atomic in the
sense that if a goal A must be executed before
a goal B, then (at least virtually) the execu-
tion of the goal B may not even start before
the execution of the goal B has been completed.

The execution order is effected by reduction
goals, implying that some goals must be execu-
ted before some others. Beside that, some
reduction goals are executed 3imultaneously
with an event goal, implying an OR composition
of relations, specifying simultaneous execu-
tion. In addition, the language should facili-
tate specification of further relations of the
"before" type.
Such a specification should be concise, there­
fore we propose that goala are referred to
3imply by their position in the node and that
the composition operator, to which a particular
"before" relation is attached, is carefully
selected such that the goals of .the relation*
are easily specified relatively to the position
of the operator (section 5).
The last requirement suggeats distribution of
such relations ali over the node. Anyway, the
execution order is determined by considering
ali the relations simultaneou3ly (in DP, it is
sufficient to conaider relations, implied by
3equential composition operators, in a particu­
lar order). If a set of relations is in
contradiction (i.e. (a<b) and (b<a)), they are
ignored. With that rule, a programmer is free
to 3pecify any relation, and if possible, it
vri 1 1 be respected (e.g. Fig.2).

In comparison to LOTOS, the language lacks tv̂ o
important features: a construct for expressing
intelligent selection (guarded commands) and . a
construct for expressing disruption of proces-
ses. If guards are not located at the meta
level (as, for example. in Tvro-level Prolog
[8]), but at the obječt level, both problems

have a simple common 3olution - excluoivo
compoaition oporatora.

body: (a;{ULS<RS}
bi(RS.A<URS.ULS>
cl{LS.A<URS>
d)#M; (event goal - true;

reduction atate - no-reduction) #
execution-ordering relations:
1,composition operator:

((a), (alb), (a;b;c), (alblcld)) <
{(b), (C), (d); (bic), (c;d), (blc:d))

2.composition operator:
<(c), (d)) < {(bic), (alblc), (bicid),

(a,'blc;d)>
3.composition operator:

((a), (b), (c)> < ((d), (cld). (blcld),
(a!b:c:d))

ignored relations:
<(b)< >(a;b:c;d) ,
(c)<>(a;b:c), (c)<>(a:b:c:d),
(d)<>(a;b:c), (d)<>(a:blc:d)>

Fig.2; The execution-ordering role of
compoaition operators.

A compound module may be a
exclu3ive composition of
exclu3ive forms of the
paral le 1 composition ope
while their exclu3ive f
respectively. Each module
position of moduleg is att
(drawn from the set of al
representing the guard
section 5 and Fig.3 for an

non-exclu3ive or an
modu les. The non-
sequential and the
rator are I and I 1 ,
orms are / and //,
of,an exclu3ive com-
ached a set of goals
1 goals of the node)
of the module (see
example).

body: (((a#M: (reduction state - pending;
reduction type - weak-common)#

lb#M: event goal - true*
)
I c
ld#M: event goal - true*
)((ll)M]
//
(e#M: (reduction state

reduction type
• pending;
weak-common)#

:f
ig
:h#M:
)

//
(i#M:
:j#M:
)

event goal - true*

(reduction state - pending;
reduction type - weeik-common) *
event goal - true*

)#M: reduction state - no-reduction;
WM: event goal - true*

scenario:
execution of event goal

(((a;b)lc:d)//(e;flg;h)//(i:j))
-> ((aibjicid) not ready for selection,

(elfigih) and (ilj) ready for selection
-> the node transformed into (elfigih)

or into (ilj)
-> execution of event goal (h)

(or event goal (j))
Fig.3: An example of a guarded command.

After the guard of a module has been executed.

the next operation on the module may only be
its selection for further execution or its
deletion from the 3y3tem. Several roodules with
executed guards may exi3t, but exactly one of
them is selected non-deterministically and the
entire exclu3ive composition of modulea repla-
ced by the selected module, which from that
moment behaves like an ordinary. module. Because
guards are regular processes of a 3ystem and
one of the modules in exclusive composition
disrupts the others, this is a model of process
disruption, more general than the one of LOTOS.

3.3. Ex«cution of Reduction Goala

In DP, a reduction goal is executed either by
the ordinary type of reduction (reduction of a
goal into more and more trivial subgoals), or
by partjcipation in an event as exactly the
whole event goal. In our language, a reduction
goal can also be executed in event, where it is
just a submodule of the relevant event goal.
Hence, according to this criterion, there are
three types of reduction.

1. On-the-apot reduction is the ordinary type
of reducCion and could serve for specifying an
internal process of a node. It may be non-
trlvlal or trivial. Reduction of an atomic
module is non-trivial, as it potentially crea-
tes descendants in the architectural tree.
Reduction of a compound module is trivial, as
it is just an observation that ali the reduc­
tion goals within the module have been execu-
ted.
2. Strong comnon reduction teOtes plače, when a
module is a reduction goal and an event goal at
the same time (the DP-type event goal). When
the event goal is executed, the reduction goal
is executed, too. The adjective "common" steams
from the fact that the participants can execute
the reduction as a coianon action, without any
of them executing the reduction on the spot.
Common reduction could serve for exchange of
values of any origin.
3. W«ak conison reduction is like strong common
reduction, but the reduction goal may also be
just a submodule of the relevant event goal.
To . facilitate observation of final (exit)
results of modules, we introduce a fourth type
of reduction, which is a weak common reduction
with some additional requirement3:
4. Obaojrved reduction takes plače, when a
reduction goal participates in an event, in

of the participating event goals
submodule, unifiable with the reduc-
That submodule must be an executed
goal with reduction type "on-the-
must have been unified with such a

goal in one of the previous events. In thia
way, the node does not have to execute the
reduction goal on the spot (that might be a
difficult operation, if the event goal is
atomic), but just gathers the necessarv results
by observing someone, who has already executed
a matching goal on the spot or has learned the
results from another node. Observation of exit
results is important from several aspect:
First, it can strongly reduce the execution
effort. Second, it can reduce non-determinism
by forcing various nodes to accept the same
solution to various incarnations of the same
problem. Thlrd, it could serve to implement
monitors of overall system activity. Fourth,
the concept of exit results is another step
towards LOTOS.
On-the-spot reduction may be thought of as
being executed in the node, containing the

which one
contains a
tion goal.
reduction
spot" or

reduction goal, observed reduction as executed
in another node and common reduction as execu-
ted in the space between nodes. Observed and
cominon reduction are treated as trivial, as
they do not create deacendants.
At the tirne of its creation, each module is
assigned its reduction type and state. The
possible reduction type3 are the four tvpes,
declared above. The possible states are
"executed", "pending" and "no-reduction".
If a module is a reduction goal, its initial
reduction state is "pending" and its initial
reduction type may be any type. If a module is
not a reduction goal, its initial reduction
state is "no-reduction" and its reduction type
is "weak-common". Vfhen a reduction goal is
executed, its reduction state is set to
"executed".
If reduction type of a reduction goal is
"strong-common", the module is an event goal by
definition. If reduction type of a reduction
goal is "observed" or "wea)<-common" and the
module is not a submodule of any event goal, it
is an event goal by definition.
Implicit modules are never able to propagate
exit results of an on-the-spot reduction. while
explicit modules are alwaya able to do that.
When created, reduction goals with the reduc­
tion type "on-the-spot" are assigned unigue
reduction identifiers. Reduction identifiers of
other modules are undefined, until they begin
to propagate results of an on-the-spot reduc­
tion. In that čase, their reduction type and
state are set to "on-the-spot" and "executed"
and their reduction identifier is set to the
identifier cf the reduction fhey propagate.
Reduction identifiers have been introduced to
distinguish among various incarnations of a
procedure and to facilitate specification of
events with a limited number of active roles,
in which the participating event goals may
enroll (aee section 5 for the example in
Fig.7).

Each atomic reduction goal with reduction type
"on-the-spot" is attached a predefined or user-
vrritten procedure for unification with clauses'
heads. Similarly, heads are attached procedures
for unification with reduction goals. Such
procedures may be treated as sets of con-
straints. A necessary condition for reduction
of a reduction. goal with a particular clause
is, that their proposed constraints can be
satisfied simultaneously. The reduction is exe-
cuted exactly according to the constraints,
proposed by the goal or the head. The default
unification procedure is the most common sub-
stitution.

3imultaneou3ly. The event is executed exactly
according to the constraints, proposed by at
least one participant.
When a group of event goals is ready to execute
a common event, the pending event is created in
the sy3tem as a free module, vhich may (or may
not) later be executed (deleted from the
3ystem). Each of the participating event goals
(according to its synchronization requirements)
may be executed simultaneou3ly with the event
or before the event, but never after the event.
Event goals remain formal participants of an
event, until the event has been executed, even
if they have already been executed or even
deleted from the system. If not forbidden by
the exi3ting participants, new participants
(sometimes even an unlimited number . of them)
may join with tirne. In that čase, a partici­
pant, which has not requested an iinmediate
execution, can not be executed while new parti­
cipants could potentially change its execution
results (e.g. if they could assign some of its
remaining variables). Regardless the type of
the execution procedure, an event must manda-
tory execute a H reduction goals, that are
aubmodules of the participating event goals,
and must not introduce any new tight coupling
of nodes.

We propose to cla33ify requirement3, posed by
execution procedures, into those considering
1. the number of participants, '
2. timing relations (e.g. 3ynchronization,
delay3),

3. relation between the state of the partici­
pants before and after the event, and
4. potential side-effects.
The proposed defaults are: any non-zero number
of participants, full •3ynchronization (ali
event goals executed simultaneously with the
event), no speci al side-effects and the third
relation defined by the following unification
procedure:
The procedure first tries to malce the partici­
pating event goals unifiable via substitution.
together with a legal distribution of roles. If
it succeeds, the event goals are unified via
substitution and their pending reductions . exe-
cuted. The exclusive • and the non-exclu3ive
version of composition operators are treated as
equivalent.
To make the event goals unifiable via substitu­
tion, the procedure may apply to them the
following transformations, which are not
visible after the event:

3.4. Executlon of Event Goals - permutation of modules in parallel composi­
tion.

An event goal can execute, if it meets a group
of suitable event goals. Execution must be fair
in the sense that an event goal, which is ready
to execute, must not wait indefinitely, if
suitable groups keep occurring, and must be
allowed to join a group, vhich is able to
accept it. If there is more than one suitable
group, the event goal selects between them non-
deterministically. While an event goal is wai-
ting for execution, its variables might be
getting assigned by other goals, so its selec-
tivity improves with tirne.

Each event goal is attached a predefined or
user-written procedure for its execution. A
nece3sary an sufficient condition for a group
of event goals to realize an event is, that
their proposed constraints can be satisfied

- grouping of modules (creation of explicit
modules for the t ime of the execution of the
event). The new modules are neither reduction
nor event goals and are unable to propagate
results of an on-the-spot reduction.
The first transformation type supports the idea
of using parallel and sequential composition
operators for data ordering and reflects the
fact that modules in parallel composition are
not ordered. The second transformation type
facilitates structured observation of unstruc-
tured data.
Usually, an event goal (EG) can be transformed
in several way3 to meet the requirements. In
that čase, the selection betveen the transfor-
mations is non-deterministic and the procedure

acts as a generator of permutations of modules
(e.g. Fig.4).

l.EG: (A!IB) - ready to receive data into
A and B

2.EG: (a,'lb) - ready to send data-items a and b
posgible tranaformations before unification and
the resulting EG:

l.EG 2.EG l.EG after unification
A B

1. (Al;B) (alIb) (alIb)
2. (AlIB) (bila) (bila)
3. (BI lA) (al!b) (b! I a)
4. (BllA) (bila) (alIb)
Fig.4: An event, whlch does not preserve

the order- of data.

When the event goals have been made unifiable
via substitution, sets of correaponding modules
can be identified (e.g. Fig.5). We are interea-
ted only in the explicit modules of the event
goals (the event goals themselves are treated
as explicit modules).

l.EG: (al(biICIId))
2.EG: (al(XIIclId))
sets of corresponding modules:
((a), (a)); {(b),(X)); ((C), (O) ; {(d) , (d))
{(blIClId),(XIICIId)};
{(al(biICIId)).(al(XIIclId))>
Fig.5: An example of sets of corresponding

modules.

differs from the default procedure for unifying
atomic goals with clause heads only in the way
of unifying variables, which remain unassigned
in the event: The corresponding variables are
not unified into a single variable, but retain
their identities to prevent tight coupling of
loo3ely coupled modules.
The modules of the event goals, which have a
corresponding module with the reduction type
"on-the-3pot" and are able to propagate results
of an "on-the-3pot" reduction. are aasigned
this property.

4. The Problem of Verlflcatlon

The ease of verification of specifications in
the new language depends on the nature of
procedures for execution of goals. For the čase
of the proposed default procedures we provide
some basic guidelines, how clauses of the
language could be converted into the farniliar
and widely treated form with just atomic event
and non-event goals, the classical parallel and
sequential composition, guarded 3equences of
goals and 3ynchronou3 events. which reguire
just pure unification.
The behaviour of a node can be represented as a
set of possible execution seguences of "on-the-
spot" reduction goals and event goals. If a
reduction goal is executed simultaneou3ly with
an event goal, it is not represented separa-
tely. As goals are not executed more than once,
the set is finite and so are the 3equences.
Hence, they can be specified with the classical
composition operators and guards. Each event
goal is then replaced by an OR composition of
ali its forms, that can be generated by grou-
ping and permutation of submodules. Changing
any term into an atomic goal is juat a 3yntac-
tic operation, but an exotic component of the
language stili remains, naniely the procedure
for execution of event goals.

A distribution of roles betveen the participa-
ting event goals is legal if the distribution
of reduction type3, states and identifiers of
the corresponding modules is legal for ali sets
of corresponding modules.
We define the procedure for checl<ing the
distribution for a particular set of correspon­
ding modules from the point of one of the
modules of the set. The distribution from the
aspect of each module of the set must comply
with the folloving rules:
1. If the reduction type of a module is "no-
reduction", any distribution is legal from the
point of the module.
2. If the reduction type of a module is "on-
the-spot", the corresponding modules must not
have thia property, unless they have the same
reduction identifier.
3. If the reduction state of a module is
"pending", the reguired reduction must be tri-
vial.
4. If tM reduction type of a module is
"observed", there must exist a corresponding
module with the reduction type "on-the-spot".
5. If the reduction type of a module is
"strong-common" and its reduction state is
"pending", the module must be a whole partici-
pating event goal.
If the distribution of roles is legal, the
event goals are unified by a procedure, which

The problematic part of the proposed default
execution procedure is the role distribution
chec)<ing part. It involves checking and setting
of the three implicit variables, associated
with each submodule of the participating event
goals: the reduction type, state and identi­
fier. When changing an event goal into an
atomic goal, its modular structure must be
retained, 30 that every submodule can expli-
citly be attached the three reduction varia­
bles. As the values of the variables are passed
betveen goals, every variable must have its
input and its output copy. Analogou3ly, each
atomic non-event goal must be attached a var­
iable for generation of its reduction identi­
fier.

5. A Simple Form of the Language
and Some Exainple8

An elegant and detailed 3yntax for the language
is beyond the scope of the paper. To be able to
provide some example3. just a very simple form
of the language is proposed informally.
A specification is a set of Horn clauses with
the following conventions:
a) Ali composition operators (1, 11, /, //)
should be used as infix operators. If ali types
of composition operators are treated as one, a
clause's body is a hierarchical sequence of
modules. For each composition operator it is
obvious, which is the 3equence, it helps to
create. Each module of a seguence is explicitly

or implicitly followed by its belonging compo-
aition operator. The presence of a composition
operator may be implicit, if it belongs to the
last module of a sequence and no coinment needa
to be attached to it. If there is a comment,
attached to a module. it may (from the aspect
of the syntax) also be treated as attached to
the belonging composition operator.

In a comment. attached to a composition opera­
tor, various gub3equences of the body can be
defined, relatively to the position of the
operator, with the following 3yntax:

B: the body.

Mi the module, belonging to the composition
operator.

3: the 3equence, created by the composition
operator.

S(n)i n:(0),1.2..: S(0) - S . S(n+1) is the
3equence, to which S(n) belongs as the right-
mo3t element of its left 3ubsequence.

LS(n); the left 3ubsequence of the 3equence
S{n). The left 3ubsequence of S is the subse-
quence to the left of the composition operator.

RS(n): the right 3ubsequence pf the sequence
S(n). The right subsequence of S is the subse-
quence to the right of- the composition opera­
tor.

implicitlv in intersection with M.

The non-predefined properties of modules are:
to be a reduction goal, to be an event goal,
the reduction type and, if the module is an
event goal, the required number of participants
of the event, in which it will be executed.

d) Each composition operator may be follovad by
a coniment <..>, enumerating some execution-
ordering relations in the form S K S 2 (the goals
of the set SI must be executed before the goals
of the set S2) . A H specified sets of modules
are implicitly in intersection with G.

e) Each module in an exclusive composition may
be folloved by a comment (..], 3pecifying its
guard. Ali specified sets of modules are impli­
citlv in intersection with G.

f) The defaults are those, proposed earlier in
the paper, plus:

- Modules are not event goals.
- Atomic modules are reduction goals with
reduction type "on-the-spot".
- Compound modules are not reduction goals.
- Execution-ordering relation of I and / opera-
tors: {A.RG.LS<URS}.
- Execution-ordering relation of I! and //
operators: {).
- Guards : [A.RG. (IDM] , if the module is com­
pound, or [RG.M), if the module is atomic.

(rmi)X: the gubsequence of
ting with the n-th element
m-th element of the seguenc
denotes the size of a segue
a sequence with a single el
the first element of the
element, and (mn)X denotes
element. Sequences with a s
is again a sequence vith a
forbiddeh.

a 3equence X, star-
and ending vith the
e X. The constant s
nce X. Note: If X is
ement, (11)X denotes

element, not the
a 3ub3equence of the
ingle element, which
single element. are

b) Sets of modules, referred to in comments,
may be constructed by intersection (.), union
(+) and differenc'e (\) from the following
simple sets:

X: the set of a H modules, belonging entirelv
to a sequence X.

WX; the module, which covers exactly the whole
3equence X.

UX: the set of a H modules, containing at least
a part of a sequence X.

E: the set of a H explicit modules of the body.

I: the set of ali implicit modules of the body.

A: the set of a H atomic modules of the body.

C; the set of a H compound modules of the body.

G; the set of a H modules of the body, which
are goals.

RS; the set of a H modules of the body, which
are reduction goals.

EG: the set of a H modules of the bodv, which
are event goals.

c) Each explicit module may be followed bv a
comnient *...#, declaring the non-default pro­
perties of sets of its submodules and itself.
If a propertv of a particular module is defined
in a conment. attached to an explicit module,
and again in a comment, attached to one of its
explicit submodules, the first declaration is
ignored. A H specified sets of modules are

svstem:- sender11receiverl!Ireceiver2.

sender:- ((waitlIlwait2)#A: (event goal - true;
reduction state -

no-reduction;
participants - 2)#

;<EG.LS<EG.RS)
(a(X):ib(Y):;c(Z)
)#M: event goal - true#

) .
a(X)
b(X)
c(X)

receiverl:- ((c(X);;a(Y)
)#WM: event goal - true;

A: reduction type - observed*
: O
waitl#M: (event-goal - true;

reduction state -
no-reduction;

participants - 2)#
:(LS<RS>
processl(X,Y)

) .
processl(X,Y):-

receiver2:- ((a(X):;b(Y)
)#WM: (reduction tvpe -

strong-common;
reduction state - pending);

A; reduction type - observed*
l(>
wait2#M: (event goal - true;

reduction state -
no-reduction;

participants - 2) *
;{LS<RS)
proces32(X,Y,Z)

) .
proceŠ32(X,Y,Z) :-

Fig.6: Distribution of subsets.

With these defaults, protocols can be specified
entirelv in the classical stvle and (with a
3lightly modified execution procedure for

10
events) the language used as a dialect for the
event-ordering part of LOTOS. Next, we provide
some motivation examples for the new features
of the language.
Exainple in Fig.6: A set of data-items is sent
to a conmunity of modules, so that everv module
receives exactly the items of ita personal
interest in a single event. The sender produces
data and waits for creation of the receivers.
Whenever a H the data-items, interesting for a
particular receiver, are generated, they are
tranamitted and, because of the fairness requl-
rements, the receiver actually receives them.

svstem:- activei:!active2;Ipassive.
a(X) :-
i)(X) :- •

activei:- ((a(X)#M: reduction type - observed#
:la(Y)
:;b(Z)
)#WM: event goal - true#
;{LS<RS>
processl
) .

processl:-
active2:- ((a(X)

lla(Y)#M: reduction type - obaerved*
llb(Z)#M: reduction type - obaerved*
)#WM: event goal - true#
1{LS<RS)
proce3s2
) .

to be sent, and to send the message.

6. ConcluBlona

The basic object paradigm of Prolog-type lan-
guagea is creation and deletion of modules.
Some languages of the family (e.g. DP) intro-
duce paral lel/3equential composition and expli-
cit communication, what makes them suitable for
specification of communication protocols.
The main contribution of the paper is separa-
tion of the "module" concept from the concept
of "goal", so that a module may participate in
aeveral goals (compound modules). Some syntac-
tic enhancements have been proposed for the
language of Horn clauaes with paral-
lel/3equential composition of atoraic event and
non-event goals, which in the light of the new
operational semantics provide for more concise
specification of protocols, particularlv those
requiring multiple operations on a complicated
piece of data. The core idea of the new
language is full exploitation of the structure
of compound modules, which ia usuallv much more
simple than the 3yntax of atomic modules.

proce3s2:-.

Three independent roles
tora have been identif
grouping and module-order
tate apecification of set
and subsequence3 of modul
ordering role they facili
the execution order of p
selection role they facil
guarded commands and proč

of composition opera-
ied: In the module-
ing role they facili-
3, subsets, 3equences
es. In the execution-
tate apecification of
ending goals. In the
itate apecification of
ess disruption.

passive:- ((a(X)
i:a(Y)
;!b(E)
)*WM: event goal - true;
A: reduction type - observed*

I<LS<RS>
process3
) .

proce333:-.
Fig.7: Distribution of data from aeveral

sources and the concept of roles.

Example in Fig.7: A svnchronous evenf is speci-
fied, involving collection of data-itema from
aeveral sources, tnerging of data into a com­
pound mesaage and its dissemination to ali
modules of the svstem. activei and actlve2 wi11
wait for each other to execute the firat event,
but will not wait for the passive observer if
its event goal ia created to late. If the event
was asvnchronous, alloving an unlimited number
of participants, the passive observer could
receive the message regardleas of the execution
speeda. There are three roles in the event (a,
a and b), the first played by aotive2 and the
others by activei.

The concept of reduction has been separated
from the concept of event by introducing inde­
pendent promotion of modules into reduction
goals or into event goals. Reduction goals have
as well been assigned the execution-ordering
role.
To indicate to which extent the execution of a
reduction goal depends on execution of an event
goal, four reduction tvpea have been introdu-
ced: on-the-apot reduction, atrong cotrmon
reduction, weak common reduction and observed
reduction. The most original one is the obaer­
ved reduction, which could aerve for apecifving
observation of exit reaults, for apecifving
eventa with a limited number of roles. for
reduction of the computational effort, for
reduction of non-determinism and for implemen-
tation of monitors of the overall svstem acti-
vitv.
The paper indicates, hov the architectural and
the behavioural aspect of a svstem can be
unified into a aingle semantic model and effi-
cientlv apecified by a simple language.

References

aender:- (Address#M: event goal - true*
;(LS<URS)
message
)#WM: event goal - true;
A: reduction state - no-reduction#.

Fig.8: Receving an address and sending a
message to the address.

The task in example from Fig.8 ia to receive
the addreas, on which a particular message is

[1] R.Milner: A Calculus of Communicating
Svstems, Springer verlag, LNCS 92, Berlin 1980
[2] C.A.R.Hoare: Communicating Sequential Pro-
cesaes, Communications .of the ACM, vol.21,
no.8, 1978, pp.666-677
[31 E.Brinksma: A Tutorial on LOTOS, in
"Protocol Specification, Testing, and Verifica-
tion. V", M.Diaz ed., North-Holland 1986, PP.
171-194
[41 L.M.Pereira, F.C.N.Pereira, D.L.D. Warren:
User'3 Guide to DECsvstem-lO PROLOG, Occasional
Paper 15, Dept.of Al, Edinburg 1979

1,1

[5] E.Y.Shapiro: A Subset of Concurrent Prolog
and Its Interpreter. ICOT TR-003 (1983)

[8] A.Porto;
Informatica.

Two-level Prolog Departamento de
Universidade Nova de Lisboa, 1985

[6] L.Monteiro: A Proposal for Diatributed
Programning in Logic, in "Implementations of
Prolog", J.Campbell ed., Ellis Horvrood 1984

[9] M-Prolog, Language Reference Manual, Insti­
tute for Co-ordination of Computer Technique3,
Budapest, March 1983

[7] L.M.Pereira, R.Nasr: Delta-Prolog: A
Distributed Logic Prograniming Language, Depar­
tamento de Informatica, Universidade Nova de
Lisboa, 1985

CALL FOR PAPERS
ISMM International Conference

MINI AND MICROCOMPUTERS
From Micros to Supercomputers

December 14-16,1988
Miami Beach, Florida

ISIVIM

3PONSOREDBY
The International Society (or Mini artd Microcompulers (ISMM)
Technfcal Commtttee on Computers

SUPPORTEOBV
Department of Electrical and Computer Engirtoering, Universitv of Miami. Coral Gables. Florida. U.S.A.
Modcomp, an AEG Company, Fort Lauderdale, Flonda, U.S^.

LOCA-nON
Hotel HItton Fontainbkeau, Miami Beach, Florida, U.S.A.

SCOPE
Covers alt aspects of computer architecture, organization, and design, artificial intelligence. 5oftware systems, and computer applicalions.

• Computer archttecture
' Paraflel computers
' Fautt-tolerarTtsystems
• VLSIarx]chipd€«ign
• RISC archrtecture
• Expen3ystem3
> Ccimputer applications

' ParaltelarKj concurrent programming
' Operatlng system$ and databases
' Softwareengineering
' Real-time8ystems
• Artificial intelligence
• Supercomputtng

' Computer Vision
• Rcbotics
' Alprogrammingartdenvironment
' Software aystems
> Localareanetvvorks
• Optimlzlngcompilors

Threo tutoriaJs wll| be presented by teadtng experts In the fieid. Tentative topics are: Advanced Computer Archilecture, Parallel Computers and Artificial
Intaltigenc«.

SUBMtSSION OF PAPERS
Flve copfes of a 400-word summary
Notiflcation of authors
Full papers In camera-ready form
Confererx»

JunelS. 1988
July15.1988
Oclober 1.1988
December 14-16.1988

Ali papers shall be reviewed for possible publication In or« o1 the ISMM journals: International Journal of Mini and Microcomputars, and Microcomputer
Applications.

IKTERNATX>NAL PROGRAM COMMrTTEE
G. Rabbat, General Chairman
B. Furht. Proorain Chairman
P. Alpar
M. Carapic
R. BteianI
E. Femandez
0. Gulch
M. Hamza
C.C. Hsu
T. lahlko

U.S.A.
U.SJV.
U.S.A.
U.SA
U.SA
U.S.A.
U.S.A

Canada
R.O.C.
Japan

M. Kabuka
P. Uu
E. Luque
N. Marovac
G. Mastronardi
J.D. Meng
V. Mllullnovic
D. Motdovan
S.C. Moon
B.N. Naumov

U.S.A.
U.S.A
Spain

U.S.A.
ltaly

U.S.A.
U.S.A.
U.S.A.
Korea

U.S.S.R.

V. Oklobdzlja
D. Pattovic
A.M. Salem
B. Soucek
W.V. Subbara/o
D. Tabak
M. tapia
J. Urtan
F. Vaida
P. Visuri
M. Vuskovic

U.S.A
U.S.A.
Egypl

U.S.A.
U.S.A.
U.S.A.
U.S.A.
U.S.A.

Hungary
Rnland
U.S.A.

AODRESS
For correeporKienco, submisslon of exterxtod summaries, and to be placed on the mailing list, write to: Or. B. Furhl, Director of Advanced Techr>olo9y.
Modcomp, 1650 West McNab Road, P.O. Box 6099. Mali Stop 850, Ft. Uuderdale, FL 33340-6099, U.S.A.

Please comptete and retum this form to: ISMM SecretaHat, P.O. Box 25, Calgary. Alberta, Canada T3A 2G1

Ptease sand me Information corv»mlng:
Q The Intemallonal Joomal of Mini and Microcomputers
• Microcomputer Applications Journal
O The International Jourr^ of Robotlcs and Aulomation
Q Expen 5ystems, Los Angeles, December 1988
Q Computer Appllcatioris in Design Simulation and Analy5is, Reno. Nevada, U.S.A.. FebruaTy 1988
Q Reliabil)ty and Ouallty Control, Los Angeles, December 1988.
O SefxJ me caJI for papers to conferences in the following areas:

