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Abstract

In this paper, we discuss generating theorems of polyhedral quadrangulations of closed
surfaces. We prove that the set of the eight reductional operations {R1, . . . , R8} de-
fined for polyhedral quadrangulations is finitizable for any closed surface F 2, that is,
there exist finitely many minimal polyhedral quadrangulations of F 2 using such opera-
tions R1, . . . , R7 and R8. Furthermore, we show that any proper subset of {R1, . . . , R8}
is not finitizable for polyhedral quadrangulations of the torus.
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1 Introduction
In this paper, we consider simple connected graphs embedded on closed surfaces. Al-
though we follow the standard graph theory terminology, for some technical terms without
description here, refer to Section 2. Sometimes, such an embedded graph is expected to
be a “good” one, that is, every facial walk is a cycle, and any two of them are disjoint,
intersect in one vertex, or intersect in one edge. It is known that a graph G embedded on
the sphere satisfies the above good conditions if and only if G is 3-connected. However,
if G is embedded on a non-spherical closed surface, then G is required to be polyhedral,
i.e., 3-connected and 3-representative; note that 3-connected graphs on the sphere are also
polyhedral.

For example, a simple graph G cellularly embedded on a closed surface F 2 each of
whose face is bounded by a cycle of length 3 is polyhedral if G is not a 3-cycle on the
sphere. Such a graph triangulating a closed surface F 2 is known as a triangulation of
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F 2. On the other hand, following the convention in topological graph theory, a 4-cycle
embedded on the sphere is regarded as a quadrangulation, which is a graph cellularly
embedded on a closed surface F 2 so that each face is bounded by a cycle of length 4. In
this paper, our main subject is the set of polyhedral quadrangulations of closed surfaces.

In topological graph theory, we sometimes discuss generating theorems of graphs em-
bedded on closed surfaces (i.e., constructing all graphs in a certain class C from C0 ⊂ C
by a repeated applications of certain expanding operations only through C). This notion is
equivalent to that every graph in C can be reduced to one in C0 by a repeated applications of
the reductional operations (or reductions, simply), which are inverses of the above expand-
ing operations; we denote the set of such reductions by X here. In a generating theorem
of graphs, |X| and |C0| are expected to be small. In particular, X is called finitizable for C
if |C0| is finite. If X ′ is not finitizable for any proper subset X ′ ⊂ X , then the finitizable
set X is minimal. For example, if C is the set of simple triangulations of the sphere, then
X = {contraction} is finitizable and C0 = {tetrahedron}. (See [19]. A contraction of e in
a triangulation G is to remove e, identify the two ends of e and replace two pairs of multiple
edges by two single edges respectively.) In fact, it was proved in [2, 3, 7, 16] that for every
closed surface F 2, {contraction} is finitizable for the set of simple triangulations of F 2.
Furthermore, see [1, 9, 10, 20, 21] for the complete lists of minimal triangulations on fixed
non-spherical closed surfaces with low genera. Moreover, finitizable sets of reductions for
even triangulations, i.e., triangulations such that each vertex has even degree, are discussed
in literatures; e.g., see [6, 18].

As mentioned above, in this paper, we focus on quadrangulations of closed surfaces.
Figure 1 shows the eight reductions, denoted by R1, . . . , R7 and R8 simply for our pur-
pose, defined for quadrangulations of closed surfaces. In fact, R1, R2 and R3 are typical
ones which were first given by Batagelj [4] (see e.g., [23] for the formal definition); es-
pecially, R1 and R2 are called a face-contraction and a 4-cycle removal, respectively, in
the literature. Further, the fourth reduction R4 was defined and discussed in [22]; which is
called a cube-contraction in the paper. The other four reductions will be defined in the next
section.

Let C be a set of quadrangulations of a closed surface F 2 with some certain conditions,
and let G ∈ C. For a subset X ⊆ {R1, . . . , R8}, G is X-irreducible if we cannot apply any
reduction in X without violating the condition of C; i.e., the resulting graph is no longer in
C. In particular, an {R1}-irreducible quadrangulation in the set of simple quadrangulations
of a closed surface F 2 is known as just a irreducible quadrangulation of F 2. In [16],
it was proved that for any closed surface F 2 there exist only finitely many irreducible
quadrangulations of F 2, that is, {R1} is finitizable for the set of simple quadrangulations
of every closed surface. Actually, the complete lists of irreducible quadrangulations of the
sphere, the projective plane, the torus and the Klein bottle were obtained in [4, 5, 14, 17]
and [13], respectively; for example, a 4-cycle is the unique irreducible quadrangulation
of the sphere, and the unique quadrangular embeddings of K4 and K3,4 are irreducible
quadrangulations of the projective plane. (Note that a restricted R1 was used in [5].)

The situation for 3-connected (and simple) quadrangulations of closed surfaces is a
little bit complicated in comparison with the above case of irreducible quadrangulations.
Throughout the researches in [4, 5, 12, 15], it had been proved that for any closed surface
F 2, {R1, R2, R3} is finitizable for 3-connected quadrangulations of F 2; note that the min-
imal one on the sphere is the cube, and for any non-spherical closed surface F 2, the set of
the minimal graphs coincides with the set of irreducible quadrangulations of F 2. Further-
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Figure 1: Reductional operations for quadrangulations.

more, it was shown that {R1, R2, R3} is minimal for those graphs on the sphere and the
projective plane while it is not minimal on the other closed surfaces; in fact, R3 is unneces-
sary and hence {R1, R2} is minimal and finitizable for those closed surfaces. Moreover, it
was proved in [22] that {R1, R3, R4} is minimal and finitizable for 3-connected quadran-
gulations of the sphere and the projective plane, and {R1, R4} is minimal and finitizable
for those graphs on the other closed surfaces.

As mentioned above, in this paper, we deal with polyhedral quadrangulations of closed
surfaces. Recently in [23], the generating theorem for such polyhedral quadrangulations
of the projective plane was discussed using three reductions R1, R2 and R3, and they ob-
tained 26 families of {R1, R2, R3}-irreducible quadrangulations of the projective plane.
However, such families contains infinite series of graphs; i.e., unfortunately, {R1, R2, R3}
is not finitizable for those graphs. The following is our main result in the paper:

Theorem 1.1. For every closed surface F 2, {R1, . . . , R8} is finitizable for polyhedral
quadrangulations of F 2.

Since every reduction in the above theorem preserves bipartiteness of quadrangulations
and each of R5 and R7 requires an essential cycle of length 3, we obtain the following
corollary.

Corollary 1.2. For every closed surface F 2, {R1, R2, R3, R4, R6, R8} is finitizable for
bipartite polyhedral quadrangulations of F 2.

One might think that the eight reductions in Theorem 1.1 are a little bit too many.
However, at least those on the torus, we can show the necessity of such eight reductions as
follows.

Theorem 1.3. For polyhedral quadrangulations of the torus, {R1, . . . , R8} is minimal
finitizable.
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Furthermore, R7 (resp., R8) requires an annular region on the closed surface which is
bounded by two 2-sided 3-cycles (resp., 4-cycles). Therefore, in particular on the projective
plane, {R1, . . . , R6} is finitizable by Theorem 1.1. As well as the previous case on the
torus, we can show the following.

Theorem 1.4. For polyhedral quadrangulations of the projective plane, {R1, . . . , R6} is
minimal finitizable.

This paper is organized as follows. In the next section, we define terminology and
the remaining four new reductions for our argument in the paper. Next, we show some
propositions and lemmas holding for polyhedral quadrangulations for our purpose, some
of which are quoted from [23]. Section 4 is devoted to prove our main result in the paper.
In Section 5, we discuss the minimality of the set of eight reductions by showing some
infinite series of polyhedral quadrangulations.

2 Basic definitions
We denote the vertex set and the edge set of a graph G embedded on a closed surface F 2

by V (G) and E(G), respectively. A k-path (resp., k-cycle) in a graph G is a path (resp.,
cycle) of length k. (The length of a path (or cycle) is the number of its edges in this paper.)
We denote the set of vertices of degree 3 by V3 in our argument, and ⟨V3⟩G represents the
subgraph induced by V3 in G.

Let G be a graph embedded on a closed surface F 2. Then, a connected component
of F 2 − G is a face of G, and we denote the face set of G by F (G). If every face of
G is homeomorphic to an open 2-cell (or an open disc), then, G is a 2-cell embedding or
2-cell embedded graph on F 2. Clearly, every quadrangulation (or triangulation) of a closed
surface is a 2-cell embedded graph. A facial cycle C of a face f is a cycle bounding f in G;
i.e., C = ∂f . Then, f̄ denotes a closure of f , i.e., f̄ = f ∪ ∂f . For brevity, we sometimes
denote like f = v0v1v2v3 where v0v1v2v3 is a facial cycle of f ∈ F (G). Furthermore
in our argument, we often discuss the interior of a 2-cell region D bounded by a closed
walk W of G, i.e., W = ∂D, which contains some vertices and edges. (Note that a 2-cell
region implies an “open” 2-cell region in this paper.) Similarly, D̄ denotes a closure of D,
i.e., D̄ = D ∪ ∂D. Let f1, . . . , fk denote the faces of G incident to v ∈ V (G) where
deg(v) = k. Then, the boundary walk of f̄1 ∪ · · · ∪ f̄k is the link walk of v and denoted by
lw(v). Clearly, lw(v) bounds a 2-cell region containing a unique vertex v.

A simple closed curve γ on a closed surface F 2 is trivial if γ bounds a 2-cell region on
F 2, and essential otherwise. Among essential simple closed curves, one with an annular
neighborhood is called 2-sided while one whose tubular neighborhood forms a Möbius
band is called 1-sided. Since cycles in graphs embedded on surfaces can be regarded as
simple closed curves, we use the above terminology for them; e.g., we say that a cycle is
essential and 2-sided.

The representativity of G, denoted by r(G), is the minimum number of intersecting
points of G and γ, where γ ranges over all essential simple closed curves on the surface. A
graph G embedded on F 2 is r-representative if r(G) ≥ r. Note that the “representativity”
is also called the “face-width” in the literature; see e.g., [11] for the details. A graph G
embedded on a non-spherical closed surface F 2 is polyhedral if G is 3-connected and 3-
representative. Observe that for every vertex v of a polyhedral graph, the link walk of v
forms a cycle.



Y. Suzuki: Finitizable set of reductions for polyhedral quadrangulations of closed surfaces 5

Let G be a quadrangulation of a closed surface F 2 and let f = v0v1v2v3 be a face
of G. Then a pair {vi, vi+2} is called a diagonal pair of f in G for each i ∈ {0, 1}.
A closed curve γ on F 2 is a diagonal k-curve for G if γ passes only through distinct k
faces f0, . . . , fk−1 and distinct k vertices x0, . . . , xk−1 of G such that for each i, fi and
fi+1 share xi, and that for each i, {xi−1, xi} forms a diagonal pair of fi of G, where the
subscripts are taken modulo k. Furthermore, we call a simple closed curve γ on F 2 a semi-
diagonal k-curve if in the above definition {xi−1, xi} is not a diagonal pair for exactly one
i; note that xi−1xi is an edge of ∂fi in this case. Each simple curve βi along γ joining
xi−1 and xi in fi is called a γ-segment; where

∪k−1
i=0 βi = γ.

For a simple closed curve ℓ on F 2, when ℓ intersects with G at only vertices of G, that
is, G ∩ ℓ is a subset S ⊂ V (G), then we say that ℓ passes S; observe that ℓ does not pass
through any vertex in V (G) \ S in this case. For example, in the above definition of a
diagonal (or semi-diagonal) k-curve, we say that γ passes {x0, . . . , xk−1}. On the other
hand, when we say that ℓ passes through a vertex v (or some vertices) of G, then ℓ probably
passes through other vertices of G.

Let G be a simple quadrangulation of a non-spherical closed surface F 2. Assume that G
has a hexagonal 2-cell region D bounded by a closed walk ∂D = v0v1v2v0v3v4 containing
exactly two vertices u1 and u2 such that v0v1u1v4, v1v2u2u1, v3v4u1u2 and v2v0v3u2 are
faces of G in D, and that v0v1v2 is an essential cycle of length 3. Furthermore, we assume
that v0, v1, v2, v3 and v4 are different vertices, and that each of v1, v2, v3 and v4 has degree
at least 4 ; otherwise, G would not be polyhedral under the condition. A reduction R5

of D is to eliminate u1 and u2, and identify v1 (resp., v2) and v4 (resp., v3), and replace
three pairs of multiple edges by three single edges, respectively, as shown in Figure 1.
Throughout the paper, the vertex obtained by the identification of two vertices a and b is
denoted by [ab]. That is, v0[v1v4][v2v3] is an essential 3-cycle in the resulting graph.

Secondly, assume that G has an octagonal 2-cell region D bounded by a closed walk
W = v0v1v2v3v0v4v5v6 containing exactly one vertex u such that v0v1uv6, v1v2v4u,
v4v5v6u and v2v3v0v4 are faces of G in D, and that v0v1v2v3 is an essential cycle of
length 4. Furthermore, we assume that v0, v1, v2, v3, v4, v5 and v6 are different vertices.
Note that v1 and v4 has degree at least 4 under the condition. (If deg(v1) = 3, then G is
representativity at most 2. On the other hand, deg(v4) = 3 implies that v0 = v5, a contra-
diction.) A reduction R6 of D is to eliminate u and an edge v2v4, and identify v1 (resp.,
v2, v3) and v6 (resp., v5, v4), and replace four pairs of multiple edges by four single edges,
respectively, as shown in Figure 1. Then, v0[v1v6][v2v5][v3v4] is an essential 4-cycle in the
resulting graph.

Thirdly, assume that G has an annular region A bounded by two essential cycles C =
v0v1v2 and C ′ = v3v4v5 such that f1 = v0v1v4v3, f2 = v1v2v5v4 and f3 = v2v0v3v5 are
faces of G in A. (Sometimes, f1f2f3(= WF ) is called a face walk of length 3 in G, which
corresponds to a 3-cycle in the dual of G.) Here, note that C1 and C2 are essential 2-sided
cycles of G on F 2; if C1 is trivial, then it contradicts Proposition 3.2 in the next section.
The seventh reduction R7 of A (or the above face walk WF ) is to contract edges v0v3, v1v4
and v2v5 simultaneously, and replace three pairs of multiple edges by three single edges,
respectively, as shown in Figure 1. Note that C = [v0v3][v1v4][v2v5] is also an essential
2-sided 3-cycle in the resulting graph.

Fourthly, assume that G has an annular region A bounded by two essential cycles
C1 = v0v1v2v3 and C2 = v4v5v6v7 such that f1 = v0v1v6v5, f2 = v1v2v7v6, f3 =
v2v3v0v7 and f4 = v0v5v4v7 are faces of G in A. (As well as the previous reduction,
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f1f2f3f4(= WF ) is a face walk of length 4.) Furthermore, we assume that C1 and C2

are essential cycles of G on F 2; observe that they are 2-sided. The eighth reduction R8 of
A (or the face walk WF ) is to eliminate edges v0v5, v1v6, v2v7 and v0v7, and identify vi
and vi+4 for each i ∈ {0, 1, 2, 3}, and replace four pairs of multiple edges by four single
edges, respectively, as shown in Figure 1. Note that C = [v0v4][v1v5][v2v6][v3v7] is also
an essential 2-sided 4-cycle in the resulting graph.

As mentioned in the introduction, for R1, R2, R3 and R4, see e.g., [22, 23] for formal
definitions. Note that the boundary of the hexagon of the graph in R3 in the figure is a cycle.
Furthermore, every quadrangulation of a closed surface is locally bipartite, and hence we
color vertices of graphs in R1, R2, R3, R4, R6 and R8 by black and white; however, graphs
in the reductions R5 and R7 contain short odd cycles, and hence we cannot do so.

3 Lemmas
First of all, we introduce the following two propositions for quadrangulations of closed
surfaces; these are well-known in topological graph theory, and hence we omit the proofs.

Proposition 3.1. The length of two essential cycles in a quadrangulation of a closed sur-
face have the same parity if they are homotopic to each other on F 2.

Proposition 3.2. A quadrangulation of a closed surface has no separating odd cycle.

It was shown in [23] that many facts hold for {R1, R2, R3}-irreducible polyhedral
quadrangulations of non-spherical closed surfaces. First, we show some of them, which
will be used in our later argument in the paper. In the following lemmas, G represents
a {R1, R2, R3}-irreducible polyhedral quadrangulations of a non-spherical closed surface
F 2 otherwise specified. (The assertions are a little bit changed so as to suit for this paper.)

Lemma 3.3 (Lemmas 3.5, 3.13 and 3.15 in [23]). Every connected component of ⟨V3⟩G is
a 4-cycle bounding a face of G or a path of length at most 2.

Lemma 3.4 (Lemmas 3.8, 3.10 and 3.12 in [23]). Let f = v0v1v2v3 be a face of G with
deg(v0), deg(v2) ≥ 4. Then, there exists

(i) an essential 4-cycle v0v1xv3 for x /∈ {v0, v1, v2, v3},

(ii) an essential diagonal 3-curve passing through v1 and v3, or

(iii) an essential semi-diagonal 3-curve passing through v1 and v3.

Lemma 3.5. Let f = v0v1v2v3 be a face of G with deg(v0), deg(v2) ≥ 4. Then, there
exists an essential cycle passing through v0, v1 and v3 with length 4, 5 or 6.

Proof. It is clear by Lemma 3.4. (For example, if (ii) in the previous lemma holds, then
there exists an essential cycle of length 6 along the essential diagonal 3-curve.)

Lemma 3.6 (Lemma 3.14 in [23]). Let P = u0u1u2 be a 2-path in ⟨V3⟩G as shown in the
left-hand side of R3 in Figure 1 where deg(v4) ≥ 4. Then, there is an essential diagonal
3-curve or an essential semi-diagonal 3-curve passing {v1, u1, v5}.
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Assume that G has a 4-cycle C = u0u1u2u3 in ⟨V3⟩G bounding a face of G such that
ui is adjacent to a third vertex vi /∈ {u0, u1, u2, u3} for each i ∈ {0, 1, 2, 3}. Under the
situation, a 4-cycle v0v1v2v3 bounds a 2-cell region which contains exactly four vertices
u0, u1, u2 and u3. We call the subgraph H isomorphic to a cube with eight vertices ui, vi
for i ∈ {0, 1, 2, 3} an attached cube. We denote ∂(H) = v0v1v2v3, and we call C an
attached 4-cycle of H .

Lemma 3.7 (Lemma 3.16 in [23]). Assume that G has an attached cube H with ∂(H) =
v0v1v2v3, an attached 4-cycle C = u0u1u2u3 and uivi ∈ E(G) for each i ∈ {0, 1, 2, 3}.
Then there is an essential diagonal (or semi-diagonal) 3-curve γ passing {v0, u1, v2} or
{v1, u2, v3}.

Next, we show three lemmas holding for {R1, R2, R3, R4}-irreducible polyhedral quad-
rangulations of non-spherical closed surfaces.

Lemma 3.8. Let G be an {R1, R2, R3, R4}-irreducible polyhedral quadrangulation of
a non-spherical closed surface F 2 having an attached cube H with ∂(H) = v0v1v2v3,
an attached 4-cycle C = u0u1u2u3 and uivi ∈ E(G) for each i ∈ {0, 1, 2, 3}. By
Lemma 3.7, we may assume that there exists an essential simple closed curve γ1 pass-
ing {v0, u1, v2}. Then, there exists an essential simple closed curve γ2 passing either
{v1, u2, v3} or {v1, u2, v3, x} where x /∈ V (H). In particular, if γ1 is 2-sided, then γ2 is
not homotopic to γ1.

Proof. Let G′ denote the quadrangulation obtained from G by applying an R4 of H so as
to identify v1 and v3. We denote the 2-path v0[v1v3]v2 in G′ by P . By our assumption, G′

is not polyhedral. If G′ has a loop e, then e is incident to [v1v3] such that e and P cross
transversally at [v1v3]; otherwise, G would have a loop, a contradiction. Further, this e is
essential by Proposition 3.2. Thus in this case, we find an essential semi-diagonal 3-curve
γ2 passing {v1, u2, v3} in G, half of which is along e.

Secondly, we suppose that G′ has a pair of multiple edges. Similar to the previous
case, we may assume that such multiple edges join [v1v3] and another vertex x /∈ {v0, v2};
otherwise, G would have multiple edges. Then, the 2-cycle C = [v1v3]x formed by the
above multiple edges crosses P transversally, similar to the previous case. Thus, C cannot
be trivial by the above observation and the existence of γ1, and hence we have our desired
simple closed curve γ2 passing {v1, u2, v3, x} in G; note that if v1xv3 forms a corner
of a face of G, then we can take an essential diagonal 3-curve passing {v1, u2, v3}. In
the following argument, we assume that G′ is simple and hence G′ is 2-connected and
2-representative.

By the above argument, we may assume that G′ has a diagonal (or semi-diagonal)
2-curve γ′ passing {[v1v3], x} such that γ′ and P cross at [v1v3] transversally; note that
if G′ has a 2-cut, then G′ also has a surface separating diagonal 2-curve by Lemma 3.6
in [23]. Observe that at least one of two γ′-segments β0 and β1, say β0 without loss of
generality, joins the diagonal pair of f0 = [v1v3]sxt for s, t ∈ V (G′). Here, suppose that
x is either v0 or v2, say v0. Then, let β̃0 denote a simple closed curve obtained from β0

by joining [v1v3] and v0 by a simple curve along the edge [v1v3]v0. In this case, β̃0 must
be essential by Proposition 3.2. Under the situation, we can take an essential simple closed
curve intersecting with G at exactly two vertices v0 and either v1 or v3, which corresponds
to β̃0, a contradiction. Thus, we conclude that x is neither v0 nor v2.
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Observe that even when γ1 is an essential diagonal 3-curve passing through a face
f = v0pv2q for p, q ∈ V (G), we have {v0, v2} ∩ {p, q} = ∅ since G is simple. This
implies that the γ1-segment in f and γ′ cannot cross transversally, and hence we conclude
that γ′ is essential. Therefore, we have an essential diagonal (or semi-diagonal) 4-curve
γ2 passing {v1, u2, v3, x} in the statement, half of which is along γ′, and the other half is
inside the quadrangular region bounded by ∂(H).

Finally, assume that γ1 is 2-sided. Suppose, for a contradiction, that γ2 is homotopic to
γ1. Under the condition, γ2 must cross γ1 even times, i.e., twice here. However, this is not
the case by the above argument.

Lemma 3.9. Let G be an {R1, R2, R3, R4}-irreducible polyhedral quadrangulation of
non-spherical closed surface. Then any 2-cell region bounded by a 4-cycle is either a face
of G or contains exactly four vertices which is of an attached cube.

Proof. Using the above Lemma 3.8 and Lemma 4.3 in [23], we immediately have the
conclusion of the lemma.

Furthermore in [23], Suzuki determined configurations in a 2-cell region bounded by a
6-cycle in {R1, R2, R3}-irreducible polyhedral quadrangulations of non-spherical closed
surfaces. By combining the results of Lemmas 3.7, 3.8 and 3.9, we can easily obtain the
following lemma; so, we omit the proof.

Lemma 3.10. Let G be an {R1, R2, R3, R4}-irreducible polyhedral quadrangulation of
a non-spherical closed surface F 2. Then the number of vertices inside a 2-cell region
bounded by a 6-cycle (resp., 4-cycle) is at most 16 (resp., 4).

In the latter half of the section, we discuss reductions R5, R6, R7 and R8 applied to
polyhedral quadrangulations in turn.

Lemma 3.11. Let G be a polyhedral quadrangulation of a closed surface F 2 having a
2-cell region D with ∂D = v0v1v2v0v3v4 containing two vertices u1 and u2 as shown in
the left-hand side of R5 in Figure 1, and let G′ denote a quadrangulation obtained from G
by an R5 of D. If G′ is not polyhedral, then there exists an essential simple closed curve
γ′ such that

(i) γ′ intersects exactly two vertices of G′,

(ii) γ′ passes through at least one vertex of [v1v4] and [v2v3], and

(iii) γ′ does not pass through v0.

In particular, if C = v0[v1v4][v2v3] is 2-sided, then γ′ is not homotopic to C.

Proof. Some similar arguments as in Lemma 3.8 will appear, and we omit the long ex-
planation at that time for brevity. If G′ has a loop e with a vertex u, then u must be one
of [v1v4] and [v2v3], say [v1v4] up to symmetry, such that e and C = v0[v1v4]v2v3 cross
transversally at [v1v4]. Clearly e is essential, and we can take an essential simple closed
curve intersecting G at only v1 and v4, a contradiction.

Next, assume that G′ has a pair of multiple edges, which joins [v1v4] and another vertex
x ̸= v0. If the 2-cycle C ′ = [v1v4]x formed by the multiple edges is essential, then we can
take our desired simple closed curve along C ′. Thus, we suppose that C ′ is trivial below.
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If x /∈ V (C), then G would have multiple edges joining x and either v1 or v4; observe that
C and C ′ do not cross transversally, otherwise x ∈ V (C) since C ′ is trivial. If x ∈ V (C),
then x must be [v2v3]. Also in this case, G would have multiple edges joining either v1
and v2 or v3 and v4, a contradiction. Therefore, we assume that G′ is 2-connected and
2-representative below.

Now, G′ has a diagonal (or semi-diagonal) 2-curve γ′ passing {[v1v4], x} such that γ′

and C cross at [v1v4] transversally. We consider the γ′-segment β0 and β̃0 which play the
same role as in the argument in Lemma 3.8. If x = v0, then β̃0 is essential by Propo-
sition 3.2, and hence G is not polyhedral as well, a contradiction. If γ′ is trivial, then x
must be [v2v3] since x ̸= v0. However, this contradicts Proposition 3.2 for β̃0. Therefore,
γ′ is essential and satisfying the conditions in the statement. Similar to the argument in
Lemma 3.8, if C is 2-sided, then C and γ′ are not homotopic.

Lemma 3.12. Let G be a polyhedral quadrangulation of a closed surface F 2 having a
2-cell region D with ∂D = v0v1v2v3v0v4v5v6 containing a unique vertex u as shown in
the left-hand side of R6 in Figure 1, and let G′ denote a quadrangulation obtained from G
by an R6 of D. If G′ is not polyhedral, then there exists an essential simple closed curve
γ′ such that

(i) γ′ intersects at most two vertices of G′,

(ii) γ′ passes through at least one vertex of [v1v6], [v2v5] and [v3v4], and

(iii) γ′ does not pass through v0.

In particular, if C = v0[v1v6][v2v5][v3v4] is 2-sided, then γ′ is not homotopic to C.

Proof. The most part is same as the argument in Lemma 3.11, and hence we implicitly omit
the argument which had already done before. First, observe that there does not exist a face
f /∈ D such that v0, v2 ∈ ∂f ; otherwise, we can find a simple closed curve intersecting
with G at exactly two vertices, which passes through the face v2v3v0v4 and f . Similarly,
there is no face f /∈ D of G such that v4, v6 ∈ ∂f . Further, in the case when G′ is not
simple, a loop of a vertex [v2v5] might exist, unlike the argument in Lemma 3.11, and then,
it is essential by Proposition 3.2.

Thus, we assume that G′ has a diagonal (or semi-diagonal) 2-curve γ′ passing {x, y},
and we may assume that y is one of [v1v6], [v2v5] and [v3v4] such that γ′ and C =
v0[v1v6][v2v5][v3v4] cross at y transversally. If x = v0, then y must be [v2v5] by the
same argument as in the previous lemma; recall the argument of β̃0. However, under the
condition, G would have a face f /∈ D such that v0, v2 ∈ ∂f , which is passed by a γ′-
segment, a contradiction. Thus, γ′ does not pass through v0 in the following argument. If
γ′ is trivial, then {x, y} = {[v1v6], [v3v4]}, and γ′ crosses C exactly twice by the former
argument. Similarly, there exists a face f /∈ D such that v4, v6 ∈ ∂f and f is passed by a
γ′-segment, a contradiction. Therefore, γ′ is essential. Further, it is not difficult to see that
γ′ is not homotopic to C when C is 2-sided.

Lemma 3.13. Let G be a polyhedral quadrangulation of a closed surface F 2 having an
annular region A formed by three faces v0v1v4v3, v1v2v5v4 and v2v0v3v5 as shown in the
left-hand side of R7 in Figure 1, and let G′ be a quadrangulation obtained from G by an
R7 of A. If G′ is not polyhedral, then there exists an essential simple closed curve γ′ such
that



10 Ars Math. Contemp. 23 (2023) #P1.04

(i) γ′ intersects exactly two vertices of G′,

(ii) γ′ passes through exactly one vertex of [v0v3], [v1v4] and [v2v5], and

(iii) C = [v0v3][v1v4][v2v5] and γ′ are not homotopic.

Proof. Almost the same argument as in the proofs of Lemmas 3.11 and 3.12 holds, and
hence we omit the proof. (This is easier than those proofs.) Since any two homotopic
2-sided simple closed curves on a closed surface cross even times, (iii) immediately holds
from (ii).

Lemma 3.14. Let G be a polyhedral quadrangulation of a closed surface F 2 having an
annular region A formed by four faces v0v1v6v5, v1v2v7v6, v2v3v0v7 and v0v5v4v7 as
shown in the left-hand side of R8 in Figure 1, and let G′ be a quadrangulation obtained
from G by an R8 of A. If G′ is not polyhedral, then there exists an essential simple closed
curve γ′ such that

(i) γ′ intersects exactly two vertices of G′,

(ii) γ′ passes through at least one vertex of [v0v4], [v1v5], [v2v6] and [v3v7], and

(iii) C = [v0v4][v1v5][v2v6][v3v7] and γ′ are not homotopic.

Proof. Note that there does not exist a face f /∈ A (resp., f ′ /∈ A) such that v0, v2 ∈ ∂f
(resp., v5, v7 ∈ ∂f ′), similar to the argument in the proof of Lemma 3.12. Furthermore, for
example, there might be an edge v2v5 in G such that 2-cycle C ′ = [v1v5][v2v6] formed by
a pair of multiple edges is essential in G′; this is different from the previous lemma. The
argument is almost same, and hence we omit it as well.

4 Main result
First, we refer to the following lemma, which plays an important role in the proof of our
main result.

Lemma 4.1 (Juvan, Malnič and Mohar [8]). For any closed surface F 2 and any non-
negative integer k, there exists a constant f(k, F 2) such that if L is a set of pairwise
non-homotopic simple closed curves on F 2 such that any two elements of L cross at most
k times, then |L| ≤ f(k, F 2).

In the next lemmas, we show that there is an upper bound of the maximum degree
(resp., the diameter) of {R1, . . . , R6}-irreducible (resp., {R1, . . . , R8}-irreducible) poly-
hedral quadrangulations of a non-spherical closed surface F 2.

Lemma 4.2. Let G be an {R1, . . . , R6}-irreducible polyhedral quadrangulation of a non-
spherical closed surface F 2. Then the maximum degree of G is bounded by a constant
depending only on F 2.

Proof. We prove that ∆(G) ≤ 640f(5, F 2) + 79, where f(·, F 2) is the function in
Lemma 4.1. Suppose, for a contradiction, that G has a vertex v with deg(v) ≥
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640f(5, F 2) + 80. Let Lv be the link walk of v in G. Give a direction to Lv and de-
note the directed cycle by

−→
L v . Let

a11, . . . , a
1
16, b

1
1, . . . , b

1
7, c

1
1, . . . , c

1
17, a

2
1, . . . , a

2
16, b

2
1, . . . , b

2
7, c

2
1, . . . , c

2
17, . . . ,

al1, . . . , a
l
16, b

l
1, . . . , b

l
7, c

l
1, . . . , c

l
17

be 40l consecutive vertices of Lv taken along
−→
L v , where l ≥ 16f(5, F 2)+2. Then, we may

assume that vb11b
1
2b

1
3 is a face of G; note that vbi1b

i
2b

i
3 is also a face for each i ∈ {2, . . . , l}

under the assumption. Let P (a, b) denote the path in Lv starting at a ∈ V (Lv) and ending
at b ∈ V (Lv) along

−→
L v .

In the former half of the proof, we show the following fact: For each i ∈ {1, . . . , l},
there exists either (A) a cycle of length at most 6 containing a path bisvb

i
t (1 ≤ s < t ≤ 6),

or (B) a cycle of length at most 4 containing a path bisvu (1 ≤ s ≤ 6) where u ∈ V (Lv).
We call the cycle having the above property (A) (resp., (B)) a type-A cycle (resp., type-B
cycle). Note that there might be a cycle having both properties (A) and (B); in that case,
we can classify it into either.

In the following argument, we discuss several cases around vertices bi1, . . . , b
i
6 and bi7.

To simplify notation, we put bij = bj for each j ∈ {1, . . . , 7} by omitting the upper sub-
script “i”. First of all, assume that deg(b2) ≥ 4. In this case, we apply an R1 of vb1b2b3
at {b1, b3}, i.e., identifying b1 and b3. By Lemma 3.4, we can easily find our desired cy-
cle containing a path b1vb3; take such a path using edges of faces passed by the diagonal
3-curve or the semi-diagonal 3-curve. The same fact holds for b4 and b6, and hence we
assume that deg(bh) = 3 for each h ∈ {2, 4, 6} below.

Next, assume deg(b3) = 3. Then, there exist faces b1b2xy, b2b3b4x and b4b5zx for
x, y, z ∈ V (G). If deg(x) ≥ 4, then we can find our desired cycle containing a path b1vb5
by Lemma 3.6 as a type-A cycle. On the other hand, if deg(x) = 3, i.e., y = z in this case,
then b2b3b4x is an attached 4-cycle. In this case, there exists either a type-A cycle or a type
B cycle, both of which contain vb1, by Lemma 3.7. Thus, we assume that deg(b3) ≥ 4 and
deg(b5) ≥ 4 in the following argument.

For the face vb3b4b5, there is

(i) an essential 4-cycle vb3b4x for x /∈ {v, b3, b4, b5},

(ii) an essential diagonal 3-curve γ passing through v and b4, or

(iii) an essential semi-diagonal 3-curve γ passing through v and b4, by Lemma 3.4.

First, we discuss (i). In this case, x is a vetex of Lv such that xv ∈ E(G), and hence there
exists our desired type-B cycle. Secondly, assume (ii), and let f1 = vb3b4b5, f2 = b4pqr
and f3 = vsqt be faces passed by γ where q, s, t ∈ V (Lv) (see the left-hand side of
Figure 2). Since deg(v4) = 3, we have |{b3, b5} ∩ {p, r}| = 1. Without loss of generality,
we may assume that p = b3, and we find our desired type-B 4-cycle vb3qs.

Thirdly, we discuss (iii). We further divide this case into the following two subcases:

(1) γ passes through f1 = vb3b4b5, f2 = b4pqr and f3 = vqst where q, s, t ∈ V (Lv),
and

(2) γ passes through f1 = vb3b4b5, f2 = b4pqr and f3 = vsrt where s, r, t ∈ V (Lv).
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v

v

Lv

Lv

b3
b4

b5

p r

q
s t

v

v

Lv

Lv

b3
b4

b5

q

r
s t

v

v

Lv

Lv

b3
b4

b5

q

r
s t

y
γ′

Figure 2: Configurations around Lv .

First, assume the former case (iii)(1). Similar to the above argument, we have |{b3, b5} ∩
{p, r}| = 1 since deg(v4) = 3, and we may assume that p = b3 here. In this case, we find
a type-B cycle vb3q of length 3.

Next, suppose the latter case (iii)(2). Similarly, we have deg(v4) = 3, and hence we
may assume that p = b3 (see the center of Figure 2). Furthermore, if deg(r) = 3, then q
must be either s or t, and hence we find our desired type-B cycle vb3q of length 3. Thus,
we assume deg(r) ≥ 4 in the following argument. By applying Lemma 3.4 to f2 = b3b4rq
since deg(b3) ≥ 4 and deg(r) ≥ 4, we find either a 2-path P joining q and b4 such that
the cycle b4b3qP is essential, or an essential simple closed curve γ′ passing {q, b4, x} for
x ∈ V (G). If the former holds, then P = qb5b4 since deg(b4) = 3. In this case, there
exists our desired type-A cycle vb3qb5 of length 4. Next, we assume the latter, and suppose
that γ′ is an essential diagonal 3-curve. If γ′ passes through rb4b5y for y ∈ V (G), then
there exists a 2-path P ′ joining y and q along γ′ (see the right-hand side of Figure 2).
That is, there exists a type-A cycle vb3qP

′yb5 of length 6. If γ′ passes through b3b4b5v,
then q ∈ V (Lv) and γ′ passes {v, b4, q}. In this case, there exists a type-B cycle vb3qq

′

of length 4 where qq′ ∈ E(Lv). When γ′ is an essential semi-diagonal 3-curve, similar
argument holds, and we have either a type-A cycle of length 5 or a type-B cycle of length
3.

In the latter half of the proof, we lead to a contradiction. For our purpose, let C l
A denote

a type-A cycle containing blsvb
l
t where 1 ≤ s < t ≤ 6, and let C i,j

B denote a type-B cy-
cle containing a 2-path bisvu where 1 ≤ s ≤ 6 such that u ∈ {aj1, . . . , a

j
16, b

j
1, . . . , b

j
7,

cj1, . . . , c
j
17}; i.e., C i,j

B was obtained by the argument above when discussing vertices
bi1, . . . , b

i
7. (Note that Ci,i

B might exist for some i.) Then, any two type-A cycles cross
at most 5 times, since they cannot cross at a vertex v. Clearly, the number of crossing
points of a type-B cycle and another type-A or type-B cycle is at most 4.

First, assume that there exist at least 2f(5, F 2) + 1 type-A cycles. By the definition
of the function, F 2 admits at most f(5, F 2) simple closed curves which are pairwise non-
homotopic and cross at most 5 times, and hence there exist three such homotopic cycles
C i
A , C j

A and C k
A (i < j < k) by the Pigeonhole Principle. Let D̃ denote the configuration

which is the union of the closed disk D̄ bounded by Lv and the three cycles C i
A , C j

A and
C k
A . First, suppose that D̃ is an embedding on F 2 such that C i

A , C j
A and C k

A are 2-sided.
Moreover, assume that C i

A (resp., C j
A ) contains bisvb

i
t with 1 ≤ s < t ≤ 6 (resp., bjs′vb

j
t′

with 1 ≤ s′ < t′ ≤ 6).
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bjt′

bjs′ bit

bis
v

C k
A

bjt′

bjs′ bit

bis
v

C i
AC j

A

bjt′

bjs′ bit

bis
v

C i
AC j

A C j
A C i

A

Figure 3: Type-A cycles around v.

Observe that in D̃, C i
A and C j

A bound a pinched annulus A (i.e., an annulus where the
two boundary components might touch several times) having a pinched point v (see the
left-hand side of Figure 3). If C i

A and C j
A have a common vertex other than v, then there

exists a 2-cell region R in A bounded by a cycle of length either 4 or 6 such that R̄ contains
P (bit, b

j
s′) or P (bjt′ , b

i
s). However, this contradicts Lemma 3.10 since P (bit, b

j
s′) (resp.,

P (bjt′ , b
i
s)) contains vertices ci1, . . . , c

i
17, a

j
1, . . . , a

j
15, and aj16 (resp., cj1, . . . , c

j
17, a

i
1, . . . ,

ai15, and ai16). In the following argument, we call a region like the above R a dense quad-
rangle or a dense hexagon, which contains at least 5 or 17 inner vertices, respectively. Thus,
we conclude that C i

A and C j
A have the unique common vertex v. However, under the situa-

tion, the third type-A cycle C k
A must cross transversally either C i

A or C j
A (see the center of

Figure 3), contradicting the same argument as above. In the case when each of C i
A , C j

A and
C k
A is 1-sided, any two of them must cross, and hence there exists a dense quadrangle or a

dense hexagon, as well as the previous case (see the right-hand side of Figure 3).
Next, we discuss type-B cycles. Under our definition, for some i ̸= j, C i,j

B and C j,i
B

might exist; as an extreme example, C i,j
B might coincide with C j,i

B . If so, i.e., there exist
C i,j
B and C j,i

B , then we choose one from them. By the above argument, we may assume
that there exist at most 2f(5, F 2) type-A cycles. That is, there exist at least 7f(5, F 2) + 1,
which is the half of 14f(5, F 2) + 2, distinct type-B cycles around v, such that the set of
those cycles contains no pair of two cycles C i,j

B and C j,i
B for 1 ≤ i ≤ j ≤ l.

Similar to the argument for type-A cycles, there exist eight such homotopic cycles
simply denoted by Γ1,Γ2, . . . ,Γ8 having a common vertex v such that they are placed on
F 2 as shown in the left-hand side of Figure 4. Note that the lengths of those cycles are
same, which is either 3 or 4, by Proposition 3.1. Furthermore, note that if Γi and Γi+1 have
a common vertex other than v for some i ∈ {1, . . . , 7}, then we can easily find a dense
quadrangle or a dense hexagon, contradicting Lemma 3.10; only Γ1 and Γ8 might have a
common vertex other than v. Therefore, Γi∪Γi+1 bounds an octagonal (resp., a hexagonal)
2-cell region for each i ∈ {1, . . . , 7} if |Γi| = 4 (resp., if |Γi| = 3).

Let Di,j denote an octagonal (or a hexagonal) region bounded by Γi ∪ Γj for 1 ≤ i <
j ≤ 8. By Euler’s formula, Γ4,5 contains a vertex u of degree 3; e.g., see Lemma 4.1 in
[23]. By Lemma 3.3, u belongs to a connected component of ⟨V3⟩G which is

(i) a 4-cycle,

(ii) a 2-path,
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v

v

Γ1
Γ2 Γ3 Γ4 Γ5

Γ6
Γ7

Γ8

v = v1

v = v1

Γ3 Γ6

v0

v3
v4

v5u2

v2
u1

u0

Figure 4: Type-B cycles around v.

(iii) a K2 or

(iv) an isolated vertex.

First, we assume that |Γi| = 4, and discuss the above four cases in order.
Case (i): In this case, an attached cube H with ∂(H) = v0v1v2v3 containing u as an
vertex of the attached 4-cycle is in D̄3,6. (Observe that faces incident to u are in D4,5, and
the other two faces in the 2-cell region bounded by ∂(H) are at least in D3,6.) Then, by
Lemma 3.7 and the existence of Γ2 and Γ7, one of v0, v1, v2 and v3, say v0 without loss
of generality, must be v; we call the above Γ2 and Γ7 obstructions throughout the proof.
However, Lemma 3.8 requires one more essential simple closed curve which does not pass
through v = v0, a contradiction; by the existence of obstructions again.
Case (ii): We assume that u belongs to a 2-path P = u0u1u2 and the configuration around
P is given by the left-hand side of R3 in Figure 1. Similarly, the hexagon bounded by
v0v1v2v3v4v5 is contained in D̄3,6, and hence the obstructions, which are Γ2 and Γ7, play
the same role in this argument. By Lemma 3.6, one of v1 and v5, say v1 without loss
of generality, must be v (see the right-hand side of Figure 4). Since deg(v3) ≥ 4 and
deg(v5) ≥ 4, there is an essential diagonal 3-curve passing {v4, u2, v0} or {v4, u2, u0}
by Lemma 3.4. However, in each case, such three vertices are inner vertices of D2,7, a
contradiction.
Case (iii): We assume that u0u1 ∈ E(G) is a connected component of ⟨V3⟩G, and there are
four faces v0v1u1v4, v1v2u2u1 and u1u2v3v4 and u2v2v

′
0v3 contained in D3,6. Here, we

locally color vertices in D̄3,6 by two colors black and white; we assume that v is colored
by black. Further, we may assume that v′0 is colored by black without loss of generality;
note that v0, v2 and v3 are white vertices. When considering a face v0v1u1v4, there is an
essential diagonal 3-curve passing either {v0, u1, v2} or {v0, u1, v3} by Lemma 3.4, since
we have deg(v1) ≥ 4 and deg(v4) ≥ 4. By the existence of obstructions, one of v0, v2 and
v3 must be v under the situation. However, it contradicts the above bipartition.
Case (iv): Assume that u is incident to three faces v0v1uv6, v1v2v4u and uv4v5v6, which
are in D4,5, and note that deg(vi) ≥ 4 for each i ∈ {1, 4, 6}. As well as the previous
case, we locally color vertices in D̄3,6; assume that v is colored by black. If u is a white
vertex, then it contradicts Lemma 3.4 by the existence of obstructions; note that there
should be a diagonal 3-curve passing three white vertices including u. Therefore, u is a
black vertex below. By Lemma 3.4 again, exactly one of v0, v2 and v5, say v0 without loss
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v = v0

v = v0
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R

Figure 5: Configurations in the 2-cell region bounded by Type-B cycles.

of generality, coincides with v, and there exists a diagonal 3-curve passing through three
faces v0v1uv6, v1v2v4u and v2v3v0p for v3, p ∈ V (G), up to symmetry (see the left-hand
side of Figure 5). If deg(v2) ≥ 4, then Lemma 3.4 works for v2v3v0p, and it contradicts the
existence of the obstructions. Thus, we conclude that |{v1, v4}∩{v3, p}| = 1, and we may
suppose v4 = p since {v1, v4} ∩ {v3, p} ̸= {v1}; otherwise, G would have multiple edges.
Then, G has an octagonal region bounded by v0v1v2v3v0v4v5v6 satisfying the condition of
a reduction R6. However, it contradicts Lemma 3.12 by the existence of the obstructions.

Next, we assume that |Γi| = 3. We implicitly omit the same argument as in the case
assuming |Γi| = 4. (That is, we give only the different and important points below.)

Case (i): The same argument as in the case of |Γi| = 4 works.

Case (ii): We may assume that v1 = v, and there is an essential semi-diagonal 3-curve
passing {v4, u2, v0}, {v4, u2, u1} or {v4, u2, u0} by Lemma 3.4. However, in any case,
such three vertices are inner vertices of D2,7, a contradiction.

Case (iii): In this case, the similar argument (not using the bipartition) leads us to the
conclusion that v0 = v′0 = v such that the 3-cycle v0v1v2 is homotopic to Γi. However, it
contradicts Lemma 3.11 by the existence of the obstructions.

Case (iv): Assume that u is incident to three faces v0v1uv5, uv1v2v3 and uv3v4v5, which
are in D4,5, and note that deg(vi) ≥ 4 for each i ∈ {1, 3, 5}. For a face v0v1uv5, there
exists a semi-diagonal 3-curve passing either {v0, u, v3} or {v0, u, v4}, up to symmetry,
by Lemma 3.4. Fist assume the former case. If v = v0, then there is a face f = v3pvq
for p, q ∈ V (G) (see the center of Figure 5). For f , Lemma 3.4 works and we conclude a
contradiction by the existence of the obstructions since deg(v3) ≥ 4. On the other hand, if
v = v3, then there is a face vsv0t for s, t ∈ V (G). As well as the previous case, we can
apply Lemma 3.4 for vsv0t since deg(v0) ≥ 4; if {v1, v5} ∩ {s, t} ̸= ∅, then G would not
become 3-representative.

Next, we assume the latter case. In this case, v is either v0 or v4, say v0, up to sym-
metry. By the assumption, there exists an edge v4v0 such that v0v5v4 is homotopic to Γi.
Furthermore, applying Lemma 3.4 for a face v1v2v3u, there must be a semi-diagonal 3-
curve passing {v0, u, v2}; note that v2, u, v4 and v5 are vertices in D̄4,5, i.e., inner vertices
of D3,6. That is, we have v2v0 ∈ E(G) such that v2v0v4v3 bounds a 2-cell region R inside
D4,5 (see the right-hand side of Figure 5). By the above argument of (i), we may assume
that D4,5 does not contain a vertex of degree 3 belonging to an attached 4-cycle, and hence
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R is a face of G by Lemma 3.9. However, v3 has degree 3, contrary to u being an isolated
vertex of ⟨V3⟩G. Therefore, we got our desired conclusion.

Lemma 4.3. Let G be an {R1, R2, R3}-irreducible polyhedral quadrangulation of a non-
spherical closed surface F 2. For any vertex v ∈ V (G), there exists an essential cycle of
length at most 6 either

(i) containing v, or

(ii) containing u ∈ V (G) such that uv ∈ E(G).

Proof. First, assume that deg(v) = 3, and let u0, u1 and u2 be vertices adjacent to v. If two
of u0, u1 and u2, say u0 and u1 without loss of generality, have degree at least 4, then we
can easily find our desired cycle by Lemma 3.5. Thus, by Lemma 3.3, we may assume that
deg(u0) = deg(u1) = 3 and deg(u2) ≥ 4 below. If v is contained in a 4-cycle of ⟨V3⟩G,
then there exists such a cycle by Lemma 3.7. On the other hand, if v is not contained in the
above 4-cycle in ⟨V3⟩G, that is, if a 2-path u0vu1 is a connected component of ⟨V3⟩G, then
G also has our desired cycle by Lemma 3.6.

Next, we assume deg(v) ≥ 4, and let u0 and u1 be vertices adjacent to v such that
u0vu1 forms a corner of a face of G. If one of u0 and u1, say u0 without loss of generality,
has degree 3, then G has a cycle of length at most 6 passing through u0 by the above
argument, and hence it satisfies (ii) of the statement in the lemma. If deg(u0) ≥ 4 and
deg(u1) ≥ 4, then there exists our desired cycle by Lemma 3.5 again.

Lemma 4.4. Let G be an {R1, . . . , R8}-irreducible polyhedral quadrangulation of a non-
spherical closed surface F 2. Then the diameter of G is bounded by a constant depending
only on F 2.

Proof. In this proof, we prove that diam(G) ≤ 50f(0, F 2)−1 where diam(G) is a diameter
of G and f(·, F 2) is the function in Lemma 4.1. Suppose, for a contradiction, that G has
two vertices x and y with distance at least 50f(0, F 2). Let P be a path from x to y attaining
the distance, and let x = v1, v2, . . . , vk be the vertices on P lying in this order, where
k ≥ 5f(0, F 2) + 1, so that the distance between vi and vi+1 is exactly 10 on P , for each
i ∈ {1, . . . , k− 1}. Then, there exists a cycle Ci of length at most 6 passing through either
vi or a vertex ui adjacent to vi for each i ∈ {1, . . . , k} by Lemma 4.3. Since the distance
between vi and vj is at least 10 for any i < j, two cycles Ci and Cj are mutually disjoint.
Since F 2 admits only f(0, F 2) pairwise non-crossing non-homotopic essential cycles, and
since we assumed k ≥ 5f(0, F 2) + 1, we can take six pairwise homotopic cycles from
{C1, . . . , Ck} by the Pigeonhole Principle. Let Γ1, . . . ,Γ6 be such six cycles of length at
most 6, which are mutually homotopic. Note that those cycles are 2-sided since any two of
them are disjoint, and that the parities of those cycles are pairwise same. We may assume
that these Γ1, . . . ,Γ6 lie on an annulus in this order.

Let Ai,j denote the annular region bounded by Γi and Γj for 1 ≤ i < j ≤ 6; similarly,
Āi,j contains its two boundaries Γi and Γj . Note that there is no edge joining vertices on Γi

and Γi+1 for each i ∈ {1, . . . , 5}; for otherwise, the distance between vi and vi+1 would
be at most 9, contradicting that P is a shortest path joining x and y in G. Similar to the
argument in Lemma 4.2, we call Γ1 and Γ6 obstructions for our purpose.

First, we discuss the case when G has a vertex u of degree 3 in Ā3,4. By Lemma 3.3, u
belongs to a connected component of ⟨V3⟩G which is
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Figure 6: Configurations around connected components of ⟨V3⟩G.

(i) a 4-cycle,

(ii) a 2-path,

(iii) a K2 or

(iv) an isolated vertex.

We discuss the above four cases in order.

Case (i): Under the assumption, an attached cube containing u as an vertex of an attached
4-cycle is in Ā2,5. (For example, even if u is on Γ3, then there is no face f such that ∂f
contains both u and a vertex on Γ2, since there is no edge joining vertices on Γ2 and Γ3,
and since deg(u) = 3.) Similar argument in Case (i) in the proof of Lemma 4.2 works, and
we conclude that this is not the case; i.e, we cannot take two essential simple closed curves
γ1 and γ2 in Lemma 3.8 by the existence of the obstructions.

Case (ii): We assume that u belongs to a 2-path P = u0u1u2 and the configuration around
P is given by the left-hand side of R3 in Figure 1. Similarly, the hexagonal region R
bounded by v0v1v2v3v4v5 is contained in Ā2,5. By Lemma 3.6, there exists an essen-
tial diagonal (or a semi-diagonal) 3-curve γ passing {v1, u1, v5} (see the left-hand side of
Figure 6). On the other hand, since deg(v1) ≥ 4 and deg(v3) ≥ 4 hold, there exists an
essential diagonal (or semi-diagonal) 3-curve γ′ passing {v0, u0, v2} by Lemma 3.4. Ob-
serve that both γ and γ′ are homotopic to Γi by the existence of obstructions. Under the
situation, γ and γ′ cross transversally in R, and it must cross transversally one more time
since these two curves are 2-sided. This implies that there should be a face incident to four
vertices v0, v1, v2 and v5, in which γ and γ′ pass through. However, it contradicts that G is
simple.

Case (iii): Assume that u1u2 ∈ E(G) is a connected component of ⟨V3⟩G, and there are
four faces v0v1u1v4, v1v2u2u1, u1u2v3v4 and u2v2v

′
0v3 incident to u1 and u2. Note that

deg(vi) ≥ 4 for any i ∈ {1, 2, 3, 4}. When considering a face v0v1u1v4, there exists an
essential diagonal (or semi-diagonal) 3-curve γ passing either {v0, u1, u2} or {v0, u1, v2}
by Lemma 3.4, up to symmetry. Note that γ is homotopic to Γi. In the former case, we
have v0 = v′0, and hence we discuss an R5 to the hexagonal region containing u1 and u2.
However, it immediately contradicts that G is {R1, . . . , R8}-irreducible by the existence
of obstructions and by Lemma 3.11.



18 Ars Math. Contemp. 23 (2023) #P1.04

v0

v4

p

v5

v3

v2

u

v0

v1

v0

p

v3

u

v0

q

v2

v1

v4

v5

v0

v3

u

v2

v1

v4

v5

v3

u
v1

v5

p

pq

q

γ

γ

γ

v0

v2

v4

Figure 7: Configurations around connected components of ⟨V3⟩G.

Therefore, we assume the latter case. In this case, we may assume that there exists
an essential diagonal (or semi-diagonal) 3-curve γ′ passing {v′0, u2, v4} by the same argu-
ment as above. Note that γ′ is homotopic to γ under the condition. If γ and γ′ are both
essential semi-diagonal 3-curves (by Proposition 3.1) then, there exists a face v0v4v

′
0v2

by Lemma 3.9 and our former argument (see the center of Figure 6). However, since
deg(v2) ≥ 4 and deg(v4) ≥ 4, we apply Lemma 3.4, and conclude a contradiction.

Thus, we suppose that γ is an essential diagonal 3-curve, and there is a face f = v0pv2q
for p, q ∈ V (G) which is passed by γ. Here, observe that v1 /∈ {p, q} by the simplicity of
G, and hence we have deg(v2) ≥ 4. For f , if deg(v0) ≥ 4, then it is contrary to G being
{R1, . . . , R8}-irreducible by the existence of obstructions and by Lemma 3.4. Therefore,
we assume that deg(v0) = 3 below. Without loss of generality, we may assume that p = v4
(see the right-hand side of Figure 6). Under the situation, we can apply Lemma 3.12 to the
octagonal region bounded by v2v1v0qv2v4v3u2, and obtain a contradiction.
Case (iv): Assume that u is incident to three faces v0v1uv5, v1v2v3u and uv3v4v5. Note
that deg(vi) ≥ 4 for any i ∈ {1, 3, 5}. Hence, for a face v0v1uv5, we have

(a) an essential 4-cycle v0v1uv3, or

(b) an essential diagonal 3-curve or semi-diagonal 3-curve γ passing

(1) {v0, u, v3} or

(2) {v0, u, v2}

by Lemma 3.4, up to symmetry.

First, assume (a). In this case, for a face v1v2v3u, there must be an essential diagonal 3-
curve passing {v0, u, v2} by Lemma 3.4; it is not difficult to check that this is the unique
case by Proposition 3.1 and the existence of obstructions. Furthermore, by Lemma 3.9,
there exists a face v2pv0v3 for p ∈ V (G), and it contradicts Lemma 3.12 for an octagonal
region bounded by v0v1v2pv0v3v4v5 by the similar argument as above (see the first figure
of Figure 7).

Secondly, we assume (b)(1). In this case, γ is an essential semi-diagonal 3-curve, and
hence there exists a face v0pv3q for p, q ∈ V (G) which γ passes through (see the second
figure of Figure 7). Then, we have deg(v0) ≥ 4 since {p, q} ∩ {v1, v5} = ∅; otherwise, G
would become representativity at most 2. Therefore, for v0pv3q, we apply Lemma 3.4, and
obtain a contradiction as well as former cases.
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Thirdly, we discuss the case (b)(2). First, assume that γ is an essential semi-diagonal 3-
curve; i.e., v0v2 ∈ E(G) which is along γ (see the third figure of Figure 7). Then, for a face
uv3v4v5, there exists either v4v0 or v4v2, say v4v0 without loss of generality, as an edge
of G such that v0v5v4 is homotopic to Γi. Under the situation, there exists a 2-cell region
R bounded by v0v4v3v2, which is a face of G by Lemma 3.9 and the former argument.
However, we obtain a contradiction since deg(v3) ≥ 4. Therefore, we suppose that γ is
an essential diagonal 3-curve; i.e., there exists a face bounded by v0pv2q for p, q ∈ V (G)
(see the last figure of Figure 7). If {p, q} ∩ {v3, v5} ̸= ∅, then it gives rise to the above
case (a), which had already discussed. On the other hand, if v1 ∈ {p, q}, then G would
have multiple edges, a contradiction. Thus, we have deg(v0) ≥ 4 and deg(v2) ≥ 4, and
conclude a contradiction by Lemma 3.4, similar to the former cases.

Therefore, in the following argument, we discuss the case when deg(u) ≥ 4 for any
vertex u in Ā3,4. In this case, we focus on a face f = v0v1v2v3 in Ā3,4 with deg(vi) ≥ 4
for each i ∈ {0, 1, 2, 3}. By Propositions 3.1 and 3.2, Lemma 3.4 and the existence of
obstructions, it suffices to discuss the following two cases (I) and (II), up to symmetry.

Case (I): There exist two essential semi-diagonal 3-curves γ and γ′ passing {v0, v2, x} and
{v1, v3, x}, respectively, for x ∈ V (G) such that γ and γ′ are homotopic to Γi (see the first
figure of Figure 8). Then, there are two faces f = v0v3xt and f ′ = v1sxv2 for s, t ∈ V (G)
by Lemma 3.9 (see the second figure of Figure 8). Under the situation, if s = t, then
there exists an annular region A bounded by two 3-cycles sv0v1 and xv3v2 which contains
exactly three edges dividing it into three faces (see the third figure of Figure 8). Then, we
apply Lemma 3.13 to A and obtain a contradiction by the existence of the obstructions.

Thus, we assume s ̸= t below, and hence s, t, v2 and v3 are distinct vertices; i.e., we
have deg(x) ≥ 4. Then, we apply Lemma 3.4 to f ′ and find an essential semi-diagonal
3-curve γ′′ passing {s, v2, z} for z ∈ V (G). By the existence of the obstructions, γ′ and
γ′′ should be homotopic. That is, γ′ and γ′′ cross even times (actually twice), and hence
we have z = v0 and sv0 ∈ E(G) (see the last figure of Figure 8). Then, there exists a
2-cell region bounded by sv0v3x, and it contradicts Lemma 3.9 since s ̸= t.

Case (II): There exists an essential diagonal 3-curve γ passing {v1, v3, x} for x ∈ V (G),
and v0x, v2x ∈ E(G) such that γ and the 4-cycle v0v1v2x are homotopic to Γi (see the
left-hand side of Figure 9). Then, there are two faces f = v2v1sx and f ′ = v0v3tx
for s, t ∈ V (G) by Lemma 3.9 (see the center of Figure 9). By the simplicity of G,
s, t /∈ {v0, v1, v2, v3}, and hence deg(x) ≥ 4. Thus, for f , there exists an essential diagonal
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3-curve γ′ passing {v0, v2, s} by Lemma 3.4; this is a unique case by the same argument
as in Case (I). Then, by Lemma 3.9, there is a face f ′′ = spv0x for p ∈ V (G) which γ′

passes through (see the right-hand side of Figure 9). Apply Lemma 3.14 to the annular
region bounded by two 4-cycles v0v1sp and v3v2xt, and obtain a contradiction.

Now, we prove our main result as follows.

Proof of Theorem 1.1. Let G be a graph with maximum degree ∆ and diameter d. Then,
the following inequality holds.

|V (G)| ≤ 1 +

d∑
k=1

∆(∆− 1)k−1 = 1 +
∆((∆− 1)d − 1)

∆− 2
.

Therefore, every {R1, . . . , R8}-irreducible quadrangulation G of F 2 has a finite number
of vertices, since its maximum degree and diameter are bounded by Lemmas 4.2 and 4.4,
respectively. Thus, F 2 admits only finitely many {R1, . . . , R8}-irreducible quadrangula-
tions, up to homeomorphism.

5 Minimality of reductions
In the previous section, we proved that {R1, . . . , R8} is sufficient to finitize the number of
minimal quadrangulations of any closed surface. However, one might think that the eight
reductions are little too much. As mentioned in the introduction, Theorem 1.3 describes
more accurate facts for the torus.

Proof of Theorem 1.3. See Figure 10. Each Ji represents an infinite series of {R1, . . . ,
R8} \ {Ri}-irreducible quadrangulations of the torus. (To obtain the torus, identify two
horizontal segments and two vertical segments of the rectangle, respectively.) In each gray
colored quadrangular region in figures contains exactly four vertices which is of an attached
4-cycle. We can construct only J6 and J8 as bipartite quadrangulations since the others
require essential cycles of length 3. Observe that we cannot apply R8 to J6, since the dual
of J6 has no essential cycle of length at most 4. Moreover, each of J7 and J8 is an infinite
series of 4-regular quadrangulations of the torus.
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Figure 10: Infinite series of quadrangulations of the torus.

Proof of Theorem 1.4. As mentioned in the introduction, the projective plane does not ad-
mit 2-sided essential simple closed curves and hence {R1, . . . , R6} is finitizable for poly-
hedral quadrangulations of the projective plane by Theorem 1.1. The infinite series of
minimal graphs can be obtained in a similar way as those of torus; we leave it for read-
ers. For example, an infinite series of polyhedral quadrangulations denoted by I26(2n+1)
(n ≥ 2), which can be found in [23], is {R1, . . . , R5}-irreducible quadrangulations of the
projective plane.

In the end of the paper, we pose the following problem.

Problem 5.1. For any closed surface F 2 other than the sphere, the projective plane and the
torus, is {R1, . . . , R8} a minimal finitizable set of reductions for polyhedral quadrangula-
tions of F 2?
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