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Vpliv pravokotnosti mre�e na konvergenco programa SIMPLE
za re�evanje Navier-Stokes-ovih enaèb

The Influence of Grid Orthogonality on the Convergence of the SIMPLE Algorithm
for Solving Navier-Stokes Equations

Ivo D�ijan - Zdravko Virag - Hrvoje Kozmar
(University of Zagreb, Croatia)

Razvili  smo metodo konènih volumnov za re�evanje Navier-Stokesovih enaèb na lokalno pravokotni
nestrukturirani mre�i z uporabo algoritma SIMPLE. Razvito metodo smo primerjali s podobno metodo na
strukturirani, ne nujno pravokotni mre�i, v èlenih pretekle konvergence in obsegu pod-relaksacijskih
faktorjev, pri katerih se metodi pribli�ujeta. Kadar je strukturirana mre�a pravokotna, sta stopnji
pribli�evanja obeh metod podobni. V primerih, kadar strukturirana mre�a ni pravokotna, se poka�e prednost
predlagane metode pri lokalno pravokotni mre�i v razmerah pretekle konvergence. V teh primerih je obseg
pod-relaksacijskih faktorjev, pri katerih je predlagana metoda zadovoljivo konvergentna, mnogo veèji kot
pri metodi na nepravokotni mre�i.
© 2007 Strojni�ki vestnik. Vse pravice pridr�ane.
(Kljuène besede: Navier-Stokesove enaèbe, metode konènih volumnov, algoritmi SIMPLE, nestrukturirane
mre�e)

A finite-volume method for solving the Navier-Stokes equations on a locally orthogonal unstruc-
tured grid using the SIMPLE algorithm has been developed. The developed method was compared with a
similar method on a structured, not necessarily orthogonal grid, in terms of convergence history and the
range of under-relaxation factors in which the methods converge. When the structured grid is orthogonal,
the convergence rates of the two methods are similar. For the cases when the structured grid is non-
orthogonal, the superiority of the proposed method on the locally orthogonal grid is demonstrated in terms
of convergence history. In these cases, the range of under-relaxation factors in which the proposed method
shows satisfactory convergence is much wider than for the method on the non-orthogonal grid.
© 2007 Journal of Mechanical Engineering. All rights reserved.
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0 INTRODUCTION

The rapid development of computers has
brought about rapid developments in the field of
computational fluid dynamics. Calculation domains
are now more complex, which increases the need to
use an unstructured grid for their discretization. Finite
volume methods are widely applied for solving fluid
flow problems. Initially, these methods were used
on structured staggered grids. Nowadays they are
used on unstructured collocated grids, on which
segregate algorithms with the pressure-based ap-
proach are applied for incompressible flows. The most
popular algorithm based on pressure correction is
the SIMPLE (Semi-Implicit Method for the Pressure-

Linked Equation) algorithm, Caretto et al. [1] and
Patankar and Spalding [2]. In the pressure-velocity
correction relation the effects coming from velocity
corrections in neighboring nodes on the pressure
correction in the central node are neglected. The
consequence of this neglecting is the overestima-
tion of the pressure correction, which can cause the
divergence of the numerical process. To ensure the
stability of the numerical process, the under-relax-
ation factor for the pressure is introduced. The opti-
mal value of this factor cannot be estimated in ad-
vance since it depends on the grid�s characteristics
and the nature of the problem.

The SIMPLE algorithm is originally defined
on a staggered grid where the pressure is calculated
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in the cell centre and the velocity components are
calculated on the cell faces. On a collocated grid, the
pressure field and velocity components are calcu-
lated in the cell centre. The application of the SIMPLE
algorithm on a collocated grid started with Rhie and
Chow [3].

The grid non-orthogonality is one of the fac-
tors that increases the number of iterations of the
SIMPLE algorithm. If the connecting line of two
neighboring nodes is not perpendicular to the cell
face, some terms that appear due to non-
orthogonality are usually neglected. This is the case
with the CAFFA public-domain computer code [4].
It is believed that this neglecting slows down the
rate of convergence of the numerical method.
Therefore, the modification of the finite volume
method on an unstructured locally orthogonal grid
is proposed. The rate of convergence of the SIMPLE
algorithm on that grid will be compared with the rate
of convergence on a structured, not necessarily
orthogonal grid.

1 MATHEMATICAL MODEL AND NUMERICAL
PROCEDURE

The mathematical model of steady, laminar,
incompressible fluid flow with constant viscosity
and without mass forces is adopted. The model is
described with the following Navier-Stokes
equations:

(1)

(2)

where r, v
j
, p, m and x

j
 are the fluid density, velocity,

pressure, viscosity and coordinates, respectively.
These equations will be numerically solved on an
unstructured locally orthogonal grid. A part of such
a computational grid is shown in Fig. 1.

The main nodes, C and N, at which the veloc-
ity and pressure fields are calculated, are placed
within their respective cells. The connecting line CN
is perpendicular to the cell face and the nodes C and
N are at an equal distance from an auxiliary node n,
which enables a simple formulation of the high-order
interpolation. It is clear that such a grid is possible
in every 2D case, because the cell vertex a in Fig. 1 is
the circumcenter of the triangle formed by the nodes
C, M and K. Such a grid generator is described by
D�ijan [5], which includes a grid-smoothing proce-
dure that forces the main nodes to be close to the
cell centroids and the auxiliary nodes to be close to
the cell-face centroids.

Discretization of the equations starts with in-
tegrating over the cell volume V, according to Fig. 1.
By using the Gauss theorem and the mean-value
theorem, the integrated governing equations take
the form:

(3)

(4)

where 
nj j nF Av n Avr r= =  is the mass flow through

the cell face and 
n n

( / )i i i j jJ F v A v x nm= - ¶ ¶  is the
momentum flux through the cell face. A and n

j
 are the

cell-face area and its outward normal vector, V is the
cell volume, while k denotes the cell-face index and
m is the number of cell faces on the considered
volume. The scope of the differencing schemes is to
define the velocity 

niv  and its normal derivatives at
the auxiliary node n in terms of velocity values at the
main nodes. Since the adopted grid is locally
orthogonal, these values are defined by using only
the values at nodes C and N. A blending scheme of
the central differencing scheme (CDS) and of the
first-order upwind differencing scheme (UDS) is used
in the CAFFA computer code. Therefore, the same
scheme will also be used in the proposed method. In
the case of the locally orthogonal grid, the diffusion
part of the flux vector is modeled with the following
equation:

(5).
Fig. 1. A part of calculation domain and a typical

cell of locally-orthogonal unstructured grid
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In the case of a non-orthogonal grid, an additional
term appears. In the CAFFA computer code this term
is implemented by using the deferred correction ap-
proach, i.e., by using the velocity values from the
previous iteration.

In the first-order UDS, the convective flux is
modelled by:

(6),

and in the CDS (for the case when the node n lies in
the middle of the CN connection line) by:

(7).

By introducing the mixing factor g, the final
expression for the momentum flux is:

(8)

where, for g = 0 the result is the UDS, and for g = 1 the
CDS.

Introducing the expressions for the fluxes into
(4) results in:

(9)

where:

(10),

(11)

and

(12).
It is obvious that all the terms coming from

the CDS are treated as a deferred correction, the same
as in the CAFFA code.

To reduce the possibility that the numerical
process diverges, this equation is under-relaxed in
the following form:

(13)
which was proposed by Patankar [6]. The last term
on the right-hand side is calculated from the previ-
ous iteration, and a

uv
 is the under-relaxation factor

for the velocity.
According to Rhie and Chow [3], the mass

flow through the cell face is defined as follows:

(14)

where the line above a symbol indicates the linear
interpolation between the values at nodes C and N,
as follows:

(15),

(16)

and
(17).

In the case of a locally orthogonal grid, the
normal derivative of the pressure is defined by using
the CDS, as follows:

(18).

In the CAFFA code, where the grid is non-
orthogonal, additional terms emerge and are treated
explicitly by using the values from the previous
iteration.

Solving the momentum equation with a given
pressure field p* results in the velocity field v

i
*, and

the mass flow F*, which does not necessarily satisfy
the continuity equation. For that reason, the velocity
corrections v

i
� and the corresponding F� and pres-

sure correction p� are searched, so that the corrected
velocity field v

i
 = v

i
* + v

i
� and corrected mass flow

F = F* + F� satisfy the continuity equation. Accord-
ing to Equation (14), the corrected mass flow is ap-
proximated as follows:

(19).

Introducing the corrected mass flows in the
continuity equation (3) results in the following
equation for the pressure correction:

(20)

where

(21)

and

(22).

The solving of this equation results in the
pressure-correction field. Therefore, the pressure
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field is corrected using the following equation:

(23)

where a
p
 is the under-relaxation factor for the pressure.

The velocities in the main nodes are corrected as follows:

(24).

The gradients of the physical values in the
main nodes are calculated using the Gauss formula
as follows:

(25)

where f can stand for v
i
, p or p�.

The steps in the SIMPLE algorithm for solv-
ing the Navier-Stokes equations can be summarized
as follows:
1. Guess the pressure field p* and the velocity field v

i
.

2. Solve the momentum equation (13) to obtain v
i
*.

3. Solve the p� equation (20). Correct the pressure
according to (23), correct the velocity according
to (24) and the mass flow according to (19).

4. Treat the corrected pressure as p* and return to
Step 2. Repeat the whole procedure until a
converged solution is obtained.

The converged solution is obtained when the
normalized residuals for the continuity and
momentum equations become smaller than some
small number, e. In this paper e = 10-6 was used. The
residual for the continuity equation is:

(26)

and the residual for the momentum is:

(27).

In the above expressions, l denotes the cell
index and M the total number of cells. The values of
the variables in the above formula are from the
current iteration, and the coefficients are prepared
for the next iteration. The following residuals are
usually normalized: the mass residuals with the inlet
mass-flow rate and the residuals for the momentum
equation with the inlet momentum flow rate.

2 RESULTS

The described numerical method is imple-
mented in the FVM computer code. In this code the

residuals are defined and normalized in the same way
as in the CAFFA code. The rate of convergence of
the described method and of the method used in the
CAFFA code will be compared by varying the grid�s
non-orthogonality and the differencing scheme.
Also, the range of under-relaxation factors in which
the numerical procedure converges will be analyzed.

2.1 Laminar flow in a lid-driven cavity with inclined
side walls

In this test the 2D laminar fluid flow is calcu-
lated in a closed cavity whose lid is moving in a
tangential direction with velocity v

t
 Periæ [7]. The

Reynolds number based on the side length a is
Re = r.v

t
.a/m = 1000. The calculation is performed for

different inclination angles of the side walls, b = 90°,
67.5° and 45°. In this problem the residuals defined
by (26) and (27) are not normalized.

Fig. 2 shows the qualitative picture of the
streamlines for b = 90° and 45°. It is obvious that the
initially assumed constant-velocity field will be very
different from the final solution.

The problem is solved using the CAFFA nu-
merical code on structured grids of size 40x40 cells,
and with the FVM code on unstructured grids with
approximately 1600 cells. Fig. 3 a shows a part of the
unstructured grid for b = 45° that is used in the FVM
code. The borders of the finite volumes are pre-
sented, and the main nodes are marked. Fig. 3 b
shows a part of the geometric grid for the same case,
which is used in the CAFFA code. The displayed
lines connect the main nodes at which the pressure
and velocity fields are calculated.

In the SIMPLE algorithm, two under-relaxation
factors should be given. The rate of convergence de-
pends on the values of these two factors. Their optimal
values are not known in advance, so that the described
problem will be solved for a range of under-relaxation
factors by varying a

uv
 from 0.5 to 0.95 with a step of

0.025, and a
p
 from 0.1 to 0.6 with a step of 0.1. The

comparison criteria will be the number of iterations
needed for the residuals to fall below e = 10-6.

In the CAFFA and FVM codes different sol-
vers for linear algebraic equations are used. For this
reason, a sufficient number of inner iterations is given
at every iterative step to be sure that the systems
are solved equally well in both codes.

Fig. 4 shows the numbers of outer iterations
Ne required to reduce the residual levels to e as a
function of the under-relaxation factors a
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 and a

p
,

*
C C Cpp p pa ¢= +

C C
C C

*
i i

i

V p
v v

a x

¢¶
= -

¶

[ ] [ ]n N
1 1C

1 1

2

m m
k k

i i
k ki

n A n A
x V V

f
f f

= =

¶
= =

¶ å å

1

M l
p

m
l

R b ¢

=

é ù= ë ûå

C NC N
1 1 C

i

l
M m k

v i i i
l k i

p
R a v a v V b

x= =

é ù¶
é ù= - + -ê úë û ¶ê úë û

å å

Dzijan.p65 24. 5. 2007, 11:02108



Strojni�ki vestnik - Journal of Mechanical Engineering 53(2007)2, 105-113

109Vpliv pravokotnosti mre�e - The Influence of Grid Orthogonality

auv

N
e

0.5 0.6 0.7 0.8 0.9
0

200

400

600

800

1000
ap= 0.1
ap= 0.2
ap= 0.3
ap= 0.4
ap= 0.5
ap= 0.6

 
a) 

auv

N
e

0.5 0.6 0.7 0.8 0.9
0

200

400

600

800

1000
ap= 0.1
ap= 0.2
ap= 0.3
ap= 0.4
ap= 0.5
ap= 0.6

 
b) 

 

 
a) 

 
b) 

 

for b = 90°. In this case, the grids for both codes are
orthogonal, and the achieved results are almost iden-
tical. This confirms the equivalent implementation
of the SIMPLE algorithm in both codes.

Fig. 5 shows Ne for two algorithms for
b = 45°. The SIMPLE algorithm in the CAFFA code
converges in that situation only in the case that
a

p
 = 0.1, and only for small uv 0.7a £ . Ne is considerably

Fig. 2. Streamlines in laminar flow in a lid-driven cavity a) b = 90°, b) b = 45°

vt

 
a) 

 
 

vt

 
 

b) 
 

Fig. 3. A part of the grid for the lid-driven cavity problem for b = 45°  a) FVM, b) CAFFA

Fig. 4. Required number of outer iterations to reduce residual levels to e = 10-6 for the lid-driven cavity
problem for b = 90° (UDS) a) FVM, b) CAFFA
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larger than for the FVM code, which is a
consequence of the grid�s non-orthogonality.

Fig. 6 shows Ne for two algorithms for
b = 67.5°. In the FVM code, the necessary number of
iterations has not significantly changed compared
with the two previous cases. In the CAFFA code,
the range of under-relaxation factors in which the
algorithm converges is narrower than for b = 90°,
and wider than for b = 45°. For the same combination
of under-relaxation factors, Ne increases with the in-
crease of the grid�s non-orthogonality.

Fig. 7 a shows the convergence histories (the
greatest of three residuals versus the number of it-
erations N

it
) of two methods for b = 90°, 67.5° and

45°, at a corresponding optimum combination of
under-relaxation factors and by using the UDS. It is
obvious that the convergence history on a locally

orthogonal grid is unaffected by b, unlike the case
of a non-orthogonal grid. It is worth noting that this
comparison is valid for optimum values of under-
relaxation factors that are unknown prior to the
calculation. The clear advantage of the locally
orthogonal grid over the non-orthogonal one can
be read from Figs 4 to 6, from which one can conclude
that the convergence history on this grid is slightly
changed by a relatively large deviation from the
optimum combination of under-relaxation factors,
which is not the case for the non-orthogonal grid.

Fig. 7 b shows the convergence histories of
two methods for b = 90° and 45°, at a corresponding
optimum combination of under-relaxation factors and
by using the CDS. The optimum values of the under-
relaxation factors are the same as for the UDS. The
rate of convergence slows down by switching from
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Fig. 5. Number of outer iterations required to reduce the residual levels to e = 10-6 for the lid-driven

cavity problem for b = 45° (UDS) a) FVM, b) CAFFA

Fig. 6. Number of outer iterations required to reduce the residual levels to e = 10-6 for the lid-driven
cavity problem for b = 67.5° (UDS) a) FVM, b) CAFFA
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 Fig. 7. Convergence histories for the SIMPLE algorithm in the FVM and CAFFA codes for the lid-driven
cavity problems a) UDS, b) CDS scheme

the UDS to the CDS, which can be explained with
the implementation of the CDS by using the deferred
correction approach. Again, for b = 90° the conver-
gence history of the two methods is practically the
same. For b = 45° the convergence history of the
method on a non-orthogonal grid is considerably
slowed down due to the addition of the deferred
correction on the non-orthogonality effects.

2.2 Laminar flow in a curved channel

The example of laminar flow in a curved chan-
nel where the grid is in some parts orthogonal and in
some parts non-orthogonal is chosen. This is the
usual case in practical applications of this method.

Fig. 8. Streamlines for laminar flow in a curved
channel

 
a) 

 
b) 

 Fig. 9. A part of the computational grid for the curved-channel problem a) FVM, b) CAFFA
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Fig. 8 shows the calculation domain and the stream-
lines for this problem. Obviously, the final flow pat-
tern is significantly different from the one that can
be reasonably guessed at the beginning of the cal-
culation.

Fig. 9 shows the part of the calculation area
discretized with a locally orthogonal grid for the FVM
and a structured grid for the CAFFA codes. The grid
for the CAFFA code is non-orthogonal, and partially
smoothed in the corners. In the straight parts of the
channel this grid is orthogonal. The grid for the FVM
code has 1180 finite volumes and the grid dimen-
sions for the CAFFA code are 20×60 finite volumes.
The uniform profile of the normal velocity v

n
 is given

at the inlet. At the outlet boundary, the standard
assumption of a zero velocity gradient is applied.
The other boundaries are impermeable walls. The
Reynolds number based on the normal velocity v

n

and the inlet width a is Re = r.v
n
.a/m = 200.

Fig. 10 shows Ne for the SIMPLE algorithm
on a locally orthogonal grid. The range of good
values of the under-relaxation factors is wider than
in the case of the non-orthogonal grid. For the non-
orthogonal grid, Ne increases considerably for small
changes of the under-relaxation factors with respect
to their optimum values.

Fig. 11 shows the convergence histories for
two methods for a corresponding optimum combina-
tion of under-relaxation factors by using the UDS and
the CDS. The advantage of the method on the locally
orthogonal grid is obvious. The effects of the deferred
correction approach in the CDS are superimposed on
the effects of the grid�s non-orthogonality.

3 CONCLUSIONS

From the comparison of the two methods in
the selected test problems, the following conclusions
can be drawn:
1) The results obtained by the FVM and CAFFA

codes are nearly the same when both grids are
orthogonal.

2) The method on a locally orthogonal grid imple-
mented in the FVM code requires a smaller
number of iterations than the method on a non-
orthogonal grid implemented in the CAFFA code,
when using corresponding optimum combina-
tions of under-relaxation factors.

Fig. 10. Number of outer iterations required to reduce the residual levels to e = 10-6 for the curved-
channel problem (UDS) a) FVM, b) CAFFA

Fig. 11. Convergence histories for the SIMPLE
algorithm in the FVM and CAFFA codes for the

curved-channel problem (UDS and CDS)
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3) The range of under-relaxation factors for
which the method converges is narrowing
with the increase of the grid�s non-
orthogonality. This is a serious drawback, if
we know that the optimum values of the un-
der-relaxation factors are not known in ad-

vance, and that they take different values from
problem to problem.

4) The application of the CDS based on the de-
ferred correction approach increases the required
number of iterations. This effect is superimposed
on the effects of the grid�s non-orthogonality.
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